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Abstract: The nucleation and grain growth that occur during solidification have been extensively
examined, but insight into the influence of an external field on the formation of heterogeneous crystal
nuclei above the liquidus remains unclear in the peritectic refinement mechanism. In this work,
we studied the effect of cooling rate above the liquidus on the formation of primary Al3Zr and
grain refinement in Al-0.2%Zr alloys with inter-cooling annular electromagnetic stirring (IC-AEMS).
The results show that the size and distribution of primary Al3Zr are greatly improved, and the
morphology transformed from large plate/blocky shapes without IC-AEMS to small blocks with
IC-AEMS. Meanwhile, above the liquidus, the addition of an Al-Zr master alloy to pure Al alone did
little to enhance the refinement, but after IC-AEMS, the grains were refined dramatically. The refinement
result seems to be explained by two hypotheses of pre-nucleation and explosive nucleation.
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1. Introduction

Grain refinement in aluminum and its alloy has always been an important process in
production—a fine and equiaxed grain structure can improve the quality of ingots and castings [1].
To achieve a grain-refined structure, two approaches are currently used: the addition of inoculation
substances to the alloy (chemical refining) and the application of an external force on the melt (physical
refining) [2].

Inoculation and primary intermetallic phases promote heterogeneous nucleation during
solidification, including Al-Ti-B, Al-Ti-C, Al-Sc, and Al-Zr master alloys that form precipitates in
the melt and act as nucleation sites [3–6]. Wang et al. revisited the role of peritectic-forming solutes
in the grain refinement of aluminum alloys and found that the efficiency of Zr is next to Ti among
solutes upon refining [7,8]. However, the size, morphology, and quantity of the nuclei in the refiner
are important factors that determine grain refining [9]. Unfortunately, most commercial Refiners note
agglomeration or sedimentation during melting and solidification. According to Greer, only 1% of
particles succeed in nucleating grains; St. John used interdependence theory to explain why only
a small proportion of added inoculant particles are operative [10,11]. The free-growth model can
predict the size distribution of inoculant particles on grain size in Al alloys [12]. In general, researchers
promote nucleation by adding more refiner during the experiment; however, the solute negatively
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affects the potency of the nucleants above a certain level [13]. Thus, many studies have been carried
out on grain refinement by applying an external field.

Physical refinements can be achieved through various methods, such as bubble mixing [14],
electromagnetic stirring [15], and ultrasonic treatment [16]. Several theories have been established
to explain the mechanism of grain refining [3]. Gao et al. analyzed the effects of the electromagnetic
field and melt treatment near the liquidus on the grain refinement of superalloys—they found that
the electromagnetic field could play a positive role in interface stability and dendritic growth to
globular transformation [17]. Haghayeghi applied mechanical shearing on the AA7449 aluminum
alloy above the liquidus temperature. They found that the shearing temperature had a significant
impact on refinement [18]. Eskin et al. studied ultrasonic treatment of the Al-Ti master alloy over
different temperature ranges and observed primary Al3Ti particles at a quenching temperature above
the liquidus temperature after UST [19]. Guan et al. studied the effect of inter-cooling annular
electromagnetic stirring (IC-AEMS for short) above the liquidus on the Al-Zn-Mg-Cu alloy with a high
elements content, and the solidification structure was greatly refined [20].

Most studies, however, have considered the entire stage of solidification, and have not
distinguished the temperature above or below the liquidus in detail. There is still a void in the
current understanding of grain refinement above the liquidus—especially the nucleation process.
Inoculation and primary intermetallic phases that act as substances or nucleation sites often have
higher formation temperatures than the liquidus of the alloy. In binary alloys—especially peritectic
reaction alloys such as Al-Zr—the formation temperature of the primary phases is equivalent to the
liquidus of the alloy.

