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Abstract: In this research, a new low refractive index ferrofluid is proposed by coating magnetic
nanoparticles with a layer of silver, applying the method of modified chemical co-precipitation. This
preparation method is green and environmentally friendly without toxic gases being released. Coated
nanoparticles are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM),
energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and vibration
sample magnetometery (VSM). These characterizations show that the silver nanoparticles grow on
the surface of magnetic nanoparticles in this new ferrofluid. The hysteresis loop of this new ferrofluid
demonstrates that it maintains superparamagnetic properties. A new method of refractive index
measurement is applied in this research by employing a long-period grating (LPG) optical fiber sensor.
The change value in the refractive index per unit concentration reduces by 16.46% compared to the
conventional ferrofluid.
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1. Introduction

Ferrofluid is a kind of smart materials formed by magnetic nanoparticles with surfactants coated
on the surface dispersing in a carrier liquid [1,2]. As a functional material, ferrofluid has aroused
considerable interest for its unique properties which have been widely used in many fields, such as
biomedicine [3], catalyst [4], magnetic resonance imaging [5,6], gene detection [7], cell sorter [8,9],
and so on. In addition, ferrofluid exhibits remarkable magneto-optical properties. When there is no
external magnetic field, the magnetic nanoparticles in the ferrofluid are uniformly distributed and the
optical properties are isotropic. Yet, when there is an external magnetic field, magnetic nanoparticles
are oriented in the direction of the external magnetic field and the optical properties are anisotropic [10].
However, the difference in refractive index between the ferrofluid and the air causes Fresnel reflection
at the interface and reduces the transmittance of light. Low refractive index ferrofluid can effectively
avoid Fresnel reflection and has promising applications in fabricating optical switches [11,12], tunable
filters [13], and other optical devices [11]. Therefore, preparation of low refractive index ferrofluid is
important for its application in the optical field. Researchers have predicted that ferrofluid, which
contains Fe3O4 magnetic nanoparticles with a spherical isotropic metallic shell could have the property
of low refractive index [14]. However, coating Fe3O4 magnetic nanoparticles with a metallic shell
is difficult to realize, especially for gold or silver, due to the stability of noble metals. Despite these
difficulties, the objective of this research is to propose preparation of a new low refractive index

Materials 2019, 12, 1658; doi:10.3390/ma12101658 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/1996-1944/12/10/1658?type=check_update&version=1
http://dx.doi.org/10.3390/ma12101658
http://www.mdpi.com/journal/materials


Materials 2019, 12, 1658 2 of 12

ferrofluid through a silver coating since it has an outstanding nonlinear optical property. In this
research, a modified method of co-precipitation is applied to synthesize this new ferrofluid by reducing
AgNO3 solution using glucose.

In addition, a new method employing a long-period grating (LPG) optical fiber sensor is adopted
to measure the refractive index of ferrofluid. Previously, a method of employing a reflection technique
was reported to measure the refractive index of ferrofluid. In 2002, Yang successfully measured
the refractive index of ferrofluid by total reflection technique [15]. However, the method requires
sophisticated instrumentation, elaborate optical alignment and complicated data processing [16]. In
contrast, this method employing a LPG optical fiber sensor is easy to operate and guarantees the
accuracy of results.

2. Materials and Experiments

2.1. Materials

Ferric chloride hexahydrate (FeCl3·6H2O), ferrous chloride tetrahydrate (FeCl2·4H2O), silver
nitrate (AgNO3), ammonia solution and glucose were purchased from Beijing Chemical Reagents
Company (Beijing, China). Polyethylene glycol (PEG, powder, average Mw=4000) were purchased
from Shanghai Macklin Biochemical Technology Company (Shanghai, China). All chemical reagents
used in this research were analytical reagent grade without further purification. Ultrapure water was
used throughout the whole experiment.

