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Abstract: The size effects in metal forming have been found to be crucial in micro-scale plastic
deformation or micro-forming processes, which lead to attenuation of the material’s formability due
to the increasing heterogeneity of the plastic flow. The use of an electric field during micro-scale
plastic deformation has shown to relieve size effects, enhance the material’s formability, modify the
microstructure, etc. Consequently, these electric-assisted (EA) micro-forming processes seem to bring
many potential benefits that need to be investigated. Accordingly, here we investigated the influence
of an electric field on the size effects to describe the fracture behavior in uniaxial micro-tension
tests of an AZ31 alloy with various grain sizes. In order to decouple the thermal-mechanical and
microstructure changes, room temperature (RT), oven-heated (OH), air-cooled (AC), and EA uniaxial
micro-tension tests were conducted. The size effects contribution on the fracture stress and strain
showed a similar trend in all the testing configurations. However, the smallest fracture stresses
and the largest fracture strains were denoted in the EA configuration. EBSD examination shows
that current-induced dynamic recrystallization (DRX) and texture evolution could be negligible
under the studied conditions. The kernel average misorientation (KAM) maps give the larger
plastic deformation in the EA specimens due to the reduction of plastic micro-heterogeneity. Finally,
the fracture morphology indicates that the current-induced ductility enhancement may be attributed
to the arrest of micro-crack propagation and the inhibition of void initiation, growth, and coalescence
caused by lattice melting and expansion.

Keywords: ductility; fracture behavior; size effect; electrically assisted; micro-tension

1. Introduction

For decades, micro-forming has been widely studied since it is a large-scale and green
manufacturing technology for meso/micro scale components and assemblies. However, the so-called
size effects have proven to influence on the material deformation behavior and tool performance,
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leading to a reduction of the forming limit and accuracy. These performance degradations would
become more severe for magnesium alloys due to the hexagonal close packed (HCP) crystal structure.
Thus, there are two possible methods to decrease these size effects: increase the forming temperature
and refine the grain size. First, the increase of temperature will increase the possibility of tool breakage
and surface oxidation. While the grain refinement will increase the forming loads and decrease
the forming limit at room temperature (RT). Therefore, as a long-term vision, we attempt to find a
novel process with the capability of controlling both the size effects and the tool life improvement in
micro-forming. Significant efforts have been done to understand the electroplastic treatment to enhance
the material’s formability in electric-assisted (EA) deformation. For example, it has been claimed that
some direct interactive effects may exist between electrons and dislocations [1] during EA deformation.
In particular, the electron wind [2] theory, based on the classical law of momentum transfer, has received
a lot of attention. In our previous work [3], we stated that an electric field significantly affects the
nature of grain boundaries via a localized Joule heating effect, which was experimentally proved by
Zhan et al. [4]. The electromagnetic and thermal effects [5] were investigated in conductive materials
in order to describe the stress distribution and the fracture area. They found that the Joule heating
effect can induce local compressive thermoelastic stresses and melting areas at the crack tip which
help to inhibit the crack propagation. Subsequently, these compressive stresses and crack inhibition
would delay the fracture failure of the specimen. Based on these works, EA micro-forming may have
the potential to improve the formability in micro-scale plastic deformation under lower operating
temperatures and take less time. Also, the electric treatment seems to circumvent the size effects
associated with traditional micro-forming in metals.

