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Abstract: Microcellular polypropylene (PP)/wood fiber composite foams were fabricated via batch
foaming assisted by supercritical CO2 (scCO2). Effects of wood fibers on rheology, crystallization,
and foaming behaviors of PP were comprehensively investigated. The obtained results showed
that the incorporation of wood fibers increased the complex viscosity and the storage modulus of
the PP matrix. Jeziorny’s model for non-isothermal crystallization kinetics indicated that wood
fibers did not change the crystal growth. However, the crystallization rate of the PP matrix was
decreased to a certain extent with increasing wood fiber loadings. The wood fiber exerts a noticeable
role in improving the cell density and reducing the cell size, despite decreasing the expansion ratio.
Interestingly, a “small-sized cells to large-sized cells” gradient cell structure was found around the
wood fibers, implying cell nucleation was induced at the interface between wood fiber and PP
matrix. When wood fiber loadings were specifically increased, a desirable microcellular structure
was obtained. However, further increasing the wood fiber loadings deteriorated the cell structure.
Moreover, the crystallinity of the composite foams initially decreased and then slightly increased
with increasing wood fiber loadings, while the crystal size decreased.

Keywords: polypropylene; wood fiber; rheology; non-isothermal crystallization; supercritical CO2;
microcellular foaming

1. Introduction

Wood fiber reinforced plastic composites (WPCs) have experienced rapid growth and have
become a viable alternative to replace pure wood and plastic products. This can be attributed to their
low cost, preferable appearance and performance, and environmental friendliness [1–5]. Based on
these superior properties, WPCs have been utilized in a wide range of applications, including indoor
and outdoor construction materials, furnishings, and in the automobile industry [6,7]. However,
there are several drawbacks of WPCs that constrict their applications in many areas, such as their
low impact resistance, and high density compared to the unfilled thermoplastics and natural wood.
In recent years, microcellular foaming processing has been proposed as a suitable strategy that could
improve the toughness while reducing the material density by producing a microcellular structure in
the WPCs [8–10].

Microcellular foaming processing uses chemical or physical blowing agents to produce a porous
structure, with a cell size below 10 µm and a cell density above 109 cells/cm3 [11–13]. These particular
characteristics equip microcellular foams with a significant increase in thermal stability, toughness,
and elongation at break, in comparison to traditional foams [13,14]. Supercritical fluids possess the
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same solubility as liquids, and their diffusion coefficient is similar to that of gases [15], which could
be easily dissolved and diffused into the thermoplastic matrix. Among these, supercritical carbon
dioxide (scCO2) has been considered as an ideal physical blowing agent for microcellular foaming,
since it is inexpensive, non-toxic, and leaves no chemical residue [16,17]. Moreover, scCO2 has a higher
solubility in the polymer matrix than other physical foaming agents (e.g., supercritical N2 or He).
Therefore, using scCO2 as foaming agent to produce the microcellular structure in the WPCs is
a promising approach.