2.2. Experiments

The most common method to prepare ferrofluid is chemical co-precipitation. In this method,
a mixture of salts suspended in an aqueous alkaline medium is prepared. Subsequently, different
procedures such as decantation, magnetic separation, centrifugation, and dilution are applied to the
suspension [17,18]. In this research, a modified method of co-precipitation was adopted to synthesize
this new low refractive index ferrofluid by reducing AgNO3 solution using glucose. Figure 1 shows
the schematic synthesis of Fe3O4@Ag nanoparticles. Ferric chloride hexahydrate and ferrous chloride
tetrahydrate were mixed in ultrapure water with a molar ratio of 1:1.6 for adequate reaction. After
these two solid reagents were dissolved completely, 25% ammonia solution used as the precipitant
was added to the mixture solution with vigorous stirring. After that, PEG was added to the solution
under vigorous stirring for about 40 minutes. Then, 25% ammonia solution was added with a dropper
to 100 mL 0.1 mol/L AgNO3 aqueous solution. After stirring, the mixed silver ammonia solution and
glucose were added to the mixture solution. The mixture solution was heated to 50 ◦C and the color of
the solution slowly changed from black to dark grey. The mixture was stirred slightly for 0.5 h to obtain
the appropriate thickness of coating. Finally, Fe3O4@Ag nanoparticles were separated with an external
magnet and washed by either ultrapure water or ethanol several times. Fe3O4@Ag nanoparticles and
the carrier liquid were fully ground in certain ratios with high-energy ball milling for about 4 hours.
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2.3. Characterization

The morphology was characterized with a JEM-2100 Transmission Electron Micrograph (TEM,
JEOL, Tokyo, Japan) and with energy dispersive X-ray spectroscopy (EDS, JEOL, Tokyo, Japan). X-ray
diffraction (XRD) measurement was performed by a D8 Advance Bruker AXS diffractometer (Rigaku,
Tokyo, Japan) at 40 kV, 100 mA using a Cu-target tube and a graphite monochromator (Rigaku, Tokyo,
Japan). Scans were made in the 2θ range of 20–80◦ with a step size of 0.2◦ and a count time of 2
second per step. The qualitative analysis of the XRD patterns was performed based on the PDF-2
reference database from the International Center for Diffraction Data database. X-ray photoelectron
spectroscopy (XPS) analysis was conducted using a PHI Quantera SXM multi-technique system
with an Mg Ka X-ray source (Perkin-Elmer Physical Electronics, ULVAC-PHI, Kanagawa, Japan) to
investigate the chemical properties of Fe3O4@Ag nanoparticles. Magnetic properties were measured by
a vibration sample magnetometer (VSM, Lakeshore 7307, Lakeshore Cryotronics, Westerville, America)
at room temperature. The ASE broadband light source (KOHERAS, SuperK Uersa, NKT Photonics,
Birkerod, Denmark) and the spectrometer (OSA, YOKOGAWA AQ6375, Yokogawa, Tokyo, Japan)
were employed in the refractive index measurement process.

3. Results and Discussion

3.1. Reaction Mechanism of the Preparation Process

After ammonia solution is added, its reaction with Fe3+ and Fe2+ forms Fe3O4. With high surface
energy, the Fe3O4 aggregate rapidly, and thus form particles like seeds. PEG attached to the Fe3O4

particles surfaces could prevent their further growth. When PEG is dissolved in aqueous solution, it
is easy to form strong hydrogen bonds on the surface of Fe3O4 particles. The hydrogen bonds can
produce a protective film of polymer which surrounds Fe3O4 particles, at the same time the molecular
bonds can spread into the aqueous solution which makes Fe3O4 particles monodisperse because of
the steric hindrance effect. AgNO3 also reacts with ammonia solution to form AgOH. Since AgOH is
very unstable, it can further react with ammonia solution to produce Ag(NH3)2OH. Then Ag ions are
reducted in situ on the surface of Fe3O4 particles, resulting from their strong binding interaction with
added glucose.

