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Abstract: The cohesive zone model (CZM) has found wide acceptance as a tool for the simulation
of delamination in composites and debonding in bonded joints and various implementations of
the cohesive zone model dedicated to fatigue problems have been proposed in the past decade.
In previous works, the authors have developed a model based on cohesive zone to simulate the
propagation of fatigue defects where damage acts on cohesive stiffness, with an initial (undamaged)
stiffness representative of that of the entire thickness of an adhesive layer. In the case of a stiffness that
is order of magnitude higher than the previous one (for instance, in the simulation of the ply-to-ply
interface in composites), the model prediction becomes inaccurate. In this work, a new formulation
of the model that overcomes this limitation is developed. Finite element simulations have been
conducted on a mode I, constant bending (constant G)-loaded double cantilever beam (DCB) joint
to assess the response of the new model with respect to the original one for varying initial stiffness
K0 and cohesive strength σ0. The results showed that the modified model is robust with respect to
changes of two orders of magnitude in initial stiffness and of a factor of two in σ0.
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1. Introduction

Composite and hybrid metal/composite structures are nowadays present not only in the aerospace
industry, but thanks to continuous performance improvement and cost reduction, also many more
industrial fields are approaching the use of multimaterial structural elements. This requires, in turn,
extensive use of adhesive bonding and a more sophisticated capability to simulate and predict the
strength of bonded connections where, for this purpose, analytical methods are being progressively
integrated or replaced by finite element analysis (FEA). In engineering applications, it is well
established that fatigue is the root cause of many structural failures. In the case of bonded joints,
fatigue life is related to the initiation and propagation of defects starting at the free edges of joining
regions or other features, such as through-thickness holes. In the case of composite or metal/composite
joints, fatigue can start also from defects at the same locations cited above, with the difference that the
crack may either run into the adhesive or become a delamination crack. In particular in the case of
damage tolerant or fail safe design, it is necessary to know how cracks, or defects in general, propagate
during the service life of a component.

Originally proposed by Barenblatt [1], the cohesive zone model is extensively used for the
prediction of fracture propagation under quasi-static conditions along the interfaces. Considering
a bi-linear cohesive law (see for example Figure 1) in a quasi-static simulation, the interface behaves
linearly up to δ0. Above this value, the stiffness of the interface is progressively reduced in order
to yield the descending branch of the law until the critical opening δc is attained. In this phase,
the unloading follows the dashed line. The cohesive zone model was further developed in a discrete
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damage zone model and integrated with the extended finite element method (XFEM) by Wang et al. [2]
in order to simulate the crack propagation in an arbitrary direction.
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fatigue crack propagation using the cohesive zone model, many of them being recently reviewed in 
[3,4]. When dealing with fatigue, crack growth may occur also sub-critically, that is at a value of stress 
lower than that shown by the solid line in Figure 1. Among cyclic cohesive models, some were 
applied to the modelling and prediction of fatigue in bulk, ductile materials [5–16] or quasi-brittle 
polymers [17] while, at the same time, several others were developed with reference to applications 
involving failure at the interfaces, such as debonding in adhesive joints or delamination and matrix 
cracking (followed by delamination) in polymer composites [18–37]. 

When modelling fatigue, an important point is the integration of the damage (hence crack 
growth) rate. Most of the models for bulk, ductile or quasi-brittle materials [6–17] as well as some for 
interfaces [18] rely on a full incremental solution of each individual load cycle, eventually adopting 
some kind of extrapolation scheme in order to reduce the computation time (see for example [8]). 
Others adopt instead a load envelope strategy (simulation is performed applying the maximum load 
of the cycle without any unloading-reloading) [19–37] to save computation time. In these types of 
model, damage evolution equations are formulated in terms of damage rate per load cycle and they 
generally include external load parameters (like load ratio) in the damage evolution equation. They 
are, therefore, defined as non-constitutive [38] to differentiate them from models ([5–17] and others 
reported in [38]) where a constitutive traction-displacement behavior was formulated with evolution 
equations for the internal variables accounting for the possibility of cyclic damage accumulation. The 
model developed by the authors in [27,31,36] belongs to the non-constitutive kind, and therefore the 
analysis of the literature will be restricted in the following to the other models of this kind. 