During the microcellular foaming process, melt viscosity and crystallization behaviors are vitally
important parameters, which affect the solubility of blowing agents, cell nucleation, cell growth,
and cell stabilization [18,19]. During formulation, wood fibers influence the polymer foaming
processing because wood fibers can change the melt rheology, crystallization, and the corresponding
foaming behaviors, which significantly affect the microcellular structure of polymer/wood fiber
composite foams [19–21]. Addition of wood fibers increases the viscosity of the polymer matrix,
and the high melt viscosity resists cell growth, resulting in smaller cell size and lower expansion ratio
to some extent. Previous research verified that wood fibers could act as heterogeneous nucleation
sites and promote the overall cell nucleation density, which in turn improves cell density [20,22,23].
In addition, the wood fibers could act as reinforcement fillers, leading to improved specific stiffness
and strength of the composite foams [24,25]. Simultaneously, the wood fibers could improve the cell
structure including smaller cell size, higher foam density, and thicker cell walls. Rodrigue et al. [26]
reported that the addition of 5 wt.% wood flour resulted in improvement of cell nucleation and
reduction of cell size during the chemical extrusion foaming, the cell diameter was 76 µm, and the
cell density was 8 × 106 cells/cm3. However, when exposed to heat, wood fibers release water vapor
and volatile components that could negatively affect the development of the cell structure in foamed
composites [20]. Faruk et al. [27] prepared polypropylene (PP)/wood fiber composite foams with
high wood fiber loadings through foam injection molding (FIM) and extrusion foaming processing,
respectively. The obtained composite foams had a poor cell structure and the FIM process showed
better achievement compared to the extrusion process in maximum properties. The previous research
reported that high wood flour loadings reduced the solubility of scCO2, destroyed the continuity of
the polymer matrix, and accelerated gas escape during foaming, all of which were not conducive to the
formation of the desirable microcellular structure. The relationships between microcellular morphology,
processing conditions and mechanical properties of foamed WPCs have been studied [6,14]. However,
relatively few studies have discussed the relationship between wood fiber induced rheology behaviors
and the final obtained cell structure. In addition, it remains challenging to introduce a desirable
microcellular structure in the WPCs, especially in the high wood fiber loadings, due to the low melt
strength and the deteriorated continuous phase structure of the polymer matrix [28]. In this study,
microcellular PP/wood fiber composite foams were fabricated with high wood fiber loadings via the
batch foaming process based on a high melt strength PP matrix. The relationship between wood fiber
tailored dynamic rheology as well as the non-isothermal crystallization behaviors of PP and the foam
structure was comprehensively investigated. Moreover, the cell distribution characteristics around
the wood fibers and the heterogeneous nucleation role of the wood fibers were investigated and first
illustrated by the theory of the segment-dynamics heterogeneity.

2. Materials and Methods

2.1. Materials

The polymer matrix used in this study was high melt strength PP, supplied by LyondellBasell
(PF814, Lyondell, Holland) with a melt flow index of 2.5 g/10min (ASTM D1238) [29] and a density of
0.9 g/cm3. Poplar (populus) wood fibers (WF,) with a particle size about 145–210 µm were supplied by
Sanqi Wood Fiber Agency (Linyi, China). Industrial grade talc was used as the cell nucleating agent
and was provided by Shanghai Smart Chemical Reagent Co., Ltd. (Shanghai, China), with an average
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size of 4.2 µm. Commercial grade maleic anhydride-grafted polypropylene (PP-g-MA) was used as
compatibilizer and was purchased from Shanghai Risheng New Technology Development Co., Ltd.
(Shanghai, China). Polyethylene wax (PE wax) was used to enhance the dispersion of wood fibers and
was purchased from Shandong Qilu Petrochemical Engineering Co., Ltd. (Zibo, China). Commercial
grade carbon dioxide (purity 99.9%) was used as physical blowing agent and was purchased from
Shanghai Gas Co., Ltd. (Shanghai, China).

2.2. Preparation of PP/Wood Fiber Composites

Firstly, the wood fibers were oven-dried at 103 ± 5 ◦C for 12 h to achieve a moisture level below
2%. Secondly, PP (100, 90, 80, 70, and 60 wt.%), well-dried wood fiber (0, 10, 20, 30, and 40 wt.%),
Talc (4 wt.%) based on PP matrix, PP-g-MA (5 wt.%) based on wood fiber, and PE wax (2 wt.%)
based on wood fiber were put into a high-speed blender and were mixed for 5 min. The choice
of talc, compatibilizer, and PE wax fraction was based on our previous research [2,23]. Then,
a co-rotating twin-screw extruder was used to further mix the melt at a rotation speed of about
50 rpm. The extrudates were compressed into sheets at 180 ◦C and at 12 MPa for 4 min, to about 2 mm
thickness. After 1 to 2 h, the compression-molded sheets were cut into 10 mm × 20 mm rectangular
specimens in preparation for the batch foaming.