In this paper, the Al-0.2%Zr alloy was chosen, and the formation of primary Al3Zr and related
grain refinements was investigated. The effect of IC-AEMS above the liquidus at a certain cooling
rate (3.5 ◦C/s) was examined, and the possible mechanism and effectiveness of IC-AEMS on grain
refinement above the liquidus are discussed in this paper.

2. Materials and Methods

2.1. Materials and Equipment

The Al-0.2%Zr alloy was prepared using a high-purity commercial aluminum ingot (99.99%) and
Al-10Zr master alloy (all the chemical compositions throughout the paper are in weight percent unless
otherwise specified). The liquidus temperature of the Al-0.2%Zr alloy was calculated to be 720 ◦C
using the JmatPro software (Sente Software Ltd, Guildford, UK); this was considered the equilibrium
precipitation temperature of primary Al3Zr acting as potential nuclei. The chemical composition of the
Al-0.2%Zr alloy is listed in Table 1.

Table 1. Chemical composition of Al-0.2%Zr alloy ((mass fraction, %)).

Zr Fe Si Al

0.217 0.005 0.007 Bal.

The schematic view of the melt treatment apparatus by IC-AEMS is shown in Figure 1a. In this
equipment, three-phase alternating currents with a phase angle difference of 120◦ were imposed on
the coils in an electromagnetic stirrer. This led to a rotary magnetic field that subsequently stirred
the melt. The inter-cooling rod was used to control the cooling rate of the melt above the liquidus.
This space was replenished with cooling air or circulating water through the inlet. This can limit the
skin effect area and make full use of the induced current [21]. As shown in Figure 1b, the height of the
graphite crucible was 100 mm, the inner radius of the graphite crucible R was 40 mm, the outer radius
of the cooling rod of the inter-cooling rod r was 20 mm, and the thickness of the rod wall was 2 mm.
In this work, the frequency of the electromagnetic stirrer was 30 Hz, the stirring current was 60 A, and
the pole number was 1.
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Figure 1. (a) Schematic view of the melt treatment apparatus by IC-AEMS, (b) the experimental
dimensions of the graphite crucible and the inter-cooling rod.

2.2. Melt Treatment Procedure

Pure aluminum was first melted and heated to 850 ± 3 ◦C in a graphite crucible using an electrical
resistance furnace at which point the master alloy was added. The crucible containing the melt was
transferred to an electromagnetic stirrer after 30 min of isothermal holding and skimming off the
surface oxide skin. A boron nitride-coated cooling rod was preheated to 250–300 ◦C and inserted
in the melt immediately after the cooling air was opened. The melt temperature was monitored by
one K-type thermocouple, and it was positioned half the radius away from the wall. The treatment
temperature range was from 850 to 720 ◦C, and the cooling rod was removed when it dropped to
720 ◦C. The melt without IC-AEMS had a crucible containing the melt placed in the same position, but
cooled in air from 850 to 720 ◦C without electromagnetic stirring and inter-cooling rod insertion.

To compare the efficiency of grain refinement, the melt with and without IC-AEMS above the
liquidus was poured into a TP-1 mold (3.5 ◦C/s) preheated to 350 ◦C [22]. The melt in the crucible
solidified and cooled in the air (0.4 ◦C/s) to room temperature. This sample was used to investigate the
differences between the primary Al3Zr phase treated with and without IC-AEMS above the liquidus.
The casting conditions, alloy compositions, and their characteristics are summarized in Table 2.

Table 2. Chemical composition, casting conditions, and characteristics of experimental alloys.