The cohesive zone damage evolution under fatigue loading is accounted for in different ways. 
One first way is to establish a priori a phenomenological law [19,20,22–24] where fatigue damage, Df, 
sums up with the quasi-static damage, Ds, defined as, Dୱ = δୡδ δ − δ଴δୡ − δ଴ (1) 

to yield the overall effect of fatigue loading to the cohesive zone. In this case, the fatigue damage 
evolution law contains parameters that have to be adjusted to calibrate the numerical model with 
experimental results, usually by trial and error, with possible limitations on the simulation of 
different conditions. 

A different approach to fatigue damage was formulated in [21], where a link between damage 
and fracture mechanics was established assuming that the crack growth rate dA/dN is equal to the 
sum of the damaged area growth rates of i-th elements in the cohesive zone, i.e., 

Figure 1. Example of bi-linear quasi-static (solid line) and subcritical, fatigue cohesive stress evolution
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In the literature, a certain number of works can be found dealing with the simulation of the fatigue
crack propagation using the cohesive zone model, many of them being recently reviewed in [3,4].
When dealing with fatigue, crack growth may occur also sub-critically, that is at a value of stress lower
than that shown by the solid line in Figure 1. Among cyclic cohesive models, some were applied to
the modelling and prediction of fatigue in bulk, ductile materials [5–16] or quasi-brittle polymers [17]
while, at the same time, several others were developed with reference to applications involving failure
at the interfaces, such as debonding in adhesive joints or delamination and matrix cracking (followed
by delamination) in polymer composites [18–37].

When modelling fatigue, an important point is the integration of the damage (hence crack
growth) rate. Most of the models for bulk, ductile or quasi-brittle materials [6–17] as well as some for
interfaces [18] rely on a full incremental solution of each individual load cycle, eventually adopting
some kind of extrapolation scheme in order to reduce the computation time (see for example [8]).
Others adopt instead a load envelope strategy (simulation is performed applying the maximum load of
the cycle without any unloading-reloading) [19–37] to save computation time. In these types of model,
damage evolution equations are formulated in terms of damage rate per load cycle and they generally
include external load parameters (like load ratio) in the damage evolution equation. They are, therefore,
defined as non-constitutive [38] to differentiate them from models ([5–17] and others reported in [38])
where a constitutive traction-displacement behavior was formulated with evolution equations for the
internal variables accounting for the possibility of cyclic damage accumulation. The model developed
by the authors in [27,31,36] belongs to the non-constitutive kind, and therefore the analysis of the
literature will be restricted in the following to the other models of this kind.

The cohesive zone damage evolution under fatigue loading is accounted for in different ways.
One first way is to establish a priori a phenomenological law [19,20,22–24] where fatigue damage, Df,
sums up with the quasi-static damage, Ds, defined as,

Ds =
δc

δ

δ− δ0

δc − δ0
(1)

to yield the overall effect of fatigue loading to the cohesive zone. In this case, the fatigue damage
evolution law contains parameters that have to be adjusted to calibrate the numerical model with
experimental results, usually by trial and error, with possible limitations on the simulation of
different conditions.
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A different approach to fatigue damage was formulated in [21], where a link between damage
and fracture mechanics was established assuming that the crack growth rate dA/dN is equal to the
sum of the damaged area growth rates of i-th elements in the cohesive zone, i.e.,

dA
dN

= ∑
ACZ

dAd
i

dN
(2)

coming to the following relationship for cyclic damage:

dD
dN

=
1

ACZ

[(1−D)δc + Dδ0]
2

δ0δc

dA
dN

(3)

while the quasi-static component of damage is still given by Equation (1) and the overall damage rate
is of course the sum of the quasi-static and fatigue rates. In this way, the fatigue damage rate can be
determined directly from the experimental fatigue delamination rate dA/dN. The last, in fact, can be
expressed as a function of the cyclic strain energy release rate, ∆G, by means of a Paris-like equation

dA
dN

= B∆Gd (4)

where ∆G = (1 − R2)Gmax and Gmax is maximum value of G of the cycle. However, in this model the
damage variable D representing the loss of stiffness, i.e., K = (1−D)K0, does not coincide with the
density of microcracks on a representative interface element, D = Ad/Ae, as it may be deduced from
the application of the effective stress concept and strain equivalence principle of continuum damage
mechanics (see [39]). Rather, the density of microcracks on a representative interface element is related
to the damage variable representing the loss of cohesive strength σ =

(
1−D

)
σ0 (linear softening).

This implies also that D is coincident with the ratio of the energy dissipated during the damage process,
Ξ, to the critical energy release rate, Gc.