2.3. Fabrication of Polypropylene/Wood Fiber Composite Foams

Microcellular foaming was carried out in a high-pressure autoclave. The initial weights of
the composite sheets were measured with a digital balance scale at an accuracy of 0.0001 g. Then,
the samples were saturated with scCO2 at 16 MPa and 160 ◦C for about 30 min. To obtain microcellular
composite foams, the high-pressure vessel was instantaneously depressurized to atmospheric pressure
at a rate of about 40 MPa/s. The foamed specimens were taken out of the high-pressure vessel and
cooled to the temperature of ambient air to allow for cell solidification and shaping.

2.4. Rheology Characterization

To characterize the rheology behavior of PP and the PP/wood fiber composites, a rotational
rheometer AR2000ex (TA Instruments, New Castle, PA, USA) with a 25 mm parallel disk and a 2 mm
gap was used. At first, the dynamic strain sweep test was conducted to identify the strain limit of the
linear viscoelastic region. Afterwards, the dynamic strain sweep test was carried out under a pre-set
strain of 0.01%, and the angular frequencies were swept from 0.006283 rad/s to 628.3 rad/s at 180 ◦C
with a 2 mm gap. A nitrogen atmosphere was used to avoid oxidative degradation.

2.5. Foam Morphology Characterization

The apparent densities of unfoamed and foamed samples were calculated at room temperature.
The density and expansion ratio were determined with the following two equations, respectively [22]:

ρ =
m

∆m
ρ0, (1)

ER =
ρun f oamed

ρ f oamed
, (2)

where ρ and ρ0 represent the density of the sample and water at room temperature, respectively
(ρ0 = 1 g/cm3), m represents the weight of the sample (g), ∆m represents the increased weight of
a sample completely immersed in distilled water (g), and ER represents the expansion ratio of
composite foams.

Scanning electron microscopy (SEM) of quanta 200 microscope (FEI, Hillsboro, OR, USA) was
used to observe the foam morphologies. A small piece of sample was first cut from the central section
of the foam. Afterwards, the samples were fractured in liquid nitrogen. Finally, the fractured surface
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was coated with a thin layer of gold prior to the SEM observation. ImageJ software was used to
analyze the cellular information base on the SEM images. At least 200 cells were measured to obtain
the average cell size of the foam. Cell density (N0) was calculated using the following Equation [30]:

N0 =

(
nM2

A

) 3
2

, (3)

where n represents the number of cells in the micrograph, A represents the area, and M represents
the magnification factor. The sample was assumed to not contain unfoamed skin in the cell
density calculation.

2.6. Crystallization Characterization

A model Pyris Diamond device (Pekin Elmer Instruments, Waltham, MA, USA) was used to
analyze the non-isothermal crystallization behavior of PP and PP/wood fiber composites. The weight
of samples is 3– to 6 mg under the protection of nitrogen gas at a flow rate of about 50 mL/min.
The unfoamed sample was rapidly heated from 25 to 200 ◦C, and then isothermally treated at 200 ◦C
for 5 min to remove its thermal history. Subsequently, the unfoamed sample was cooled to 25 ◦C at
constant cooling rates (5 ◦C/min, 10 ◦C/min, 20 ◦C/min, and 30 ◦C/min) and the unfoamed sample
was reheated to 200 ◦C at the corresponding heating rates. For the foamed sample, the sample was
heated from 25 to 200 ◦C at a heating rate of 10 ◦C/min. The degree of crystallinity (χc) of PP was
calculated using the following Equation [31]:

χc =
∆Hm

(1 − Wt)∆H0
× 100%, (4)

where ∆Hm represents the measured melting enthalpy, ∆H0 represents the melting enthalpy of 100%
crystalline PP (209.3 J/g) [31–33], and Wt represents the mass ratio of the substance (except PP).

The non-isothermal crystallization kinetics of the PP/wood fiber composites was analyzed with
the following Jeziorny’s theory [34] modified Avrami equation:

ln[− ln(1 − X(t))] = n ln t + ln kt, (5)

where X(t) represents the relative crystallinity at crystallization time t, kt represents the crystallization
kinetics constant, and n represents the Avrami exponent that reflects the mechanisms of both crystal
nucleation and growth. ln[−ln(1−X(t))] versus lnt was plotted to determine n, and the logarithm
of lnkt.

