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Abstract: The use of adhesive layers can improve the properties and reduce the defects produced
in the interfaces. This provides adherence to the structure, adapting the joining surfaces and
avoiding spaces between the layers. However, the presence of the adhesive can potentiate the
defects caused during drilling. In turn, a loss of adhesive in the interface can occur during
machining affecting the final structure. This work has followed a conventional OSD strategy in
CFRP and UNS A92024 aluminium sheet stacking with adhesive. A series of dry drilling tests have
been developed with different cutting conditions and new noncoated WC-Co helical cutting tools.
Analysis of Variance (ANOVA) statistical analyses and surface response models have been applied to
determine the mechanical behaviour in the holes. For this purpose, the dimensional deviation, surface
quality, and adhesive loss in the interface in relation to the number of holes have been considered.
A combination of cutting parameters that minimizes the evaluated defects has been found. Diametric
deviations and surface qualities below 2% and 3.5 µm have been measured in the materials that make
up the stack with cutting speeds higher than 140 m/min and feed rates between 200 and 250 mm/min.
However, the greatest adhesive losses occur at high cutting speeds.
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1. Introduction

Today’s industry is looking for a production system that approaches optimum sustainability.
Industrial sectors are looking for processes that present a balanced performance in energy, economic,
social, functional, and environmental aspects [1,2].

The aeronautical sector is particularly noteworthy, being a benchmark in research, development,
and innovation. One of the first challenges it faces in this fourth revolution is the automation of
its processes. This is especially significant in operations such relevant as the assembly ones are to
this industry, which involve extensive use of manual work. For this reason, the drilling operation
is considered a key process due to the high number of holes made in an aircraft [3,4] for assembly
through the riveting process.

These tasks must maintain the quality of the drilled holes avoiding the later elements separation.
To achieve this goal, the drilling process is opting for drilling strategies known as OSD (One Shoot
Drilling) [5–7]. The aim is to make a hole in a single step, regardless of the number of plates and the
type of material. All this must satisfy the quality requirements imposed by the sector and avoid the
use of lubricants.

Among the varying combinations of different materials that have to be joined together to form
the aircraft, one of the most common is the union of composite material such as CFRP (carbon fiber

Materials 2019, 12, 160; doi:10.3390/ma12010160 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-1605-2772
https://orcid.org/0000-0002-6663-2962
https://orcid.org/0000-0002-3947-2801
http://www.mdpi.com/1996-1944/12/1/160?type=check_update&version=1
http://dx.doi.org/10.3390/ma12010160
http://www.mdpi.com/journal/materials


Materials 2019, 12, 160 2 of 17

reinforced polymer) and sheets of light metals such as aluminium alloys. This structure combines the
strength of the fibres and the formability of the metal alloy [8–10].

Although mechanical joints are the most commonly used in the aeronautical sector, adhesive
joints have also been widely used as a complement to riveting [11]. The existence of a layer that
offers continuity between the materials that constitute the stack can offer a series of advantages.
These benefits can be the elimination of defects in the interfaces between them, weight reduction,
increased fatigue life of the joints, and a wide adaptability to materials [12–14]. However, the effect of
cutting parameters on the adhesive has not been evaluated in previous studies. The presence of a third
material in the interface of the hybrid structure may increase the defects generated during machining.

This paper proposes a study of the cutting parameters in the drilling of hybrid structures
composed of CFRP and alloy UNS A92024, joined by an adhesive. The current objective is to drill
hybrid structures in a single step. For this reason, the study of the influence of the cutting parameters
on the final quality is essential and its influence on the final quality of the adhesive [15]. Defects
such as an increase in the roughness of the composite material due to metal chip evacuation [16] or
diameter variation may appear [17]. In addition, the inclusion of a third material as an adhesive can
generate new defects in the interface of the materials producing a nonhomogeneous hole that meets
the requirements established by the aeronautical sector. For the treatment of the results, Analysis of
Variance (ANOVA) analysis and response surface models have been applied, which have been widely
used in various studies on this topic [18–22]. Finally, a proposal is presented for the evaluation of the
defectology caused in the adhesive that joins both materials.

2. Materials and Methods

For the development of this research, a WC-Co helical model drill without coating has been used.
This was selected considering the materials that make up the stacks to be drilled, their thicknesses,
the required qualities, and the cutting conditions. The dimensions and main characteristics are shown
in Table 1. It has a double angle point, the section closest to the center corresponds to the highest point
angle (140◦) and the projection of the outermost edges provides a narrower angle (118◦).