Alloy
Temperature of the Phase

Formation during
Solidification (◦C)

Temperature
Range of Melt
Treatment (◦C)

Treatment
Condition

Casting Condition

Mold Cooling
Rate, ◦C/s

Al 660(Al)

850–720

- TP-1 3.5
Al-0.2%Zr 720(Al3Zr) - TP-1 3.5
Al-0.2%Zr 720(Al3Zr) IC-AEMS TP-1 3.5
Al-0.2%Zr 720(Al3Zr) - Graphite crucible 0.4
Al-0.2%Zr 720(Al3Zr) IC-AEMS Graphite crucible 0.4

2.3. Sample Assessment

Most of the primary Al3Zr particles settled to the bottom due to the slow cooling rate (0.4 ◦C/s)
in the crucible and larger density of Al3Zr. As shown in Figure 2a, the specimens with and without
IC-AEMS were prepared in the central bottom (5 mm from) part of the ingots. To display the 3D
morphology of the primary Al3Zr particles, the specimens were deeply etched with a 15% NaOH
water solution for two hours and then examined with scanning electron microscopy (SEM, JSM-7001F)
(JEOL, Tokyo, Japan).

The specimens for grain size assessment were sectioned at a cross-section 38 mm from the base of
the TP-1 sample (Figure 2b) and prepared using standard metallographic techniques. The samples
were anodized with Barker’s reagent (4% HBF4 in distilled water) and examined under polarized light
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using the optical microscope (OM, Zeiss Axiovert 200MAT) (Carl Zeiss AG, Heidenheim an der Brenz,
Germany). The grain sizes were measured using the linear intercept method (ASTM E112-10).
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3. Results

3.1. The Effect of IC-AEMS on Grain Refinement in Al-0.2%Zr Alloys

To assess the effectiveness of IC-AEMS above the liquidus on grain refinement, pure Al, as well
as Al-0.2%Zr with and without IC-AEMS, was poured and solidified in a TP-1 mold at a cooling
rate of 3.5 ◦C/s when the melt temperature dropped to that of the liquidus (720 ◦C). The as-cast
microstructures of pure Al and Al-0.2%Zr alloy samples with and without IC-AEMS above the
liquidus are presented in Figure 3. Pure Al has a typical dendrite grain in Figure 3a, but it turns to
a columnar grain without IC-AEMS after Al-10%Zr master alloy addition in Figure 3b. The average
grain size is reduced from 1383 µm to 797 µm, which indicates that the addition of grain refiner alone
above the liquidus can lead to a small refinement efficiency in the Al alloy, to the point of having
equiaxed grains—even with high levels of Zr solute. When IC-AEMS is applied, an almost fully refined
equiaxed grain structure is obtained in Figure 3c, and the average grain size is reduced from 797 µm to
354 µm. The range of error bars Figure 3d indicates the variation in grain sizes.
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Figure 3. Macrographs showing the grain structures of Al and Al-0.2%Zr poured at 720 ◦C and
solidified in the TP-1 mold (3.5 ◦C/s). (a) Pure Al without IC-AEMS; (b) Al-0.2%Zr without IC-AEMS;
(c) Al-0.2%Zr with IC-AEMS; and (d) measured average grain size.
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3.2. The Distribution of Primary Al3Zr Particles

Figure 4 presents the micrograph of primary Al3Zr particles deposited at the bottom under a slow
cooling rate (0.4 ◦C/s) after being treated with and without IC-AEMS. Two typical primary Al3Zr
crystals are seen in Figure 4a: several blocky phases and a few rod-like phases in the alloy. There
were even a series of Al3Zr agglomerates performed without IC-AEMS. In comparison, Figure 4b
shows a high density of small, homogeneous particles distributed in the aluminum matrix. The size
distribution of the primary Al3Zr particles can be well-fitted by a log-normal function, as indicated by
the solid line in Figure 4c,d. The maximum diameter observed in the alloy is around 200 µm, while the
minimum diameter is just 2 µm in Figure 4c; the mean particle diameter is 51.5 µm without IC-AEMS.
After being treated with IC-AEMS, the Al3Zr particles are uniformly distributed in the Al matrix,
and the mean diameter is greatly decreased to 16.7 µm. Most particles are 2–40 µm (Figure 4d). This
shows that the application of IC-AEMS to Al-0.2%Zr alloy above the liquidus refines the primary
Al3Zr particles.
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0.4 ◦C/s (a,c) without IC-AEMS and (b,d) with IC-AEMS.