Jeziorny’s theory suggests that the crystallization rate constant kt should be corrected for the
influence of the polymer cooling rate. Under the assumption of a constant cooling rate, the final form of
the constant characterization of the kinetics of the non-isothermal crystallization was given as follows:

ln kc =
ln kt

Φ
, (6)

where kc represents the modified crystallization rate constant considering cooling rate Φ.
The crystallization half-time (t1/2) and the crystallization rate (G) were calculated via the following

two equations:

t1/2 = (
ln 2
kt

)
1/n

, (7)

G =
1

t1/2
. (8)
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2.7. X-Ray Diffraction (XRD) Analysis

XRD patterns were obtained by a D/max2200 X-ray diffractometer (Rigaku, Tokyo, Japan) with
Cu Kα as the radiation source. It was operated at 40 KV and 30 mA, and the scanning range was
10–30◦ (2θ) at a step size of 2◦/min. The crystal size was calculated via the Scherrer Equation [35]:

D =
kλ

β cos θ
D =

kλ
β cos θ

, (9)

where D represents the crystal size (nm), k is a constant (0.9), λ represents the X-ray wavelength
(0.154059 nm), β represents the half-width (rαd), and θ represents the diffraction angle (◦).

3. Results and Discussion

3.1. Dynamic Rheological Behavior

The melt rheological behaviors of the polymer matrix played a central role in the foaming process,
as it tailored both cell growth and cell stabilization [20]. Therefore, the viscoelasticity of an ideal
foaming system should be controlled within a certain range. In the present work, the effects of the
wood fiber on the melt rheology and the processability of PP were examined via dynamic viscosity
measurements. As shown in Figure 1, the complex viscosity (η*) of the composites decreased with
the angular frequency (ω). All samples displayed typical shear thinning behaviors in the measured
frequency range. In the low frequency region, the complex viscosity of PP/wood fiber composites
improved with increasing wood fiber content [16,19,24]. Virgin PP showed the lowest viscosity
compared to other samples in the whole frequency range. The wood fiber helped to increase polymer
rigidity, the collision probability of the wood fibers, and the interaction between PP molecular chains
and wood fibers. In addition, wood fibers were easily aggregated in the polymer matrix as a result
of inter-fiber hydrogen bonding and physical entanglement. Both perturb the normal flow of the
PP matrix and hinder the mobility of the chain segments in the direction of flow. This improves the
viscosity of the PP/wood fiber composites, which in turn results in a decreased cell growth rate and
high cell density [35].

Figure 1. (a) Complex viscosity (η*) and (b) storage modulus (G’) as a function of angular frequency
(ω) for (PP)/wood fiber composites at 180 ◦C, 0.01%, and 0.006283–628.3 rad/s.

Figure 1b depicts the storage modulus (G’) of the PP/wood fiber composites as a function of
angular frequency. As shown in Figure 1b, the storage modulus improved with increasing wood
fiber loadings. For polymer systems filled with wood fibers, the increasing fiber concentration led
to the enhanced discontinuity of the matrix, which may result in the squeezing out of the polymer
to the surface, creating continuity on the surface. This continuity facilitates elastic energy recovery
and increases the melt elasticity [36]. Moreover, further increasing the wood fiber loadings to 40 wt.%,
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the composites were less frequency-dependent at low frequencies, indicating the possible formation
of a network microstructure in PP/wood fiber composites, which restrained the relaxation of the PP
molecular chains. This phenomenon illustrated that the viscoelastic response changed from a pseudo
plastic-like to a pseudo solid-like behavior [22,23].