Table 1. Drilling bit geometry.
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The material selected consisted of a hybrid structure presented in 210 mm × 210 mm sheets and
composed of two different materials. It is formed by a 2 mm thick CFRP sheet and an 8 mm thick UNS
A92024 alloy sheet. Specifications for both materials are shown in Tables 2 and 3.

A two-component adhesive specific for structural elements was used to obtain the hybrid structure.
It was applied by means of a hydraulic press in order to apply a constant pressure and guarantee a
uniform thickness of 1 mm. The properties of the adhesive used are shown in Table 4.

The adhesive was cured at room temperature in an air conditioned room. The polymerization
temperature was 23 ◦C. After polymerization, an ultrasonic inspection was carried out to verify the
correct bond between the materials. In Figure 1, the quality of the joint has been shown. It can be seen
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how the majority of the surface presents a continuous union. However, there are small defects in the
edges of the stack, as well as air bubbles generated during the joining process.

Table 2. Properties and features of CFRP.

Orientation (◦) Reinforcement Matrix Tensile Strength
(MPa)

ILSS
(MPa) Tg (◦C)

0/90 DowAksa A42
carbon fiber 49 Vol %

Epoxy DOW Voraforce 5300
51 Vol % 871 52 121

Table 3. Properties and features of UNS A92024.

Composition Density
(g/cc)

Ultimate Tensile
Strength

(Mpa)

Yield Tensile
Strength

(Mpa)

Elongation
at Break

(%)

Modulus of
Elasticity

(GPa)

Al 90.7–94.7%, Cu 3.8–4.9%,
Mg 1.2–1.8%, Mn 0.30–0.90%,

Zn 0.25%, Ti 0.15%, other
0.15%

2.78 425 310 ≥10 73.1

Table 4. Characteristics of SAF30-LOT adhesive.

Polymerization
Operating

Temperature
(◦C)

Tg
(◦C)

Elongation
at Break

(%)

Fixture
Time
(min)

Full
Cure
(h)

Lap Shear
Strength

(MPa)

Tensile
Strength at

Break (MPa)

Tensile
Modulus

(MPa)

Room Temp. −40/150 86 50 120 24 16 8–10 180
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Figure 1. Ultrasound color map acquired on the hybrid stack interface for evaluating the adhesive 
application quality. 

The tests were carried out dry on a Kondia Five 400 5-axis machining centre (Elgoibar, 
Guipuzcoa, Spain), controlled by a Heidenhain iTNC530 control system (Traunreut, Bavaria, 
Germany). Three cutting speeds and forward speeds were combined to obtain a combination of nine 
tests (Figure 2). The set values for the cutting parameters have been defined on the basis of other 
studies and real application cases, and are indicated in Table 5. 

Temperature has been measured using pyrometric techniques. Macro- and microgeometric 
defects were evaluated after machining. Diameters were evaluated using an inside micrometer of 
three contacts at three different heights per material (Figure 3a). On the other hand, the arithmetic 
mean roughness was evaluated by means of a rugosimeter using a cutoff of 0.8 mm to establish a 
comparison between the results obtained. Surface quality was evaluated in 3 generatrices per drill 
(Figure 3b). 

Figure 1. Ultrasound color map acquired on the hybrid stack interface for evaluating the adhesive
application quality.

The tests were carried out dry on a Kondia Five 400 5-axis machining centre (Elgoibar, Guipuzcoa,
Spain), controlled by a Heidenhain iTNC530 control system (Traunreut, Bavaria, Germany). Three
cutting speeds and forward speeds were combined to obtain a combination of nine tests (Figure 2).
The set values for the cutting parameters have been defined on the basis of other studies and real
application cases, and are indicated in Table 5.

Temperature has been measured using pyrometric techniques. Macro- and microgeometric
defects were evaluated after machining. Diameters were evaluated using an inside micrometer of three
contacts at three different heights per material (Figure 3a). On the other hand, the arithmetic mean
roughness was evaluated by means of a rugosimeter using a cutoff of 0.8 mm to establish a comparison
between the results obtained. Surface quality was evaluated in 3 generatrices per drill (Figure 3b).
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Table 5. Combination of cutting parameters used for each test.