D =
Ad
Ae

=
Ξ
Gc

= 1− (1−D)
δ

δ0
(5)

The same kind of approach was adopted in [25,26,28–30,32], although coming to a slightly
different formulation of the fatigue damage rate:

∂Df
∂N

=
1−Ds −Df,u

Afat

dA
dN

(6)

in 25, 26, 28 and 29, where Df,u accounts for unwanted fatigue damage, i.e., fatigue damage that occur
before the value of δ in Figure 1, and,

∂Df
∂N

=
1−Ds

Aeff

dA
dN

(7)

in [32], while [30] exploited Equation (3). In these works, an effort was also put on the development
of alternative ways to identify the values of ACZ (Aeff) and ∆G with respect to [21], where ACZ was
estimated using mode I Rice’s closed-form equation and simulations were performed for geometries
where ∆G was independent of crack length. In particular, [32] defined Aeff as the portion of the area
on the crack tip element subjected to fatigue damage, while [30] adopted a modified form of Rice’s
solution that accounts for the difference in Acz between mode I and mode II loading. In both works,
the simulation was done on geometries where G was dependent on the crack length.

In [25,26,28,29], ACZ was evaluated numerically by performing a quasi-static analysis before
going on to the fatigue damage step. The quasi-static cohesive zone length, ACZ,s was extracted as the
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sum of the areas of elements where 0 < D < 1 and, since fatigue crack growth (FCG) occurs at a value
G < Gc, ACZ was finally estimated as:

ACZ =

(
G
Gc

)
ACZ,s (8)

Concerning the calculation of the fatigue damage rate, Afat in Equation (6) is the portion of ACZ

where damage develops subcritically, that is at a stress lower than the one dictated by the quasi-static
traction-displacement behavior. The value of Afat was taken equal to half of ACZ based on the results
of simulation examples. The value of Aeff in Equation (7) corresponds instead to the undamaged
length of the crack tip element when a new loading is applied to the model. For example, if Ds = 0.4 at
the crack tip cohesive element after a quasi-static loading, the element will enter the fatigue loading
step with a 60% (Aeff = 0.6Ae) of residual area. In [30], a closed-form formulation of ACZ was adopted
alike [21] but depending in this case on the mode mixity.

Regarding ∆G, the authors of [25,26,28–30] used the instantaneous (i.e., at the current increment)
integrated traction-displacement response of cohesive elements, where the subcritical portion
(see Figure 1) was assumed to be vertical. It is worth underlining that these models calculate
∆G pointwise within ACZ, and therefore the fatigue damage rate varies pointwise accordingly. In other
words, the experimental fatigue crack growth rate dA/dN evaluated at the scale of the specimen is
used to model local damage processes. The authors of [32] choose to concentrate fatigue damage into
the crack tip element; therefore, the value of G was evaluated in the same way as in [25,26,28–30] but
only at the crack tip element. Since in this way G increased with delamination growth contradicting
experimental results, the value considered was calculated as a weighted average of the values of G at
the crack tip and at the element just ahead of the crack tip. In [33] the authors recognized that the
“instantaneous” G may vary with fatigue degradation and mesh refinement, while the value of G at
the cohesive element failure is a better estimate. The strain energy release rate at failure was, therefore,
extracted from elements in the wake of the numerical crack front, assuming that the variation of G
between consecutive cohesive elements is small.

All of the models mentioned above consider the development of damage starting from the
softening branch of the cohesive law. Since fatigue damage is likely to begin below the quasi-static stress
threshold σ0, or it is possible that it develops in absence of a pre-existing crack (i.e., cohesive element
would be little stressed in this case), a condition for crack initiation was added in [26]. Here a fatigue
damage initiation parameter dfi was accumulated, depending on the stress level of cohesive elements
with respect to fatigue stress-life behaviour. In order to identify correctly the initiation region, a failure
index was also introduced [28] and assessed [29].

The definition of damage of Equation (5) and the link between damage mechanics and
fracture mechanics represented by Equation (2) were adopted also in [34,35]. They however defined
an equivalent δ that incorporates the cumulative effects of the static (Ds) and fatigue (Df) damage on
the material stiffness, as the variable to be continuously recorded during the analysis. In this way the
damage, independently of its origin, follows Equation (1) where Ds is replaced by D. The resulting
fatigue damage evolution is:

∂Df
∂N

=
rw

ACZ

δ0δc

δ2
dA
dN

(9)

where rw represents the relative weight of each Integration Point (IP) in the Newton–Cotes integration
scheme chosen by the authors. The three IPs of each cohesive element used here, have therefore relative
weights of (1, 4, 1), respectively. With a few algebraic manipulations, it can be shown that Equation (9)
is equivalent to Equation (5) except the presence of the weight rw. Again, G is evaluated at each point
within ACZ implying that the macroscopic fatigue crack growth behavior still holds at the mesoscale.