3.2. Non-Isothermal Crystallization Behavior

The non-isothermal crystallization exotherms of neat PP and PP/wood fiber composites recorded
at various cooling rates are shown in Figure 2a–f. As shown in Figure 2, with increasing cooling
rate, the onset crystallization temperature, and the crystallization temperature shifted toward lower
temperatures. This was because the movement of PP molecular chains was restrained at higher
cooling rates and crystallization took place at lower temperatures. However, sufficient time contributes
to the nucleation at lower cooling rates, resulting in crystallization at higher temperatures [37,38].
Compared to neat PP, the incorporation of MAPP, PE wax, and Talc could globally increase the
crystallization temperature of PP by 10 ◦C. The shifts to higher crystallization temperatures indicate
the acceleration of the overall PP crystallization. However, there was no obvious change in the
crystallization temperature at various cooling rates with increasing wood fiber loadings. In a previous
study, a suitable concentration of wood fibers acted as heterogeneous nucleation sites by providing
a surface for the crystal nucleation like Talc [39,40]. This led to an increase in the crystallization
temperature [39]. However, the high wood fiber loadings induced a higher resistance to the mobility
of the PP molecular chains under the presence of MAPP, which could decrease the movement of the
PP segment, resulting in a lower crystallization temperature. Overall, both contradicting effects maybe
have resulted in a non-obvious change in crystallization temperature.

Figure 2. The non-isothermal crystallization of unfoamed neat PP and its composites at various cooling
rates: (a) Neat PP, (b) PP/WF0, (c) PP/WF10, (d) PP/WF20, (e) PP/WF30, and (f) PP/WF40.

Figure 3a–e displays the Avrami double-log plot for PP/wood fiber composites at various cooling
rates. The half-time of crystallization and other crystallization parameters obtained from the Avrami
plots and Jeziorny’s methods are listed in Table 1. As illustrated in Figure 3, the fitted lines were
approximately parallel at various cooling rates, indicating that the crystal nucleation mechanism and
growth morphology were similar for various cooling rates [34]. As calculated in Table 1, the Avrami
exponent n was close to 3 for all samples. Moreover, the nucleation was heterogeneous induced
by both wood fiber and Talc. Therefore, the crystals mainly grew as a 2D crystal plate and a 3D
spherule during crystallization [34,41], which illustrated that wood fibers did not change the crystal
growth. In addition, when the cooling rate was below 10 ◦C/min, the increase in cooling rate enhanced



Materials 2019, 12, 106 7 of 14

the modified crystallization rate constant kc. However, under the same cooling rate, the addition
of wood fibers could reduce the crystallization rate, which was in agreement with the calculated
results according to Equations (7) and (8). The wood fibers could act as heterogeneous nucleation
sites and improve crystal nucleation. However, in high wood fiber loadings, the complex viscosity of
the composites significantly increased (Figure 1). Therefore, the mobility of the PP molecular chains
was greatly impeded during crystallization, causing a decreased crystal growth rate. In this case,
the global crystallization rate was dominated by the crystal growth. As a result, the increasing wood
fiber loadings slowed the crystallization kinetics of the PP matrix.

Figure 3. Avrami double-log plots for the non-isothermal crystallization of the unfoamed PP/wood
fiber composites at various cooling rates: (a) PP/WF0, (b) PP/WF10, (c) PP/WF20, (d) PP/WF30,
and (e) PP/WF40.

Table 1. Crystallization half-time, Jeziorny’s theory modified crystallization rate constant, and Avrami
parameter of unfoamed PP/wood fiber composites at various cooling rates.

Samples Φ (◦C/min) t1/2 (min) G (min−1) n lnkt lnkc kc

PP/WF0

5 0.66 1.52 2.76 0.75 0.15 1.16
10 0.36 2.78 2.89 2.60 0.26 1.30
20 0.14 7.14 2.95 5.40 0.27 1.31
30 0.07 14.29 3.02 7.50 0.25 1.28

PP/WF10

5 0.74 1.35 2.93 0.50 0.10 1.11
10 0.38 2.63 2.89 2.40 0.24 1.27
20 0.21 4.76 3.09 4.40 0.22 1.25
30 0.11 9.09 3.02 6.30 0.21 1.23

PP/WF20

5 0.76 1.32 2.76 0.40 0.08 1.08
10 0.44 2.27 2.91 2.00 0.20 1.22
20 0.26 3.85 2.95 3.60 0.18 1.20
30 0.13 7.69 3.02 5.70 0.19 1.21