Until now, much literature [6–8] has been published about the electroplastic effect on different
alloys and loading conditions, such as tensile, compressive, bending, and drawing. In general,
the results tend to describe an enhanced formability, a reduced flow stress, and lower springback.
Recent developments have focused on different bulk deformations assisted by an electric field.
The potential benefit is to enhance the material formability and reduce the springback by promoting a
fast microstructure alteration, and subsequently, a high-rate transformation of mechanical properties.
Accordingly, Kuang et al. [9] reported the influence of temperature using furnace and electropulsing
treatments when rolling a Mg alloy. They found significant differences in the recrystallization
mechanism and material texture. These changes were attributed to the magnification of dynamic
recrystallization (DRX) because the electric field strongly induced a micro-shear band when low
accumulative true strains were assessed. In addition, Sánchez Egea et al. [10] described the X-ray
pattern of drawn 308L specimens assisted by electropulses. They stated that the electropulses
promoted an ultra-fast annealing treatment in the specimen’s microstructure. This annealing
treatment could explain the formability enhancement in these EA wire-drawn specimens. Similarly,
Xie et al. [11] denoted a detwinning mechanism in Mg strips after an EA bending process. A dissimilar
misorientation angle distributions of the detwinning mechanism was found when comparing the
microstructure of as-received, conventional, and EA-bent specimens. Recently, the fracture mechanism
in Ti6Al4V sheet metals that underwent an EA double-sided incremental forming technique was
characterized by Valoppi et al. [12]. They described that electric current has a localized thermal
softening associated with it that helps to enhance the shear effect and reduce the surface damage.

Regarding these works, the effort to relieve the size effects by using an electric field has become a
hot topic in micro-forming processes. Previous works have proposed different models to describe the
influences of an electric field in microtension, i.e. the Hall-Petch effect [3], the size effect on softening
behavior [13], and the thermal and flow behaviors [14]. However, very limited results have been
reported to denote the importance of the fracture behavior in EA micro-formed specimens. In this
study, we aim to investigate the size effects on the fracture behavior during a tensile test under different
configurations: RT, oven-heated (OH), EA, and air-cooled (AC). Subsequently, the microstructure
evolution and fracture analysis are provided to analyze the current-induced ductility enhancement
and describe a possible fracture mechanism in EA micro-tension.
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2. Experiment

Uniaxial micro-tension tests were performed on AZ31 magnesium alloy (94.8% Mg, 3.5% Al,
1.2% Zn and 0.5% Mn, MTI Instruments, Inc, NY, USA) specimens. Dog-bone shaped specimens
were done for the uniaxial micro-tension, as shown in Figure 1. Furthermore, all the specimens were
annealed with the same protocol as in our previous work [3]. Accordingly, four different grain sizes
were obtained before the micro-tension tests, i.e., 7.1 ± 1.1 µm, 17.6 ± 2.3 µm, 43.3 ± 4.4 µm, and
99.8 ± 24.9 µm.
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Figure 1. (a) Dimensions of the micro-tension specimens, and (b) illustration of the dog-bone shape
specimen preparation.

Micro-tension specimens were conducted on a commercial scanning electron microscope (SEM,
Core Electron Microscopy Facility, MA, USA) loading stage. A continuous electric current was supplied
by using a rectifier-based DC power supply with 3600 W peak power. A load cell with a working range
of 100 N and a resolution of 0.01 N was used to measure the micro-tensile force. The displacement
and strain were calculated using a 2-D digital image correlation (DIC) method, based on the patterned
images captured by a high-resolution CCD camera (Edmund Optics TECHSPEC Silver Series, NJ, USA).
Moreover, an infrared camera was used to record the temperature during the experiments. To decouple
thermal-mechanical and other microstructure effects caused by the electric field, both OH and AC
configurations were conducted with similar bulk temperatures as the EA and RT configurations,
respectively. The detailed setup configurations and testing procedures were given in our previous
work [3].