Also the model developed in [27,31,36] made use of the same link between damage and fracture
mechanics established in [21], i.e., Equation (2). As in other works cited before, a focus was done on
the improvement of the precision of the model, namely [27]:
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- evaluation of G as a whole model value using the contour integral;
- numerical evaluation of ACZ increment-by-increment during the simulation;
- introduction of a threshold for fatigue crack growth, δth, that can be lower than the quasi-static

stress threshold δ0.

Mixed-mode I/II criteria were then implemented in [31] and three-dimensional crack fronts were
managed in [36]. The effects of the density of microcracks on a representative interface element, Ad/Ae

was related to the loss of stiffness, i.e., D = 1 − K/K0, and the fatigue damage evolution law was
developed on this basis resulting:

dDf
dN

=
1

ACZ

dA
dN

=
1

ACZ
B∆Gd (10)

while quasi-static damage follows Equation (1). Stiffness-based damage is one of the damage measures
found in the literature; other measures for definition of damage include [38]: (i) current traction;
(ii) current separation; (iii) energy dissipated during the monotonic loading process up to the current
state. All of these types were found in the models analysed previously (stiffness was used also
in [19,20]). In [38] it has been illustrated, for the case of the bilinear cohesive law, that these damage
measures can be uniquely converted one another. Among the different measures, stiffness-based
damage is quite sensitive to the value of initial stiffness, i.e., the higher K0, the steeper the damage
evolution. In [40] a study was performed in order to define bound values of the initial stiffness for a
cohesive zone model. The sensitivity of the damage evolution with respect to the initial stiffness is
quite clear looking at the graphical representation of Equation (1) in Figure 2 for increasing values of
K0. This implies that, using this measure, a high value of damage may not necessarily mean a high loss
of strength. In [38] it was also pointed out that an energetic damage variable may be an appropriate
quantity to interpret the damage states but the formulation of cohesive laws with this measure is not
recommended. Instead, the use of the separation-type damage variable is more effective and efficient
for this purpose.
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The development of the model [27] was done focusing on bonded joints. In finite element
modelling of bonded joints, the adhesive layer, although not infinitely thin, is generally not introduced
explicitly in the finite element model because of modelling and computation time convenience.
The adhesive layer behavior and damage is therefore embedded into the cohesive zone, that has
the purpose not only to model decohesion but also the stiffness of the bondline which may not be
as high as usually assumed in CZM. For instance, a typical figure would be a 0.2 mm thick layer
of an epoxy adhesive having an elastic Young modulus equal to 2000 MPa, that yields a stiffness
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K0 = 2000/0.2 = 104 MPa/mm. This value is 2–3 order of magnitude lower than that used typically
to model nominally zero-thickness interfaces with CZM. Looking at Figure 2, damage evolution
with such a value of K0 may not be drastically steep as with order of magnitudes higher values.
A stiffness-based damage variable is also used in the commercial finite element program ABAQUS,
where the model [27,31,36] was implemented by means of the embedded user subroutines USDFLD
and URDFIL. These motivations can justify from the numerical side the use of a stiffness-based
damage measure.

Damage in the adhesive layer can develop in the form of microcavities and crazes as a result of
the presence of filler particles and of the nature of the polymer matrix. Therefore, a fracture occurs in
several cases in a quasi-brittle fashion. For this reason, it is believed that the use of a stiffness-based
damage can be justified in this case also from a physical point of view. This might not be the same for
very thin (ideally infinitely thin) interfaces such as metal-ceramic joints or, depending on the retained
resin content after curing, ply-to-ply interface in composite laminates. In those cases, very high
values of stiffness can be expected, that can be hardly evaluated in practice; therefore, working with
a definition of damage based on the loss of interface (cohesive) strength might be more appropriate
from the physical standpoint.