PP/WF30

5 0.78 1.28 2.72 0.30 0.06 1.06
10 0.50 2.00 2.85 1.60 0.16 1.17
20 0.30 3.33 2.99 3.20 0.16 1.17
30 0.17 5.88 3.09 5.20 0.14 1.15

PP/WF40

5 0.81 1.23 2.75 0.20 0.04 1.04
10 0.52 1.92 2.87 1.50 0.15 1.16
20 0.36 2.78 2.91 2.60 0.13 1.14
30 0.25 4.00 2.90 3.60 0.12 1.13

Φ: cooling rate, t1/2: crystallization half-time, G: crystallization rate, n: Avrami exponent, lnkc: logarithm of the
modified kinetics constant, kc: modified crystallization kinetic constant.
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3.3. Apparent Density and Expansion Ratio of Composite Foams

Figure 4a shows the apparent density of the original unfoamed composites and the microcellular
foamed PP/wood fiber composites as a function of wood fiber content. The apparent density of the
unfoamed PP/wood fiber composites increased with increasing wood fiber loadings. The density
(1.30–1.50 g/cm3) of the solid wood substance was larger than that of PP (0.85–0.95 g/cm3), although
the bulk density of wood fibers was small. After compression molding, the wood cell walls are
compressed nearly to the specific solid wood and the voids between and within the wood-fiber
structure are completely filled with resin. Compared to unfoamed composites, the apparent density of
the composite foams was noticeably reduced. However, the reduced amplitude showed a decreased
trend with increasing wood fiber content. When the wood fiber content increased further, the apparent
density of the PP/wood fiber composite foams increased, due to their weakened foamability.

Figure 4. (a) Apparent density of the PP/wood fiber composites and the corresponding composite
foams and (b) expansion ratio of the composite foams.

As shown in Figure 4b, the expansion ratio decreased with increasing wood fiber loadings,
indicating that incorporation of wood fiber affected the foamability of PP. On the one hand, wood
fibers increased the complex viscosity of the composites (Figure 1), which indicated an increased
resistance for cell growth [40]. On the other hand, the higher wood fiber content indicated less PP
matrix available for gas solution. As CO2 could only dissolve in the amorphous portion of the PP
matrix during the saturation stage, CO2 could only diffuse into the amorphous portion of the PP
matrix to induce the cell growth during the rapid-decompression foaming. As a result, the solubility
of the scCO2 decreased and gas escaping occurred. Most of the bubbles that were developed during
the cell growth were not preserved, which in turn decreased the expansion ratio of the PP/wood fiber
composite foams.

3.4. Cell Morphology

The cell morphology of the PP/wood fiber composite foams is illustrated in Figure 5. The cells
of composite foams had cellular structures similar to those of neat PP foams. As wood fiber
contents increased, the average cell size decreased compared to the neat PP foam. The reduced
cell size may be attributed to the poor interfacial adhesion between the PP matrix and wood fibers,
which provided channels for easy and quick gas escape to the environment during cell growth.
In addition, the aforementioned melt rheology behaviors indicated that incorporating wood fiber
could improve the melt viscosity of the PP matrix (Figure 1a), which provides higher resistance to
the cell growth in the polymer matrix. However, the cell density was improved in the presence of
wood fibers. Previous studies reported that wood fibers could provide heterogeneous nucleation
sites [20,21]. Cell nucleation tended to occur at the interface between the PP matrix and wood fibers
during the foaming process, due to the low nucleation energy barrier [40]. Therefore, higher wood
fiber loadings led to more heterogeneous nucleation sites, which resulted in a markedly higher cell
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density. As shown in Figure 5f, when the wood fiber loadings were 30 wt.%, the cell size distribution
was narrow, the average cell radius decreased to 5 µm, and the cell density increased to 109 cells/cm3