Electron backscattered diffraction (EBSD) examinations were conducted at the fracture area of
samples subjected to the RT, OH, AC, and EA micro-tension tests. In particular, a Quanta 200FEG field
emission scanning electron microscopy (FESEM) device (Core Electron Microscopy Facility, MA, USA)
with a working distance of ≈13 mm was used to record the EBSD. The EBSD data were analyzed with
a orientation imaging microscopy (OIM) software (OIM Analysi v8, Edax, Beijing, China) provided
with the SEM. For each configuration, one fractured sample was randomly chosen to analyze the
microstructure. All the samples were grouped and mounted with epoxy, ground by hand under
flowing water using 320-grit, 400-grit, and 800-grit sandpapers, and finally, a fine-ground sandpaper
of 1200-grit. Later, the samples were polished with 5 µm, and later, 0.05 µm alumina powder on
a polishing wheel under flowing water. Afterwards, the mechanically-polished specimens were
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electro-polished using a solution of 37.5% H3PO4 and 62.5% C2H5OH under a DC voltage of 5 V at
≈293 K until a mirror-like surface was achieved. Finally, the electro-polished samples were rinsed in
methyl alcohol and ethanol alcohol consecutively. The fracture area of each specimen configuration
was observed using the aforementioned electron microscopy devices.

3. Results and Discussion

The size effects on fracture behavior depends on the dislocation density and its distribution
in the material’s microstructure. These two parameters can be roughly indicated by the fraction of
grain boundaries, since the dislocation density at the grain boundaries are typically found in a high
concentration [15]. A linear relationship between the grain boundary fraction and the reciprocal
square root of the number of grains is expected. Also, it can be assumed to be a polycrystalline
material with two phases, i.e., grain boundary network and interior grain. Subsequently, the size
effects on fracture strain and stress can be approximately characterized by the reciprocal square root
of the number of grains. Figures 2 and 3 show the fracture strain ε f and stress σf variations with
respect to the inverse square root of grain number found in the sample cross sectional area. N is
quantified with the ratio of the specimen cross sectional area with respect to the grain cross sectional
area. For all the cases, the fracture strain and stress increase when increasing N; similar results were
found by Fu and Chan [15]. The increase of fracture stress with the increase of N is associated with
the grain boundary strengthening effect because the grain boundary fraction also increases with N
and the dislocation motion is mainly impeded by the grain boundaries. Accordingly, the EA and RT
configurations present the smallest and the largest fracture stresses, respectively. While, the fracture
stresses do not show significant differences among the RT, OH, and AC configurations when a smaller
N is denoted. Consequently, for a low N, the fracture behavior is expected to be dominated by few
grains with preferential orientations, locations and sizes, causing a relatively larger uncertainty of
fracture stress [16]. Meanwhile, for a high N, the current-induced effect on fracture behavior may
outweigh the influence of microstructure deviation, and as a consequence, reducing the fracture stress
in the following order: RT, AC, OH, and EA micro-tension configurations.

Micro-voids are likely to nucleate at the grain boundaries, where the stress concentration shows
a noticeable increase due to the strain incompatibility of neighboring grains [17]. Hence, we could
expect that a localized thermal heating in the micro-voids’ surroundings and grain boundaries may
occur under the EA configurations. This localized thermal heating at the grain boundaries was
further discussed in our previous works [3,10]. Thus, if the grain boundary density increases with N,
more micro-voids would be heated by the localized thermal effects causing a higher reduction of the
fracture stress.
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Figure 2 shows a decrease of the fracture strain associated with a decrease of N. This could be
also attributed to an inhomogeneous deformation and anisotropic stress concentrations. Specifically,
when the grain size approaches to the specimen size (low N), the behavior of the plastic deformation
would be dominated by the properties (i.e., location, size, and orientation) of a few preferentially
oriented grains. In this particular case, only a few slip systems were activated causing severe strain
incompatibility and an early fracture. Looking at Figure 2, the EA micro-tension configuration denotes
the highest ductility. This result is contrary to the one reported by Ross et al. [18]. They found that
a continuous electric field reduced the maximum achievable elongation of a metal under a tensile
test. The key parameter is the bulk temperature, which in our EA configuration, achieved a lower
temperature of about 373 K. This temperature can cause a smaller strain localization, and consequently,
more delayed current-induced failure in a localized area. However, excessive heating and severe
necking occurred in the round specimens with a larger gauge length and diameter. This excessive
temperature will eventually contribute to an early fracture failure, as reported in [18]. Note that
the fracture strain in the OH specimen is smaller than the EA specimen, although the temperature
in the OH specimen (i.e., 373 K) is higher than the EA specimen. The same happens if AC and
RT configurations are compared, where AC shows a slightly higher fracture strain when increasing
N. Consequently, we could assume that the influence of the electric field on ductility could not be
considered to be exclusive to the bulk heating. The electric field also affected the stress and strain
concentration and dislocation movement on the material’s microstructure in terms of the nucleation,
growth, and coalescence of micro-voids. For these reasons, the current-induced ductility enhancement
was observed to be more significant with higher N, although more micro-voids would be expected to
form at the grain boundaries. As a result, the electric field may have the ability to impede the growth
and coalescence of micro-voids, which can inhibit the crack propagation, as also stated by Liu [5].