Trial S (m/min) f (mm/min) Holes Machined 1 Lubrication

1 85 200 20 Dry
2 85 250 20 Dry
3 85 300 20 Dry
4 115 200 20 Dry
5 115 250 20 Dry
6 115 300 20 Dry
7 145 200 20 Dry
8 145 250 20 Dry
9 145 300 20 Dry

1 Holes 1, 10, and 20 have been analyzed.
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Figure 3. Evaluation methodology for (a) diameter and (b) quality surface.

Finally, through the obtained roughness profiles, the loss of the adhesive in the interface of the
materials was evaluated by means of image processing software, Figure 4. For each profile obtained
the maximum depth of adhesive removed has been evaluated.

In order to assess the influence of input parameters on the results obtained a statistical analysis
has been carried out. An ANOVA analysis through a Response Surface Methodology (RSM) has been
implemented. With this technique an empirical model will be obtained that establishes a multiple
linear regression.
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Figure 4. Evaluation of adhesive loss in the stack interface.

3. Results and Discussion

The results obtained in the evaluation of the macro and microgeometric defects are shown in
Table 6. The mean values and their respective deviations are shown prior to discussion.

Table 6. Result values of each experimental parameters.

Trial Hole
Ø

[mm (±µm)]
Ra

[µm (±µm)]
Depth

[µm (±µm)]
CFRP Al CFRP Al Adhesive

1
1 8.031 (±0.816) 8.042 (±0.408) 1.38 (±0.033) 1.62 (±0.065) 42.584 (±0.781)

10 7.998 (±1.225) 8.050 (±0.816) 7.32 (±0.033) 6.23 (±0.041) 27.136 (±0.887)
20 7.998 (±0.408) 8.060 (±0.002) 7.47 (±0.024) 12.22 (±0.139) 44.910 (±0.678)

2
1 8.026 (±0.816) 8.022 (±1.633) 1.18 (±0.065) 2.71 (±0.163) 24.730 (±0.906)

10 8.036 (±2.041) 8.052 (±1.225) 4.43 (±0.065) 7.35 (±0.163) 33.924 (±0.746)
20 8.057 (±0.408) 8.031 (±0.408) 2.90 (±0.098) 4.53 (±0.122) 23.937 (±0.737)

3
1 8.052 (±0.408) 8.062 (±1.225) 2.92 (±0.049) 3.20 (±0.114) 21.322 (±0.431)

10 8.079 (±0.816) 8.066 (±1.225) 4.82 (±0.057) 5.40 (±0.220) 29.644 (±0.707)
20 7.997 (±1.225) 8.052 (±1.225) 3.72 (±0.147) 4.97 (±0.147) 10.351 (±0.687)

4
1 8.077 (±1.225) 8.055 (±1.225) 1.20 (±0.122) 3.58 (±0.147) 53.363 (±0.296)

10 8.091 (±0.408) 8.071 (±0.816) 5.53 (±0.008) 3.57 (±0.204) 35.714 (±0.485)
20 8.062 (±1.225) 8.064 (±1.633) 4.06 (±0.147) 3.68 (±0.131) 47.633 (±0.892)

1 8.095 (±2.449) 8.082 (±1.633) 3.23 (±0.016) 4.82 (±0.057) 54.542 (±0.532)
5 10 8.059 (±0.408) 8.079 (±0.816) 3.71 (±0.114) 6.06 (±0.122) 59.167 (±0.558)

20 8.059 (±1.289) 8.081 (±0.816) 4.21 (±0.041) 7.98 (±0.090) 51.512 (±0.401)

1 8.100 (±1.633) 8.054 (±2.449) 1.57 (±0.024) 4.04 (±0.073) 39.640 (±0.719)
6 10 8.091 (±0.816) 8.071 (±0.408) 3.96 (±0.220) 5.28 (±0.139) 66.190 (±0.441)

20 8.064 (±0.816) 8.079 (±0.816) 5.25 (±0.106) 6.66 (±0.033) 30.546 (±0.552)

7
1 8.062 (±1.225) 8.037 (±0.408) 1.84 (±0.090) 2.28 (±0.049) 70.171 (±0.474)

10 8.043 (±0.816) 8.041 (±0.816) 2.81 (±0.057) 2.38 (±0.163) 62.413 (±0.550)
20 8.040 (±1.633) 8.023 (±0.408) 2.67 (±0.155) 2.58 (±0.090) 50.236 (±0.575)