3.3. The Morphology of Primary Al3Zr Particles

Figure 5 shows the typical SEM images of the 3D morphology of primary Al3Zr particles
after deeply etching the samples with and without IC-AEMS. Figure 5a shows that the Al3Zr
particles without IC-AEMS are generally a plate/blocky-shape with four fast-growing crystallographic
directions. However, the morphology of the particles with IC-AEMS was quite different
(Figure 5b). There were many small blocky crystals formed in the alloy—especially some tiny
erythrocyte-like particles.
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4. Discussion

In traditional electromagnetic stirring (EMS), when an electromagnetic wave front diffuses into a
crucible holding a liquid metal, the “skin effect” will occur and connect with a depth of penetration
δ [23]:

δ =

√
2

σµω
, (1)

where σ is the electric conductivity; µ is the magnetic permeability; and ω is the angular frequency,
with a value of ω = 2πf. When the inter-cooling rod is inserted into the melt, the annular gap between
the graphite crucible and the rod can make full use of the induced current. When the current frequency
f is constant, the induced current density sharply decreases as the penetration depth increases, and the
Lorentz force caused by the induced current will change at a different area of the melt. The Lorentz
force at the edge is strong, while in the interior, the force is weak. This will cause the heat dissipation to
occur faster at the edge than the center. That is the reason why, in traditional electromagnetic stirring
(EMS), there is a significant difference in the temperature field and composition field. The average
shear rate can be calculated as proposed by Spencer et al. [24]:

·
γ =

2Rr
R2 − r2 · 2πn

60
, (2)

where
·
γ is the average shear rate; R is the inner radius of the graphite crucible; r is the outer radius of

the cooling rod; and n is the rotation speed of the magnetic field and is determined by [21]:

n =
60 f

p
, (3)

where p is the pole number; and f is the frequency.
In this work, f = 30 HZ, p = 1, and from Equations (2) and (3), it can be seen that the shear rate

·
γ is related to the parameter

( r
R
)
. When the stirring frequency is constant, the narrower the gap is,

the higher the average shear rate is. For the inter-cooling annular electromagnetic stirring (IC-AEMS),
the molten metal is sheared greatly in the annular gap, which is caused by the graphite crucible and the
rod. It can avoid the low shear rate area in the center. Moreover, the melt is cooled by the inter-cooling
rod, and it can reduce the lateral temperature gradient. Combining the two respects mentioned above,
the higher average shear rate can strengthen the stirring of molten metal and heat transmission, which
makes the temperature and the distribution of solute elements uniform.

Prior work [12,25–27] showed the distribution of a good grain refiner. It should have small
particle sizes and no large agglomerates—the shape of the particles reflects the efficiency of the refiners.
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As shown in Figure 6, the Al-Zr peritectic reaction is different from other foreign nuclei, such as TiB2 for
Al-Ti-B: the Al3Zr particle can completely dissolve in the Al in the alloy above the liquidus. The Al3Zr
will form as a potential substrate for the nucleation sites of Al grains in the melt once the temperature
drops below the liquidus and critical nucleation undercooling is achieved. Thus, this is the initial step
to refining grains that control nucleation and growth in Al3Zr.
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and (d) cooling curves of Al-0.2%Zr alloy with and without IC-AEMS.

The melt without IC-AEMS has a melt temperature that decreased from 850 to 720 ◦C under a
slow cooling rate. The atoms have sufficient time to migrate and agglomerate; small embryos can
be eliminated with fluctuations in the melt, and stable embryos attract more active atoms and grow.
The large critical radius is easy to nucleate. The embryos with a small critical radius require more
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undercooling when the melt temperature falls below the liquidus. The undercooling of growth is
smaller than nucleation, and the Al3Zr crystals coarsen under the effect of the interfacial energy
between the Al melt and the Al3Zr particles. The primary Al3Zr crystals might consume solute atoms
and annex small embryos to grow via Ostwald ripening [30,31]. In summary, the Al3Zr particles have
size differences and are unevenly distributed across the sample without IC-AEMS.