Figure 4 shows the inverse pole figure (IPF) maps in the normal direction (ND) at the fracture area
for the different tested configurations. The initial microstructure (Figure 4a) has relatively equiaxed
grains with a grain size of about 20 µm. The same size is inherited in Figure 4b, due to the small
tensile deformation in the RT configuration. The microstructure in the OH specimen (Figure 4c)
is approximately consistent with the annealed material. There was no evidence of grain growth,
so DRX did not occur in these samples, where the recorded temperature was 373 K, far below
the DRX temperature in AZ31 [19]. However, more fractions of small grains (i.e., <10 µm) were
observed in the fractured samples subjected to an electric current (as shown in Figure 4d,e), especially
for the AC configuration. This could be associated to a localized thermal heating that reached
an instantaneous high temperature to cause grain nucleation at the microstructure defects and/or
inclusions. Comparing the initial grain size distribution with all the deformed samples under different
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micro-tension conditions, a lower fraction of >40 µm grains is denoted. On the contrary, Figure 5 shows
a similar grain fraction within the range of 10–40 µm. From these results, a dynamic grain growth
was negligible, even for the EA specimens, despite the fact that the opposite results were reported by
Kim et al. [20]. We noted that EA specimens seemed not to noticeably change the grain size distribution
compared to the RT and OH configurations. In this study, DRX could not be seen as the key factor
causing the ductility enhancement and current-induced softening for two reasons: the test duration
(<50 s) here was not as long as in Reference [20] to cause grain growth, and the Joule heating effect was
not high enough to reach the DRX temperature of AZ31. From another point of view, however, the
temperature gradient, due to electric resistance heating, could provide enough driving force for grain
nucleation and growth. In this study, premature fracture terminated the subsequent growth of the
nucleated grains, leading to higher concentrations of small grains (<10 µm) spreading along the grain
boundaries in the AC and EA configurations. Figure 6 shows the pixel-to-pixel misorientation angle
distributions with local maxima at ≈5◦. Accordingly, the fraction value of low-angle misorientations
(i.e., <15◦ pixel-to-pixel misorientation) increased in the following order: the undeformed material, RT,
OH, EA, and AC, respectively. For example, over 40% low-angle misorientations could be observed
in EA and AC configurations. Consequently, the EA specimens promoted the formation of low
misorientation angles while being deformed with respect to the RT, OH, and the undeformed material.
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Figure 7 presents the pole figures (PFs) with the aim of explaining the texture evolution of the
current-induced effect. All the samples were cut from the axial cross section of extrusion bars along
extrusion direction (ED) (Figure 1). Consequently, a typical texture for extruded AZ31 [21] was found
where the c-axis was distributed perpendicular to the ED. The texture found was inherited from the
annealed material (Figure 7a) that was previously extruded. Figure 7b shows a basal pole density
maximum that moves towards the ED, while the {1010} pole tends to reorient from ED to transverse
direction (TD). These observations indicate that both twinning and prismatic <a>-type slips occurred
in the RT specimen. The twins tended to reorient the basal pole towards ED [22] and the prismatic
slip tended to rotate the crystallites around the c-axis without changing its direction [23]. Figure 7c
shows the PF of the OH specimen. Here the twinning activity was not as remarkable as in the RT,
perhaps because certain non-basal slips could be activated to accommodate the plastic deformation.
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The temperature favored this accommodation by decreasing the critical resolve shear stresses (CRSS).
Additionally, Figure 7d,e exhibits the PFs of the AC and EA samples, respectively. In these cases,
electric treatments show a similar texture to the undeformed material where the {0001} and {1010}
poles tend to be parallel to the TD and ED, respectively.
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Moreover, the electric treatment does not promote obvious twinning activities. The preservation
of the initial texture after ≈15% of plastic strain in the EA configuration indicated that not only
grain rotation but also other factors gave rise to the texture stabilization. It is considered that grain
boundary sliding (GBS) combined with grain rotation occurred in the EA sample to decrease the texture
intensity [24] compared to the undeformed material, as observed in Figure 7e. The current-induced
heating and the associated thermal softening at the grain boundaries [25] may have improved the pure
GBS between neighboring grains. Accordingly, Koike et al. [26] pointed out that at temperatures below
373 K, combined with pure GBS, would help slip-induced GBS because of the plastic anisotropy and
deformation inhomogeneity in the grains. Consequently, a possible deformation mechanism for the
EA configuration is that both grain rotation in sliding grains and dislocation slip in accommodating
grains (acting as an accommodation mechanism for GBS) may take place. These two mechanisms help
each other in terms of changing the grain orientation. These orientation changes collectively lead to
the stabilization and weakening of the initial texture, as illustrated by Watanabe et al. [24].