calculated from Figure 5d. These results indicate that incorporating wood fibers into the PP matrix
produced the expected effect. The uniform cell size distribution was attributed to the decreased
energy barrier induced by the wood fiber. However, when the wood fiber content was further
increased to 40 wt.%, the cell structure began to deteriorate, displaying cell coalescence, cell rupture,
and irregular cell shape, which indicated that 30 wt.% was likely the threshold of wood fiber loadings
for the well-developed PP/wood fiber foaming system [20,42]. Excessively high wood fiber loadings
resulted in the agglomeration phenomenon, which in turn led to a non-uniform cell size distribution.
Furthermore, excessive wood fibers resulted in poor interface compatibility between wood fibers and
the PP matrix, resulting in the formation of the interfacial channel and poor expandability. In addition,
the wood fibers destroyed the continuous phase structure of the polymer matrix, leading to cell
coalescence and cell rupture [21].

Figure 5. Scanning electron microscopy (SEM) micrographs of the fracture surface of PP/wood
fiber composite foams with various wood fiber contents: (a) PP/WF0, (b) PP/WF10, (c) PP/WF20,
(d) PP/WF30, (e) PP/WF40, and (f) cell size distribution of composite foams with 30 wt.% wood fibers.

To gain an improved understanding of the cell nucleation mechanism around the boundary of
the PP matrix and the wood fibers, the cell morphology around the wood fibers was investigated.
As illustrated in Figure 6 (composite foams with 20 and 30 wt.% wood fibers), cells grew along the
wood fiber surface. These cells had smaller cell size near the wood fibers, indicating that the wood fiber
had a significant effect on the cell nucleation due to its large surface area. During the cell nucleation
stage, the wood fibers acted as heterogeneous nucleation sites, which increased the cell density of the
composite foams. The cell size was larger in the region that was further from the wood fiber surface,
which could be attributed to the lower viscosity distribution of the PP matrix and the corresponding
low resistance for cell growth [20,21]. Figure 6c depicts “the small-sized cells to large-sized cells”
diversified cell size distribution characteristics around the wood fibers. Previous experiments and
simulations showed that three dynamic components of polymer chains in filled polymer composites
could be observed. These components were: Tightly bound chains, loosely bound chains, and mobile
chains [43,44]. Therefore, the mobility of the PP molecular chains presented a gradient distribution,
which in turn led to the gradient viscoelasticity distribution around the wood fibers [45].
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Figure 6. Cell morphology around the wood fibers: (a) 20 wt.% wood fibers, (b) 30 wt.% wood
fibers, and (c) schematic diagram of “small-sized cells to large-sized cells” gradient cell distribution
characteristics surrounding the wood fibers.

3.5. Crystallinity and Melting Behaviors of Composite Foams

Figure 7 shows the melting behavior of PP/wood fiber composite foams at various wood
fiber loadings. All samples had double melting peaks. This phenomenon was common for
semi-crystallization polymers, which resulted from the melt-reorganization of less ordered crystals [23].
Crystallization is a complex process, and the crystallization and the crystal growth differed between
perfect crystals and imperfect crystals. During the crystal nucleation stage, perfect crystals were
dependent on thermal motion, whereas imperfect crystals were dependent on tensile stress [46].
Therefore, the phenomenon of the double melting peaks was dependent on the tensile stress derived
from the cell growth and the dissolved scCO2. The imperfect crystals have poor thermal stability.
Therefore, the low temperature peak corresponded to the melting of imperfect crystals, and the higher
temperature peak corresponded to the melting of perfect crystals. In addition, as the wood fiber
contents increased, the low melting temperature peak moved to a higher temperature. The crystallinity
initially decreased and then increased (Table 2) and the double melting peaks phenomenon gradually
disappeared, which could be attributed to the poor foamability (Figure 4b) induced deficient
crystallization driving force in high wood fiber loadings.

Table 2. Melting parameters of the foamed PP/wood fiber composites with various wood fiber loadings.