8
1 7.997 (±1.225) 7.994 (±1.225) 1.50 (±0.016) 5.12 (±0.090) 78.464 (±0.495)

10 7.992 (±1.633) 8.020 (±2.449) 4.61 (±0.024) 6.15 (±0.139) 82.222 (±0.603)
20 7.998 (±0.408) 8.021 (±0.816) 3.61 (±0.180) 6.19 (±0.057) 72.189 (±0.612)

9
1 8.041 (±0.408) 8.006 (±1.633) 1.59 (±0.016) 6.09 (±0.171) 61.680 (±0.457)

10 8.043 (±0.816) 8.035 (±1.225) 1.82 (±0.057) 5.76 (±0.163) 108.765 (±0.257)
20 8.040 (±1.225) 8.030 (±0.408) 6.08 (±0.106) 6.94 (±0.057) 80.120 (±0.596)

3.1. Surface Quality

Cutting parameters are essential to obtain a correct surface quality. Figure 5 shows the values of
Ra corresponding to the surface quality generated in the composite material.

It shows how the quality deteriorates as the tool increases the number of holes. This can be related
to wear geometry, both abrasive and adhesive, generated in the tool. As the number of holes increases,
the machining capacity decreases, resulting in a worse surface quality.
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It seems that the combination of a cutting speed of 145 m/min with a feed speed of 200 mm/min
produces the least variation in the geometry used. For this combination the variation of Ra in the
20 holes is the lowest.Materials 2019, 12, x FOR PEER REVIEW  7 of 18 
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Results obtained for the aluminium alloy are shown in Figure 6. It is appreciated how the feed rate
significantly influences the surface quality obtained. The use of a feed rate of 200 mm/min generates
the lowest Ra values. This may be because a smaller chip is generated, as Uddin et al. [23] indicate in
their results. Increases in feed rate result in poorer surface quality. These results are consistent with
those obtained here and shown in [3,4,15].
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There is a clear dispersion of data as the tool achieves a greater number of machined holes.
However, bigger dispersion between the first and the last hole is obtained for a cutting speed of
145 m/min. As it is known, increasing the cutting speed raise the drilling temperature, which
can cause greater adhesion of the adhesive on the tool (Figure 7) providing a more homogeneous
surface quality.

The appreciated values of Ra in both materials are within the values established by the aeronautical
sector. At the same time, the data obtained experimentally present a great dispersion in all the
combinations used. This may be due to the chips generated during machining (Figure 8). The presence
of the adhesive on the interface seems to exacerbate the mechanism of adhesion of the aluminium alloy
on the tool. This produces long thick chips adhered to the tool that do not come off at the end of the
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drill. As a result, when the next hole is drilled, this chip machines the composite material and part of the
aluminum alloy until it is detached. This results in an uneven surface quality and very high Ra values.
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Figure 8. Adhesive and aluminium alloy chips adhered to the cutting geometry.

This could be avoided by using a different drilling strategy such as vibration-assisted
drilling [24,25]. By using this technique, the tool fragments the chip, reducing its size and facilitating
its evacuation. In this way, a better surface quality could be obtained.

ANOVA statistical analysis has been carried out in order to identify the most influential
parameters in the drilling of both materials (Table 7).

The number of holes drilled is the most influential variable as it has a p-value of less than 0.05 in
the CFRP drilling, indicating that it is a statistically significant variable.

This is in line with what it was previously said about the progressive wear generated in the tool.
Nevertheless, there is no apparent influence of the cutting parameters on the quality obtained.

Similar trends are shown in the results of the drilling of UNS A92024. The number of holes
drilled is the most influential variable in surface quality. There is a dispersion for the values of Ra
obtained with the increase in the number of holes. On the other hand, there is no influence of the
cutting parameters used in the process.
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Table 7. Cutting parameters influence in Ra values by Analysis of Variance (ANOVA) analysis in
both materials.
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From the results obtained, a contour diagram has been generated relating two variables.
The contour diagrams are obtained from (1) and (2) with a R2 of 60.31% and 64.05%, respectively.
The average error rate for the obtained values is 34.93% for CFRP material. On the other hand, the mean
error rate for the aluminium obtained values is 22.85%. This high variation is again due to the formation
of long chips adhered to the tool. The chips hit the surface of both materials producing a very random
surface quality. Due to this, the model obtained is not able to follow the trends obtained experimentally.