3.2. X-ray Diffraction (XRD) Analysis

Both Fe3O4 nanoparticles and Fe3O4@Ag nanoparticles are investigated by XRD patterns to
explain the crystalline nature. XRD patterns of Fe3O4 nanoparticles and Fe3O4@Ag nanoparticles
are shown in Figure 2. As indicated in Figure 2a, peaks at 2θ=30.1◦, 35.5◦, 43.1◦, 56.9◦ and 62.6◦ can
be indexed to (220), (311), (400), (511) and (440) crystalline planes, respectively, which are in good
agreement with the face-centered cubic structure of Fe3O4 (JCPDS Card No. 19-0629). As indicated in
Figure 2b, peaks at 2θ values of 38.2◦, 44.6◦, 64.5◦ and 77.5◦ can be defined as the Ag characteristic
peaks corresponding to the reflections of the (111), (200), (220) and (311) crystalline planes of Ag (JCPDS
Card No. 65-2871). The PEG layer has no effect on the crystal structure of Fe3O4@Ag nanoparticles
because PEG is a kind of amorphous polymer material. The intensity of Fe3O4 in the Fe3O4@Ag
particles decreases, possibly because of the silver covering on the particles.
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Figure 2. XRD patterns of (a) Fe3O4 particles and (b) Fe3O4@Ag particles.

3.3. Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectrometry (EDS) Images

Morphology of Fe3O4 particles and Fe3O4@Ag particles is characterized by TEM operated with a
microanalytic system EDS Link ISIS EDX, at a voltage of 200 kV. The particles are dispersed in ultrapure
water with ultrasonic treatment for 30 minutes. Then, a drop of the colloidal suspension is dripped
on a carbon-coated Cu grid and allowed to dry before observation. Figure 3a is the image of Fe3O4

nanoparticles before reducing AgNO3 solution, while Figure 3b is the image of Fe3O4@Ag nanoparticles
after reducing AgNO3 solution. Observation reveals that the surface of Fe3O4@Ag particles are not
smooth, which demonstrates that the silver shell is composed of many individual particles. EDS
analysis in Figure 3a,b is the elemental composition of the edge of the particles, shown in the red areas
in the images. In the EDS spectrum, the Fe and O peaks indicate the Fe3O4 magnetic nanoparticles, and
the existence of C and Cu peaks is due to the carbon-coated Cu grid. More importantly, the observed
Ag peak demonstrates the composition of the Ag element which illustrates that the Fe3O4 magnetic
particles are coated by a layer of Ag nanoparticles. Element contents of Fe3O4 particles and Fe3O4@Ag
particles analyzed by EDS are also shown in Table 1.
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Figure 3. TEM and energy dispersive X-ray spectrometry (EDS) images of (a) Fe3O4 particles and (b)
Fe3O4@Ag particles deposited on carbon-coated Cu grids.

Table 1. Elements contents of Fe3O4 nanoparticles and Fe3O4@Ag nanoparticles in the red areas.

Samples
Elements Contents (wt.%)

Fe Ag O Cu C

Fe3O4 22.79 0 17.00 38.01 22.20
Fe3O4@Ag 17.71 33.77 10.77 23.65 14.11

3.4. X-ray Photoelectron Spectroscopy (XPS)

In order to achieve a better understanding of the chemical state of Fe3O4@Ag particles, XPS
analysis was performed. Figure 4a shows the XPS spectra of Fe3O4@Ag nanoparticles. It can be
observed that after coating with Ag, the intensity was lower than the original Fe3O4 [19]. C1S and O1S
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peaks can be observed due to the addition of PEG. The Fe 2p and Ag 3d in Fe3O4@Ag nanoparticles
are compared in Figures 4b and 4c. The binding energies at 724.4 eV and 710.6 eV in Figure 4b are
attributed to Fe 2p1/2 and Fe 2p3/2 which are the characteristics of Fe3O4. No obvious difference can be
found for Fe 2p after Ag coating. A change in intensity and broadening in satellite peak near 718.8 eV
is attributed to the overlap of Fe 2p3/2 and Ag 3s peaks [19]. Figure 4c displays the spectra of Ag 3d
for Fe3O4@Ag nanoparticles. The Ag 3d binding energy region consists of an asymmetric broad peak
centered around 373.9 eV and 367.9 eV for Ag 3d3/2 and 3d5/2, respectively. The peaks of Ag 3d5/2 and
Ag 3d3/2 indicate that Ag is the main component of the surface. These peaks can be split to about ~6 eV
that shows the metallic condition of silver in the form of Ag in the present sample [20,21].
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3.5. Magnetic Properties