The IC-AEMS melt has two features that might explain the refining effects of the Al3Zr particles.
The first one is “pre-nucleation”. It suggests that when the cooling rod is introduced into the melt,
the chilling layer around the rod can provide extreme undercooling that leads to instantaneous Al3Zr
nucleation. However, the forced convection might be due to electromagnetic stirring. This leads to
primary Al3Zr crystals in the high-temperature area; the crystals melt again as a result. According
to the metallogenetic genetic and multi-step nucleation theory [32], the re-melted crystals could
retain the stability of the embryos and act as potential nuclei. Similarly, IC-AEMS could increase the
nucleation rate.

The second feature was named “Explosive” nucleation. This suggests that the application
of inter-cooling could cause the local melt temperature to drop rapidly, but could also affect the
electromagnetic field of the overall melt to promote a uniform temperature and composition field [33].
The fluid flow quickly weakens the directional migration movement of the atoms and restricts the
growth of the embryos, which have a large radius. The small embryos were activated and dispersed in
the melt. These have the same chance of nucleation and thus “Explosive” nucleation occurs. Wang
applied high intensity ultrasonic melt treatment to a Al-Ti alloy above the liquidus and also observed
refinement of the primary Al3Ti intermetallics [19].

The microstructure of the Al-0.2%Zr alloy shown in Figure 3c and the distribution of Al3Zr
particles presented in Figure 5b clearly indicate that the “Explosive” nucleation mechanism contributes
to the refinement of the primary Al3Zr particles that act as nucleation sites. The nucleation potency of
the small particles plays a dominant role in refinement.

Previous work [34] showed that the growth of the Al3Zr crystals is mainly realized by the
migration of the lateral interfaces; meanwhile, the lateral surfaces correspond to two families of planes
({101} and {111}) for the smaller plates (Figure 8). The larger sized plates have lateral surfaces that only
correspond to the {101} family of planes. The primary Al3Zr occurs in the Al-0.2%Zr alloy at 720 ◦C
(Figure 4a). The {101} and {111} have enough time for migration, which allows the particles to grow
sufficiently at the lower cooling rate. As the reaction progresses, the {111} planes disappear because
of their high roughness [25]. The undercooling degree increased when the IC-AEMS was applied
with a cooling rate that increased from 0.4 ◦C/s to 3.5 ◦C/s. The critical nuclei diameter is inversely
proportional to the melt undercooling and the decreasing Gibbs free energy. Increasing undercooling
offers a large driving force whereby more nuclei particles are created. The particles cannot migrate or
grow, and thus the {111} planes remain.
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5. Conclusions

(1) The Al3Zr particles have only a minor potency when the alloy is poured at 720 ◦C; the average
grain size is reduced from 1383 µm to 797 µm after addition of the Al-10%Zr master alloy.
However, there is significant refinement due to IC-AEMS, with an average grain size that is
reduced from 797 µm to 354 µm.

(2) IC-AEMS above the liquidus impacts grain refinement due to a reduction in the size of Al3Zr
particles and their increased density. There is also a more uniform distribution of fine particles in
the matrix. The mean particle diameter decreased from 51.5 µm to 16.7 µm, and the morphology
of particles transformed from a plate/blocky shape with four fast-growing crystallographic
directions to small block-like erythrocyte.

(3) The impact of IC-AEMS on grain refinement is attributed to the improved Al3Zr precipitates,
which act as heterogeneous nuclei in the melt. The use of IC-AEMS further distributes heat and
improves the composition above the liquidus. The refinement can be jointly promoted by two
hypotheses of pre-nucleation and explosive nucleation.
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