Since the number of holes is the most influential variable, both the cutting speed and the feed
speed for the two materials have been confronted with it.

CFRP drilling diagrams are shown in Figure 9. For both graphs the wear is progressive, generating
an increase in Ra values. However, the use of high cutting speeds, close to 145 m/min softens this
trend. This may be because the amount of material removed per turn is greater, resulting in a smoother
and more homogeneous surface.

Ra(CFRP) =
22.2 − 0.071*S − 0.126*f + 0.492*Holes − 0.000171*S2 + 0.000161*f2 − 0.01412*Holes2 +

0.000382*S*f − 0.00028*S*Holes − 0.000103*f*Holes,
(1)

Ra (UNS A92024) =
3.3 − 0.229*S + 0.077*f + 0.889*Holes + 0.000023*S2 − 0.000341*f2 − 0.00514*Holes2 +

0.001003*S*f − 0.00345*S*Holes − 0.001018*f*Holes,
(2)
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In turn, by increasing the amount of material removed, the temperatures reached are lower,
without damaging the matrix. This would help to obtain a smoother surface.

On the other hand, the forward speed for a fixed cutting speed does not seem to be a very
influential factor. The variation of Ra is very similar in all combinations. It can be seen how
an intermediate feed rate, close to 250 mm/min, generates the smoothest trend while a speed of
200 mm/min can generate the highest Ra values. Elevated temperatures are related to forward
speed reductions. This can lead to deterioration in the matrix, resulting in a more irregular surface.
At the same time, it can generate greater friction between tool and material, increasing abrasive wear
(Figure 10) and generating greater variation in results.
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Figure 10. Abrasive wear generates in cutting edge.

Similar trends are shown in the diagrams corresponding to the drilling of the aluminium alloy
(Figure 11). The selection of a high cutting speed, close to 145 m/min, together with a low feed speed,
close to 200 mm/min, produces the best surface quality for both materials. This selection produces a
smaller chip that is easier to evacuate and can reach lower temperature values. From a wear point of
view, as the number of holes increases, there is a smoother tendency for this combination.
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Figure 11. Contour diagram obtained by Ra values in UNS A92024: (a) Holes vs. feed rate and (b)
holes vs. cutting speed.

Two contour diagrams have been overlaid to determine the cutting parameters that minimize the
values of Ra (Figure 12). The cutting speed and feedrate variables have been confronted.

There is a small region generated by the combination of a cutting speed greater than 140 m/min
and a feed rate close to 200 mm/min where the values of Ra are minimized. In this region it is possible
to obtain values of Ra lower than 3 µm in the aluminium alloy and 3.5 µm for the composite material.

In addition, the selection of this combination is the one that offers a lower increase of Ra values
by increasing the number of holes drilled as previously shown.
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Figure 12. Overlap contour diagram by Ra values for CFRP & UNS A92024.

3.2. Diameters

Diameters evaluated in CFRP are shown in Figure 13. The number of drills performed does
not seem to affect the diameters obtained in comparison with the values of Ra. The variation in
results may be due to the adhesion and subsequent detachment of the aluminium alloy (Figure 14).
This phenomenon modifies the geometry of the tool by varying its diameter.

However, an increase in the cutting speed results in closer values. This may be due to the increase
of temperature in the cutting edges that would present a lower resistance in the matrix, facilitating
its elimination. This is in line with the results obtained in the ANOVA analysis (Table 5). The cutting
speed has the smallest p-value, being the most statistically influential variable.
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Figure 13. Diameter values in CFRP for all trials carried out.

Due to the very small thickness of the composite material, these diameter variations may also be
related to the loss of adhesive in the interface. This loss could affect the measurement at a height close
to the interface.

Diameters measured in aluminum alloy are shown in Figure 15. The results shown are very close
to those obtained in CFRP. This may be due to the high adhesion of the material in the tool caused
by process temperatures. A minimal dispersion is seen again when it comes to high cutting speeds.
The increase of temperatures in the cutting zone can soften the material, facilitating its elimination and
generating very uniform diameters.
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No variable appears to be statistically significant in the ANOVA analysis performed for drilling
aluminium alloy (Table 8). The adhesion and subsequent detachment of the material can produce
random results. This produces that no input variable presents a high influence on the diameters
obtained. However, the number of holes drilled is the variable with the lowest p-value. This means
that within the randomness described, the number of holes machined is the most influential factor in
the aluminium diameters. Therefore, the diameters generated in the aluminum alloy are related to the
wear mechanisms produced. Adhesive type wear is predominant.