Hysteresis loops of Fe3O4 particles and Fe3O4@Ag particles measured by VSM at 300 K are shown
in Figure 5. Saturation magnetization (Ms) of Fe3O4@Ag particles reduces slightly. They have no
remnant magnetism properties that can be used in the sensors of magnetic field. The reduction in Ms
results from the decrease in magnetic particle density. The energy of magnetic materials in an external
magnetic field is proportional to the number of magnetic molecules in a single magnetic domain. This
decrease reflects a smaller percentage of net magnetic material per gram of overall sample. The large
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surface-to-volume ratio of Fe3O4@Ag particles is possibly another factor that leads to the decrease
in Ms.
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3.6. Refractive Index Measurements

The LPG optical fiber sensor consists of an LPG fused between two single mode fibers as shown
in Figure 6. The two ends of the single mode fibers are connected with the broadband light source
and the spectrometer. The broadband source (KOHERAS, SuperK) is an ultra-continuous spectral
white light source with an ultra-wideband output spectrum. It has an output connector with a fiber
optic connector for easy interfacing. The spectrometer (YOKOGAWA AQ6375, Yokogawa, Tokyo,
Japan) is a long-wavelength benchtop spectrum analyzer with wavelength ranging from 1200 nm to
2400 nm. These optical fibers are placed in the glass plate without strain. The relationship between
refractive index and wavelength is studied by using different concentrations of glycerol aqueous. Then
the refractive index of two ferrofluids is obtained from the fitting curve shown in Figure 7. After each
experiment, the LPG optical fiber is washed with ultrapure water and dried with an ear washer. The
transmission spectrum is restored to the initial position to guarantee that no residual glycerol solution
is present on the surface of LPG, and then the following experiment is carried out.
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Figure 7. The transmission spectrum and the fitting curve of glycerol aqueous solutions. (a) Transmission
spectrum of the long-period grating (LPG) optical fiber sensor in different refractive index glycerol
aqueous solutions. (b) Fitting curve of the wavelength shift of peak and the change value of
refractive index.

Five different concentrations of glycerol aqueous solutions are injected in the plate by a dropper
and the LPG is completely immersed. The concentrations of glycerol are 15%, 25%, 35%, 45% and
55%. The corresponding refractive index is 1.35106, 1.36404, 1.37240, 1.39089 and 1.40554. When the
external refractive index changes, the transmission spectrum of the LPG optical fiber sensor also drifts.
Figure 7a illustrates the transmission spectrum of the LPG optical fiber sensor in different refractive
index glycerol aqueous solutions. It can be observed that with the increase of refractive index, the
transmission spectrum drifts to the short wavelength direction. The effective refractive index of the
dominant cladding mode increases with the increase of the external refractive index. The effective
refractive index of the core mode depends on the refractive index of the core and cladding of the fiber
and is not affected only by the change of the external refractive index. When the external refractive
index increases, the refractive index difference between the dominant cladding mode and the core
mode decreases and the loss peak drifts to the short wavelength. Figure 7b shows the fitting curve
of the wavelength shift of peak and the change of refractive index. The standard deviation is 0.1189,
0.1549, 0.0849, 0.0931 and 0.1029. In addition, it indicates the significant linear correlation between the
refractive index and the wavelength.