The KAM is defined as the average misorientation of a given EBSD point with respect to all
its neighbors, which is usually used to characterize the distribution of the geometrically necessary
dislocation (GND) density [27]. Figure 8a–e shows the KAM maps of all the studied microtension
configurations. No obvious misorientation gradient was expected, and almost all the KAM values were
less than 2◦ (having a total fraction of 0.981) prior to the deformation (Figure 8a). Figure 8b exhibits
the tensile deformation at RT. Here the misorientation gradient obviously increased, e.g., the fractions
of <2◦ and 2◦–4◦ misorientations are 0.928 and 0.035, respectively. This is attributed to the dislocation
accumulation and multiplication caused by the local inhomogeneous deformation of an anisotropic
plastic behavior. Additionally, Figure 8c shows the OH misorientation gradient, where the fractions
of <2◦ and 2◦–4◦ misorientations are 0.921 and 0.037, respectively. These changes as compared to the
RT sample, present a larger plastic deformation associated with the higher temperature applied
in OH. Note also that the KAM distribution in Figure 8c is more uniform because the furnace
treatment increased the temperature uniformly, which helped the activation of multiple slip activities in
unfavorably oriented grains. Figure 8d,e exhibits the KAM maps of AC and EA specimens, respectively.
Their GNDs were more dense and more uniform compared to the OH sample. As well, the fractions of
the large KAM (2◦–4◦) were 1.5 times the value of the fraction of OH. This uniform GND distribution
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indicates that more grains took part in plastic deformation to a larger degree, enhancing the ductility
of the EA sample. Accordingly, the electric thermal heating tended to occur at the dislocations, not
only in grain interiors, but also between neighboring grains, which facilitated the dislocation mobility
if sufficient energy was supplied to the material’s lattice. As a result, the plastic accommodation
among the vicinities of different defects in the grain interiors and grain boundaries could be easily
accomplished by enhancing local activation of dislocations. This activation was induced by the
selective electric thermal heating at the microstructure defects, inclusions, or vacancies. Subsequently,
it was presumed that there may exist a current induced effect to eliminate the micro-heterogeneity,
and ultimately, relieve the size effects in microforming [16].
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Figure 8. KAM map (in o) of the fractured AZ31 samples for the different tested configurations:
(a) undeformed material, (b) RT, (c) OH, (d) AC, and (e) EA (red points are artificial points).