The average diameters and their respective deviations for the nine tests performed are shown
in the (Figure 16). The diameters obtained in both materials are very close to each other except for
Test 1. This is reflected in the ratio obtained between the diameters measured in CFRP and those
measured in the aluminium alloy. The ratios obtained are between 0.998 and 1.005. This indicates that,
independently of the cutting parameters, the diameters obtained are homogeneous and constant in the
drill made.

This is consistent with the results given by D’Orazio. The temperature peaks are higher in the
drilling of the composite material due to the low heat transfer efficiency. This, together with the friction
of the metal chip when it is evacuated, produces larger diameters very close to those obtained in the
aluminum alloy.

The contour diagrams obtained are shown in Figure 17. The contour diagrams are obtained from
the (3) and (4) with a R2 of 80.97% and 66.69%, respectively. The average error rate for the obtained
values is 0.104% for CFRP material. On the other hand, the mean error rate for the obtained aluminium
values is 0.180%.
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Table 8. Cutting parameters influence in diameter values by ANOVA analysis in both materials.
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Contrary to what is stated in the literature, an increase in the number of holes drilled results
in an increase in the diameters obtained in CFRP for a fixed value of cutting speed. The adhesion
of the metal alloy together with the adhesive itself may be enhanced by the temperatures reached
during machining. This, together with the adhesion of the chip itself, can lead to an increase in the
diameters obtained.

Ø(CFRP) =
7.695 + 0.00927*S − 0.00113*f + 0.00112*Holes − 0.000039*S2 + 0.000003*f2 − 0.000111*Holes2 −

0.000003*S*f + 0.000006*S*Holes + 0.000004*f*Holes,
(3)

Ø(UNS A92024) =
7.524 + 0.01384*S − 0.00206*f − 0.00036*Holes − 0.000053*S2 + 0.000006*f2 − 0.000037*Holes2 −

0.000007*S*f + 0.000011*S*Holes − 0.000004*f*Holes,
(4)

On the other hand, it should be noted that the use of low and intermediate cutting speeds affects
the diameters obtained to a greater extent. The use of a speed close to 145 m/min, on the contrary,
generates a diameter with few variations.

The diameters measured in the aluminium alloy are reduced by increasing the number of holes
drilled (Figure 18). For this material, it is observed that the intermediate cutting speed has a greater
influence, achieving the highest values. Applying a low speed, 85 m/min, or high speed, 145 m/min,
generates the smallest diameters of the stack.

The combination of cutting parameters that offer the most homogeneous diameter in both
materials is shown in (Figure 19). Diameters very close to the nominal diameter are obtained by
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using cutting speeds higher than 140 m/min in both materials. However, the feedrate required to
obtain these results must be close to 250 mm/min.
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3.3. Adhesive

An essential aspect is the final state of the adhesive after machining. The adhesive can be
negatively affected and not perform its function. Adhesive loss in the interface can be influenced by
the correct selection of cutting parameters. The maximum depth of adhesive lost after machining is
shown in Figure 20.Materials 2019, 12, x FOR PEER REVIEW  15 of 18 

 

 

Figure 20. Adhesive loss values for all trials carried out. 

This defect may be due to temperatures generated during machining (Figure 21). These may 
exceed the glass transition temperature of the adhesive itself. When this point is overreach, the 
adhesive softens and burns, facilitating its elimination by the cutting edges of the tool. 

As with the results obtained in diameters and Ra, the number of holes drilled greatly affects the 
final quality of the adhesive: The amount of adhesive removed increases due to the progressive wear 
of the tool together with the adhesion of metal shavings.  

The amount of adhesive removed is also related to the cutting speed. This defect increases as 
the cutting speed values increase for a fixed feed value. This is consistent with the results obtained 
by L. Sorrentino [26]. As the cutting speed increases, the friction between the cutting edges and the 
surface of the material becomes greater. This produces an increase in the thermal energy generated, 
increasing the process temperatures. In the results obtained by L. Sorrentino, temperature peaks 
close to 180 °C are reached when drilling CFRP. 

 
Figure 21. Temperature obtained for a single hole drilled. 