Recently, Reference [41] compared the performance of six models [19,21,25,31,33,37].
The conclusions drawn by this benchmark study are that all the models, with a few exceptions [33,37]
are influenced by parameters not directly linked to the damage rate model, which significantly reduce
their capabilities to perform effective simulations on a broad range of parameters. In particular
concerning [31], the dependence of simulation results on the initial stiffness K0 and on the cohesive
strength σ0 were indicated as the main responsible of the inaccuracy. It is worth underlining that
in [31] and related papers, the initial stiffness was always set to K0 = 104 MPa/mm, as the target of the
application was on adhesive joints. When the authors of [41] used this value in the simulations with
the model of [31], they found a good agreement between theoretical and simulated FCG rate.

The objectives of this work is therefore to develop and validate a new formulation of the model [27]
that would not be sensitive to changes in K0 and σ0 and, therefore, demonstrate that a stiffness-based
damage measure is suitable also in the case of stiff interfaces. The steps are:

- to identify the root causes of the poor performance of the model at high values of K0;
- to review critically the implementation strategy;
- to propose a revised version of the model;
- to assess the response of the revised model for varying K0 and σ0.

2. Model Implementation into Abaqus™

The model [27] was implemented into the software Abaqus™ 6.13 (Dassault Systèmes,
Vélizy-Villacoublay, France) by programming the user subroutines USDFLD and URDFIL.
The USDFLD subroutine allows to define a field-variable dependent material behaviour, such as
the dependence of stiffness on damage, while URDFIL is used to post-process results during the
analysis, in this case to obtain G from stress and opening of cohesive elements and to update the
number of elapsed cycles. A field variable dependence through USDFLD can be easier to implement
than a user-defined material behaviour by the UMAT subroutine, although at the expense of the
introduction of an explicit solution dependence since USDFLD provides access to material point
quantities only at the beginning of the increment. Therefore, the accuracy of the results may depend
on the increment size, that is in this case on the value of ∆Dmax set by the user.

The analysis is divided in four steps (see Figure 3):

1. ramp-up until Gth = ∆Gth
1−R2 and evaluate the fatigue damage threshold δth as the value of δ at the

crack tip cohesive element;
2. ramp down to zero force and remove damage possibly developed in the previous step;
3. ramp up to the maximum load of the cycle;
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4. simulation of fatigue phase in subsequent increments (j-th), with the procedure described in
the following, while keeping the load constant along the increments; ∆Gj is evaluated using the
contour integral over a path surrounding the cohesive zone. In this step, both static ad fatigue
damages are considered.
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The workflow of the algorithm used for the fatigue crack growth simulation during step 4 includes
the following two phases, that are repeated sequentially every increment j of the analysis step:

1. Solution phase (USDFLD subroutine)
For every integration point i of cohesive elements:

Get σj,i, δj,i

Initialize Dj,i = Dj−1,i

Update cohesive law: δ0
j,i = δ0δc

δ0+(δc−δ0)(1−Dj,i)
(see Figure 4)

Update field variable FV = Dj,i and store it
Loop over integration points of cohesive elements

2. Post-processing phase (URDFIL subroutine)
Evaluate Acz

j

Evaluate Gj using contour integral; ∆Gj = Gj(1 − R2)
Initialize Nj = Nj−1

For every integration point i:

Impose tentative damage increment ∆Dj,i = min
{

∆Dmax; 1−Dj,i
}

(∆Dmax is a user-defined value)

Calculate ∆Nj,i = ∆Dj,i

B(∆Gj)
d ACZ

j Loop over integration points of cohesive elements

For the entire model:

Find ∆Nj
min = mini

{
∆Nj,i

}
Update damage Nj = Nj + ∆Nj

min and store it for increment j + 1
For every integration point i:

Calculate ∆Dj,i = ∆Nj
min

B(∆Gj)
d

ACZ
j

Update damage Dj,i = Dj−1,i + ∆Dj,i and store it for increment j + 1

Loop over integration points of cohesive elements
Damage is shared between subroutines in a Fortran COMMON block.
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3. Model Performance Checkout