Figure 9 shows the SEM micrographs of the fracture area of different studied configurations.
This figure let us characterize the fracture mechanism by analyzing the surface of the final fracture area.
Figure 9a shows the fracture area for RT. This sample presented the features of a cleavage fracture,
which is composed of tear ridges and large quasi-cleavage facets and steps. Also, some large secondary
cracks could be found perpendicular to the main crack. Figure 9c exhibits the fracture area of AC,
which contains large and rough tear ridges and a high number of cleavage facets and steps. A few
small and shallow dimples can also be found, indicating that this specimen presents higher ductility
than RT. Figure 9b presents the fracture area of OH with the same cleavage features and large cleavage
facets. This specimen shows a higher number of dimples with deeper and larger dimensions than
in AC, denoting a higher plastic deformation. Figure 9d describes the fracture of EA. This fracture
morphology presents the large dimple patterns associated with a ductile fracture. These dimples are
the deepest and largest compared to other configurations. In general, dimple formation originate
from the coalescence of voids with different sizes. These voids tend to form along the interface of
embedded particles/inclusions during tensile loading [28]. In this study, we could neglect the influence
of material-dependent inclusions on the dimple size difference because all the samples of different
configurations were machined from the same extruded bar. Thus, certain current-induced effects
(probably different from convention heating) may exist to affect the dimple size and fracture behavior
in the EA configuration.

Figure 10 describes the expected fracture mechanisms for the non-EA and EA configurations.
The fracture process of AZ31 magnesium alloy was assumed to mainly depend on the interaction
between microcracks and voids (Figure 10a). They can be nucleated near particles/inclusions or their
interfaces due to stress concentration or poor bonding strength at a low plastic strain. Additionally,
a large number of small voids may easily nucleate between growing voids and cracks. Consequently,
the fracture will appear with the coalescence of voids, particle/inclusions, and micro-cracks along
the weakest path of the material’s lattice [29]. Figure 10b shows the expected fracture mechanism for
an EA configuration. Here, an intense diffraction of electrons is shown around the microstructure’s
defects, such as the interfaces of micro-cracks, inclusions, particles, etc. These defects would promote
hot spots due to the fast change of resistivity. Accordingly, many researchers [30,31] claimed that
the current-induced heating effect in the material’s lattice would reduce stress concentration and
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increase thermo-compressive stress around microstructural defects such as micro-crack tips, voids,
etc. This may be supported by the fatigue lifetime improvement of AISI 304 due to high density
electropulsing observed by Lesiuk et al. [32]. Thus, the ductility improvement in the EA samples
may be attributed to the following two aspects: (1) the electric field tends to arrest the propagation of
micro-cracks, and (2) the electric field has the ability to suppress the initiation of fine voids and impede
the growth and coalescence of existing voids.
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Figure 10. Expected mechanism of crack propagation, void nucleation, growth and coalescence:
(a) non-EA and (b) EA configurations.

4. Conclusions

The size effects on the fracture behavior of magnesium alloy AZ31 in uniaxial micro-tension under
different temperature configurations have been provided several notable conclusions. The following
bullets summarize these conclusions:

• The material’s formability changed depending on the thermal configuration (EA, OH, or AC).
In particular, the smallest fracture stresses and the largest fracture strains were observed in the
EA microtension configurations.

• The EBSD analysis showed a similar grain size distribution in all the microtension configurations,
indicating that DRX did not play a key role in the ductility enhancement of EA samples.

• The KAM characterization denoted that plastic heterogeneity could be reduced since more
grains took part in plastic deformation in EA specimens, and consequently, led to the
ductility enhancement.

• The fracture morphology observed in the SEM micrographs indicated that the current-induced
ductility enhancement could be attributed to the arrest of microcrack propagation and the
inhibition of void initiation, growth, and coalescence caused by lattice melting and expansion.
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