These temperatures exceed the glass transition temperature of the adhesive used (86 °C). At this 
point the material is softened and facilitates its removal at the interface. The results obtained at a 
speed of 145 m/min are particularly noteworthy. The observed tendency is inverse to the diameters 
evaluated. This would make sense, as the diameters close to the interface would increase due to the 
loss of adhesive. The ANOVA analysis carried out reflects the above statement (Table 9). The most 
influential variables in adhesive loss are the number of holes drilled and their combination with the 
cutting speed used. The advance speed, on the other hand, does not seem to have an apparent 
influence. 
  

Figure 20. Adhesive loss values for all trials carried out.

This defect may be due to temperatures generated during machining (Figure 21). These may
exceed the glass transition temperature of the adhesive itself. When this point is overreach, the adhesive
softens and burns, facilitating its elimination by the cutting edges of the tool.

As with the results obtained in diameters and Ra, the number of holes drilled greatly affects the
final quality of the adhesive: The amount of adhesive removed increases due to the progressive wear
of the tool together with the adhesion of metal shavings.

The amount of adhesive removed is also related to the cutting speed. This defect increases as the
cutting speed values increase for a fixed feed value. This is consistent with the results obtained by L.
Sorrentino [26]. As the cutting speed increases, the friction between the cutting edges and the surface
of the material becomes greater. This produces an increase in the thermal energy generated, increasing
the process temperatures. In the results obtained by L. Sorrentino, temperature peaks close to 180 ◦C
are reached when drilling CFRP.
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Figure 21. Temperature obtained for a single hole drilled.

These temperatures exceed the glass transition temperature of the adhesive used (86 ◦C). At this
point the material is softened and facilitates its removal at the interface. The results obtained at a
speed of 145 m/min are particularly noteworthy. The observed tendency is inverse to the diameters
evaluated. This would make sense, as the diameters close to the interface would increase due to the
loss of adhesive. The ANOVA analysis carried out reflects the above statement (Table 9). The most
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influential variables in adhesive loss are the number of holes drilled and their combination with the
cutting speed used. The advance speed, on the other hand, does not seem to have an apparent influence.

Table 9. Cutting parameters influence in adhesive loss values by ANOVA analysis.
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The contour diagrams corresponding to the adhesive loss are shown in Figure 22. The contour
diagrams are obtained from Equation (5) with a R2 of 82.99%. The average error value obtained was
18.25%. Although the speed of advance is not a very influential factor, it is appreciated that values
close to 300 mm/min generate the minimum amount of adhesive eliminated in the first holes.

Depth (Adhesive) =
−156 + 0.48*S + 1.512*f − 2.13*Holes − 0.00487*S2 − 0.00339*f2 + 0.0165*Holes2 +

0.00121*S*f + 0.0354*S*Holes + 0.00035*f*Holes,
(5)

On the contrary, as opposed to the above for the values of diameters and Ra, a cutting speed close
to 85 m/min should be selected. This combination of cutting parameters generates less adhesive loss
in the interface as the number of holes increases.
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4. Conclusions

In this work a methodology has been established for the analysis of dry drilling of adhesive
bonded CRFP/UNS A92024 hybrid structures. The analysis of the results has been developed
by diametric deviations, surface quality and adhesive loss through ANOVA techniques and the
development of response surface models.

It has been determined that the surface quality is influenced by the cutting parameters. In addition,
the loss of adhesive in the interface is related to the number of holes drilled.
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The lowest values of Ra in both materials have been obtained by combining a cutting speed of
145 m/min with a feed speed of 200 mm/min. This can be produced by the smaller amount of material
evacuated by the rotation of the tool, stabilizing the process temperatures.

The diametric deviations produced in both materials are very close. No variable has an influence
on the diameters obtained by the ANOVA analysis. This is probably due to the randomness of the
results obtained as consequence of secondary adhesion wear. This kind of wear affects the geometry
of the tool with the adhesion and detachment of machined material, as a result of the stresses and
temperatures generated during the process. The diametric ratios of both materials have always been
near to 1. It has been seen that diameters very close to the nominal in both materials can be obtained
by using cutting speeds higher than 140 m/min and feed speeds close to 250 mm/min.

Adhesive loss is directly related to increased cutting speed. This is due to the increase in
temperature as consequence of the increased friction between the cutting edges and the machined
materials. It has been determined that the cutting speed is the most influential factor in the process.
Cutting speeds close to 85 m/min are recommended to reduce this defect. The feed rate does not have
an excessive influence.
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