3.1. Modelling

The fatigue crack growth rate dependence on model parameters is tested in the present
work on a mode I double cantilever beam (DCB) joint geometry loaded with a constant bending
moment, Figure 5, that yields a nominally constant G = M2/EI for increasing crack length (E is the
adherends elastic modulus and I is the second moment of area of the beam section). The analysis
is two-dimensional and only the upper cantilever was modelled due to symmetry. The cantilever
is modelled with four-node, reduced integration plane stress elements, with an average mesh size
of 1 mm (length direction) and 0.25 mm (thickness direction), respectively. The debonding interface
instead, is represented through four-node cohesive elements. In order to mesh the process zone with
enough accuracy (at least 4–5 elements enclosed in the cohesive process zone) even in the case of a
very high cohesive stiffness, the cohesive element size has to be set to a low value, as well as it does for
the maximum damage increment ∆Dmax. A preliminary study was done where four combinations of
cohesive element size (0.2 or 0.02 mm) and ∆Dmax (0.2 or 0.02) were tested, yielding that a cohesive
element size of 0.02 mm and a ∆Dmax = 0.02 is a reasonable trade-off to keep the accuracy of the
solution as high as possible compatibly with the simulation time. A rigid kinematic coupling is set
between the cantilever and the cohesive zone.
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M = 300 Nmm/mm.

The stiffness of cohesive elements is dependent on the current value of damage according to the
procedure described in Section 2. Cantilevers are assigned isotropic elastic constants E = 70 GPa and
ν = 0.3. The CZM and FCG parameters that hold for all simulations are reported in Table 1. Fatigue is
simulated with a load ratio R = 0 (i.e., ∆G = maximum G of the cycle).

The CZM parameters that are varied in the simulations are reported instead in Table 2. The values
were chosen in the following way:

- K0 = 1 × 104 MPa/mm is the initial stiffness adopted in all the works done previously by the
authors, representing a 0.2 mm thick adhesive layer of a polymer with Young’s modulus equal to
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2000 MPa. Other values were set one- and two-order of magnitude greater than that, in order to
represent much more thin layer such ply-to-ply interface in composite laminates;

- load levels corresponding to G/Gc = 0.25, 0.5 and 0.75, respectively, were simulated for each of
the values of K0;

- the influence of σ0 has been assessed only in the case of an intermediate value of initial stiffness
to limit the number of simulations (see Table 2).

Table 1. Cohesive zone model (CZM) and fatigue crack growth (FCG) parameters that are not varied
in the simulations, from 21.

Parameter Value

Gc [N/mm] 0.26
∆Gth [N/mm] 0.06

σ0 [MPa] 30
δc[mm] 0.0173

B [mm/cycle × (N/mm)−d] 4.443
d 5.4

Table 2. CZM parameters that are varied in the simulations.

Parameter Value

K0 [MPa/mm] 104 105 106

30 30 30

σ0 [MPa]
50
70

The introduction of δth instead of δ0 as a fatigue threshold has the effect of moving backward or
forward the transition point between quasi-static and subcritical damage evolution, alike K0 and σ0.
Since the extent of this effect depends, at the same time, on the values assumed by K0 and σ0, for the
sake of simplicity a detailed analysis has not been carried out regarding δth.

3.2. Results

The FCG rate predicted by the model for the parameter combinations in Table 2 is summarized
in Figure 6. The simulated crack growth varied from about 1 mm to 5 mm depending on the FCG
rate. A linear regression of crack length vs. number of cycles has been done in order to extrapolate the
FCG rate and to evaluate the correlation of the simulation with the theoretical trend represented by
Equation (4). At a value of K0 = 104 MPa/mm the model yields results in line with the theoretical value,
showing just a small deviation at the highest value of G/Gc. For increasing values of K0, as shown in 41,
an increasing deviation from the theoretical trend is found that may become very large. This confirms
also why in previous works of the authors, where simulations were done with a low value of stiffness,
representative of an adhesive layer (104 MPa/mm), a good correspondence between theoretical and
simulated FCG rate was always found.

This behavior is consistent with the dependence of the transition point between quasi-static
and subcritical fatigue damage with the value of K0 represented in Figure 7. The higher the initial
stiffness and strain energy release rate, the higher is the amount of damage accumulated following the
quasi-static cohesive law, i.e., non-subcritically.

Not surprisingly, the opposite trend is found in Figure 8 by increasing σ0, where the difference
between simulation and theory decreases. Thus, the higher σ0 the lower the non-subcritical
damage accumulation.
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4. Modification of the Model and Validation

4.1. Modification

From the analysis conducted in Section 3, the model yields accurate predictions of the FCG
rate under conditions of low values of K0 and G/Gc and high values of σ0, that is when damage
accumulates mainly under subcritical conditions. Therefore, a term accounting for fatigue damage
developing under “critical” (i.e., quasi-static) stress-opening conditions is foreseen.