Samples TL (◦C) TH (◦C) Xc (%)

PP/WF0 164.3 173.5 47.1
PP/WF10 165.8 174.2 43.2
PP/WF20 166.6 174.3 44.6
PP/WF30 166.8 174.8 44.7
PP/WF40 166.2 173.4 44.9

TL: Low melting temperature peak; TH: High melting temperature peak; Xc: Degree of crystallinity.
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Figure 7. DSC curves of PP/wood fiber composite foams with various wood fiber loadings.

3.6. Crystal Structure of the Composite Foams

The DSC curves show that the PP/wood fiber composite foams had two melting peaks, whereas
the XRD curves (Figure 8) show that the foamed composites exhibited diffraction peaks at around
2θ = 13.7◦, 16.5◦, 18.2◦, and 21.3◦. These peaks were in agreement with the α-crystal of the PP
matrix [39] and could be attributed to the reflections of (110), (040), (130), and (111) planes [47],
respectively, indicating that there was no new crystalline formation. However, the XRD pattern
showed that the wood fibers changed both peak broadness and intensity. The larger peak broadness
and the higher intensity corresponded to the looser packing of the crystalline structure and the higher
crystallinity, respectively. Table 3 shows the crystal size of the foamed composites with various wood
fiber loadings. Both the crystal size of each crystal plain and the average crystal size decreased when
the wood fiber loadings increased, illustrating that the wood fiber could increase the heterogeneous
nucleation sites, leading to the reduced crystal size of the composite foams [24]. Moreover, the wood
fibers hindered the mobility of the PP molecular chains. Therefore, the crystal growth was restrained.
Then, the crystal nucleation domain phenomenon was present during the crystallization behavior,
thus resulting in small-sized crystals. As a result, the broader peak and a loosely packed crystalline
structure were obtained as wood fiber loadings increased.

Figure 8. X-ray diffraction patterns of the PP/wood fiber composite foams with various wood
fiber loadings.
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Table 3. Crystal size of PP/wood fiber composite foams with various wood fiber loadings.

Samples
Crystal Grain Size/nm

Average Size
[110] [040] [130] [111]

PPWF0 12.38 10.28 9.43 5.82 9.48
PP/WF10 10.52 10.16 8.48 6.81 8.99
PP/WF20 10.42 10.25 9.45 6.06 9.05
PP/WF30 11.13 7.42 9.02 6.40 8.49
PP/WF40 10.50 7.43 8.46 5.09 7.87

The crystal grain size was calculated with the Scherrer equation and the average size indicates the mean value of
the four crystal planes.

4. Conclusions

Microcellular PP/wood fiber composite foams, with desirable cell structure, were prepared via
batch foaming. The wood-fiber-induced crystallization, rheology, and the microcellular foaming
behaviors of the PP/wood fiber composites were investigated. The incorporation of wood fibers
improved the complex viscosity and the storage modulus of the PP matrix. However, the viscoelastic
response of the composites changed from a pseudo plastic-like to a pseudo solid-like behavior
for high wood fiber loadings. Jeziory’s theory was successfully used to predict the crystallization
kinetics constant after taking the cooling rate into account. Wood fibers did not change the crystal
growth, whereas the addition of wood fiber reduced the overall crystallization rate to a certain extent.
Compared to neat PP foams, the PP/wood fiber composite foams had a smaller average cell size and
a higher cell density despite their lower expansion ratio. Furthermore, cell nucleation occurred at
the interface between the wood fibers and the PP matrix. A “large-sized cells to small-sized cells”
diversified cell distribution was observed around the wood fibers, which could be attributed to the fact
that the viscoelasticity presented a gradient distribution around the wood fibers. When the wood fiber
loadings reached 30 wt.%, desirable microcellular PP/wood fiber composite foams were prepared:
The apparent density was 0.0652 g/cm3, the cell radius was about 5 µm, and the cell density reached
109 cells/cm3. Further increasing the wood fiber loadings disrupted the cell structure, including cell
coalescence and cell collapse. Our study made it possible to develop polymer/wood fiber composite
foams with high expansion ratio and desirable cell structure in the high wood fiber loadings, which will
in turn provide direction for the continuous production of PP/wood fiber composite foams.
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