Refractive index of five different concentrations of the conventional ferrofluid solutions and the
new ferrofluid solutions are measured in the same process. The concentrations of these two ferrofluid
are 5%, 10%, 15%, 20% and 25%. The refractive index of these two ferrofluids can be obtained by
measuring the output wavelength according to the fitting curve shown in Figure 7b. Figure 8 reveals
the transmission spectrum of the LPG optical fiber sensor in different concentration solutions of the
conventional ferrofluid and the new ferrofluid. The transmission spectrum of the sensor drifts because
of the change of the refractive index to be measured. As indicated in Figure 8a, the wavelength value
of transmission spectrum peak of the LPG optical fiber sensor is 1572.6 nm, 1572.0 nm, 1571.8 nm,
1571.6 nm and 1571.3 nm when the concentrations of the conventional ferrofluid are 5%, 10%, 15%,
20% and 25%. As shown in Figure 8b, the wavelength value drops to 1571.8 nm, 1571.6 nm, 1571.2 nm,
1570.8 nm and 1570.4 nm in the new ferrofluid with the same concentration of 5%, 10%, 15%, 20% and
25%. In the conventional ferrofluid, when the wavelength drift is 1.3 nm, the refractive index changes
from 1.371 to 1.403 while in the new ferrofluid with the same concentration, when the wavelength
drift is 1.4 nm, the refractive index changes from 1.353 to 1.383. Table 2 reveals the refractive index of
these two ferrofluids. The change value in refractive index per unit concentration reduces by 16.46%
compared to the conventional ferrofluid. Figure 9 illustrates fitting curves of the refractive index of
these two ferrofluids. The standard deviations of the conventional ferrofluid are 0.0009, 0.0010, 0.0023,
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0.0022 and 0.0016 while the standard deviations of the new ferrofluid are 0.0023, 0.0028, 0.0014, 0.0009
and 0.0024. Meanwhile, these fitting curves reveal the significant linear correlation with the linear
fitting of 0.98780 and 0.94538 in the conventional ferrofluid and the new ferrofluid respectively.Materials 2018, 11, x FOR PEER REVIEW  9 of 11 
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The transmission spectrum of the LPG fiber is generally the superposition of multiple mode
interference spectrums. The interference intensity among modes can be expresses as:

I =
n∑

i=1

Ii + 2
n−1∑
i=1

n∑
j=i+1

√
IiI j cos[2π(ni − n j)L/λ], (1)

where Ii and I j are the light intensity of the i and j modes, ni and n j are the effective refractive index of
the i and j modes. L is the interference length and λ is the wavelength of the transmitting light. Thus,
the light intensity of the LPG optical fiber can be simplified as [22]:

I = I1 + I2 + 2
√

I1I2 cos(φ), (2)

where I1 and I2 are light intensities of two modes. φ is the phase difference between the two modes
which can be expressed as [23]:

φ =
2π∆ne f f L

λ
, (3)

where ∆ne f f is the effective refractive index difference of two main modes participating in the
interference. When the phase difference between the two modes satisfies φ = (2m + 1)π, the loss peak
appears. The wavelength of the loss peak can be expressed as:

λm =
2∆ne f f L

2m + 1
. (4)

When the external refractive index changes, the effective refractive index of LPG optical fiber
modes will also change. Since the silver shell can provide a low refractive index, the effective refractive
index will increase resulting in the increase of the wavelength drift of this new ferrofluid.

4. Conclusions

In this research, the design of a new low refractive index ferrofluid is proposed by coating Fe3O4

magnetic nanoparticles with a silver shell. Despite the difficulty of coating magnetic nanoparticles
with a noble metal shell, this new ferrofluid is successfully prepared by a modified method of chemical
co-precipitation and reduction. The Ms of this new ferrofluid reduces slightly from 70.03 emu/g to 58.90
emu/g. The hysteresis loop of the new ferrofluid also reveals that there are no remnant magnetism and
the samples still have the superparamagnetic property. A new method employing an LPG optical fiber
sensor is firstly adopted to measure the refractive index of ferrofluid. The significant linear correlation
between the refractive index and the wavelength is obtained in the experiment of glycerol aqueous
solutions. The refractive index of both the conventional ferrofluid and the new ferrofluid is obtained
according to the fitting curve with the same process. Compared to the previous methods, this method
is easy to operate, and guarantees accuracy of the results. The results of refractive index experiments
illustrate that the refractive index of ferrofluid with Fe3O4@Ag nanoparticles decreases by nearly 0.02
with the same concentration, and the change value of refractive index per unit concentration reduces
by 16.46%.
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