The model [27] makes use of the Abaqus™ USDFLD subroutine for an easier implementation
of a damage-dependent cohesive stiffness, with respect to the use of UMAT (User-defined material).
However, as anticipated in Section 2, the cohesive element stiffness is not updated by USDFLD during
the increment and the stress-opening distribution in the cohesive zone may therefore overshoot the
quasi-static cohesive law. An example of this behavior is shown in Figure 9. The overshooting of the
quasi-static limit corresponds to an unintended damage increment, ∆D*j,i, that is not accounted for
in the procedure described in Section 2. Since the overshooting of the cohesive law tends to be more
pronounced at high values of K0 and/or G/Gc a high discrepancy between theoretical and simulated
FCG rate can be expected under these circumstances, as seen in Figure 6. A high stiffness leads also
to a more pronounced overshooting of the cohesive law especially at the end of the elastic phase,
always because of the explicit solution dependence introduced by the USDFLD subroutine.
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The idea of a correction for unintended quasi-static damage was developed in [37], due in that case
to the mesh-dependency of opening profile and traction field in the cohesive zone, and implemented
by a novel predictor-corrector approach. The predictor step performed an approximate prediction
of the total damage increment of ∆N and the corrector step handled the unintended evolution of
quasi-static damage in terms of an adjustment of the number of loading cycles.

For the sake of simplicity, a first-guess, direct estimate of the damage increment ∆D*j,i is done
referring to the scheme illustrated in Figure 10:

∆D*j,i = D*j,i − Dj,i (11)

where,

D∗j,i =
δf

(
δj,i − δ0

)
δj,i(δc − δ0)

if δj,i > δ0
j,i (12)

D∗j,i = Dj,i if δj,i ≤ δ0
j,i (13)
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In other words, ∆D*j,i represents an additional fatigue damage increment that is accumulated
non-subcritically. The condition δj,i ≤ δ0

j,i corresponds to subcritical fatigue crack growth where
the stress lies below the cohesive law. The field variable where damage is stored for the following
increment is then updated to the value of D*j,i.

Similarly to the corrector step in [37], the increment of damage ∆D*j,i is then related to an
increment of number of cycles ∆N*j. In this case, it has been done by defining an equivalent damaged
area by the knowledge of Aei, the effective area of each of the i-th elements lying on ACZ:

Ad
∗j = ∑

i∈ACZ

Aei∆D∗j,i (14)

and dividing this latter by the fatigue crack growth rate, yielding,

∆N∗ j =

(
Ad
∗

dA/dN

)j
=

∑i∈ACZ
Aei∆D∗j,i

B
(

∆Gj
)d (15)

that has to be added to ∆Nj
min (see Section 2) to have ∆Nj = ∆Nj

min + ∆N*j. The workflow is therefore:

1. Solution phase (USDFLD subroutine)
For every integration point i of cohesive elements:

Get σj,i, δj,i

Initialize Dj,i = Dj-1,i

Update cohesive law: δ0
j,i = δ0δc

δ0+(δc−δ0)(1−Dj,i)

Check for IPs exceeding quasi-static cohesive stress limit:

if δj,i > δ0
j,i update Dj,i to D*j,i =

δf(δj,i−δ0)
δj,i(δc−δ0)

Update field variable FV = D*j,i and store it

Loop over integration points of cohesive elements
2. Post-processing phase (URDFIL subroutine)

Evaluate Acz
j

Evaluate Gj using contour integral; ∆Gj = Gj(1 − R2)
Initialize Nj = Nj-1

For every integration point i:
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Impose tentative damage increment ∆Dj,i = min
{

∆Dmax; 1−D∗j,i
}

Calculate ∆Nj,i = ∆Dj,i

B(∆Gj)
d ACZ

j

Loop over integration points of cohesive elements
For the entire model:

Find ∆Nj
min = mini

{
∆Nj,i

}
For every integration point i:

Calculate ∆Dj,i = ∆Nj
min

B(∆Gj)
d

ACZ
j

Calculate ∆D*j,i = D*j,i − Dj,i

Calculate ∆N∗ j =
∑i∈ACZ

Aei∆D∗j,i

B(∆Gj)
d

Update damage Dj,i = D*j,i + ∆Dj,i and store it for increment j + 1

Loop over integration points of cohesive elements
For the entire model:

Update no. of cycles ∆Nj = ∆Nj
min + ∆N*j and store it for increment j + 1

The results of this modification will be assessed in the next section.

4.2. Results

The fatigue crack growth rate obtained by adding ∆N*j to ∆Nj
min is shown in Figure 11 as

a function of G/Gc. It is evident that now the FCG rate is coherent with the theoretical value
(Equation (4)) independent of K0. Also the influence of G/Gc visible in Figure 6 is now absent.
This is a confirmation that the dependence of the FCG rate on the value of initial stiffness in Figure 6
is related to the explicit solution dependence introduced by the use of the USDFLD subroutine,
rather than on the choice of stiffness as a measure of damage.
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Concerning the effect of σ0, the results are summarized in Figure 12 for K0 = 105 MPa/mm.
Also in this case the FCG rates respect the theoretical trend with a limited underestimation at the
lowest value of G/Gc.
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Globally, it can be said that the modification proposed in Section 4.1 yields good results over
a broad range of cohesive initial stiffness (K0) and cohesive strength (σ0) for a fixed value of the
quasi-static critical value of strain energy release rate.

5. Conclusions

The model developed in [27], has been reviewed critically concerning damage evolution and
implementation strategy. A modification to improve the accuracy of the model in yielding the
theoretical FCG rate has been proposed and the response has been assessed by performing simulations
varying the following model parameters:

• Initial stiffness K0

• Cohesive strength σ0

The results showed that the modified model is robust with respect to changes of two orders
of magnitude in initial stiffness. The influence of cohesive strength σ0 was tested in the case of
an intermediate value of stiffness K0 = 105 MPa/mm and a limited difference between theoretical and
numerically simulated FCG rate was found also in this case, for changes of a factor of two in σ0.
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Nomenclature

A crack area
Ad damaged area produced by voids or cracks within a Representative Interface Element (RIE)
Ad*j damaged area related to ∆D* for the j-th increment
Ae area of a Representative Interface Element (RIE)
Ae,i effective area of the i-th elements
Aeff undamaged length of the crack tip element when a new loading is applied
Afat portion of ACZ where damage develops subcritically (due to fatigue)
ACZ total section area of cohesive elements where D > 0 (process zone)
ACZ,s quasi-static cohesive zone length
Acz

j quasi-static cohesive zone length for the j-th increment
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B fatigue crack growth rate coefficient
D damage variable representing the loss of stiffness
Df fatigue damage
Dj,i damage for the i-th integration point, j-th increment
Ds quasi static damage
D̄ damage variable representing the ratio of energy dissipated during the damage process
Ḋ overall damage rate

D*j,i corrected damage related to the explicit damage update procedure for the i-th integration
point, j-th increment

E adherends elastic modulus
G strain energy release rate
Gj strain energy release rate for the j-th increment
Gc quasi-static critical value of strain energy release rate
Gth threshold strain energy release rate
Gmax maximum value of the strain energy release rate in a cycle
I second moment of area of the beam section
K damaged cohesive stiffness
K0 initial (undamaged) cohesive stiffness
N number of cycles
Nj number of cycles at the j-th increment
R load ratio of the fatigue cycle (minimum load of the cycle/maximum load of the cycle)
d fatigue crack growth rate exponent
lCZ length of cohesive zone ahead of the crack tip
nCZ number of IPs lying within ACZ

rw relative weight of the integration point ([34,35])
∆Dj,i damage variation for the i-th integration point, j-th increment
∆Dmax maximum value of fatigue damage increment set by the user

∆D*j,i fatigue damage increment related to the explicit damage update procedure for the i-th
integration point, j-th increment

∆G cyclic strain energy release range
∆Gj cyclic strain energy release range of the j-th increment
∆Gth cyclic threshold strain energy release rate
∆N increment in the number of cycles related to ∆D
∆Nj,i increment in the number of cycles for the i-th integration point, j-th increment, related to ∆Dj,i

∆Nj
min minimum of the for the ∆Nj,i j-th increment

∆N*j variation of the number of cycles related to the explicit damage update procedure for the
j-th increment

∆N* increment in the number of cycles related to ∆D*
Ξ energy dissipated during the damage process
δ opening
δj,i opening for the i-th integration point, j-th increment
δ0 threshold opening for quasi-static crack growth
δ0

j,i threshold opening for the i-th integration point, j-th increment
δc critical (maximum) opening for quasi-static crack growth
δth threshold opening for fatigue crack growth
σ stress at the integration point
σj,i stress for the i-th integration point, j-th increment
σ0 threshold stress for quasi-static crack growth
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