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Abstract: The gelcasting method is usually employed to fabricate relatively dense ceramics. In this
work, however, porous Al2O3 ceramics with submicron-sized pores were fabricated using the
water-based gelcasting method by keeping the Al2O3 content at low levels. By controlling the
water content in the ceramic slurries and the sintering temperature of the green samples, the volume
fractions and the size characteristics of the pores in the porous Al2O3 can be readily obtained.
For the porous Al2O3 ceramics prepared with 30 vol.% Al2O3 content in the slurries, their open
porosities were from 38.3% to 47.2%, while their median pore sizes varied from 299.8 nm to 371.9 nm.
When there was more Al2O3 content in the slurries (40 vol.% Al2O3), the porous Al2O3 ceramics
had open porosities from 37.0% to 46.5%, and median pore sizes from 355.4 nm to 363.1 nm. It was
found that a higher sintering temperature and Al2O3 content in the slurries increased the mechanical
strength of the porous Al2O3 ceramics.
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1. Introduction

Porous materials (including ceramic, metallic and polymeric types) are being developed and
employed in different fields [1–14]. Among these types of porous materials, many researchers are
investigating porous ceramics [1–9]. To date, many methods have been developed to prepare porous
ceramics. Although the partial sintering of green bodies can result in porous ceramics, their properties
are not usually desirable. In general, there are three types of processing techniques [15] that have been
employed to fabricate porous ceramics: replica, sacrificial template, and direct foaming.

One of the most important methods for the replica technique is the freeze-casting method [16],
in which ice crystals grow in a ceramic slurry to occupy spaces inside the ceramic body. During the
freeze-drying process, these ice crystals are directly vaporized by vacuum sublimation and leave pores
inside the ceramic green body. The freeze-casting technique is widely used to fabricate different types
of porous ceramics [17–27]. However, the freeze-casting process, especially the freeze-drying stage,
typically takes quite a long time and consumes much more electrical power. In addition, ice crystals
usually grow into dendrites, which make the pore surfaces rough, and the porous ceramics often
exhibit anisotropic properties.

Herein, a water-based gelcasting route is presented for fabricating porous Al2O3 ceramics with
submicron pores, which could be used for filtration and other purposes. One of the advantages of the
gelcasting method is that ceramics with complicated shapes can be readily fabricated [28,29]. In this
method, high solid content in the ceramic slurries, or low water content, is usually needed to obtain
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relatively dense ceramics [28,29]. The purpose of this work, however, is to prepare porous ceramics,
rather than dense ceramics. Hence, in this work, the Al2O3 solid content is maintained at a relatively
lower level, while the water content is kept at a relatively higher level in the ceramic slurries. Instead
of freezing the water in the ceramic slurries into ice crystals, as in the freeze casting method [16], it is
evaporated during the drying stage, and pores are retained in the green body. This allows porous
Al2O3 ceramics with submicron pores to be successfully fabricated. It is noted that fabrication of
porous ceramics with submicron pores using the gelcasting method has scarcely been reported in
the literature.

2. Experimental

2.1. Material Preparation

Alpha Al2O3 powders (99.9% purity, grain size about 1 µm on average, Jiyuan Brother Materials
Co. Ltd., Henan, China) were used in this study. The chemicals and fabrication method can be referred
to in our previous work [30]. For the fabrication of porous ceramics in the present work, the Al2O3

content in the slurries was kept relatively low, at about 30–40 vol.%. In our previous work [30],
however, the Al2O3 content in the slurries was about 55 vol.%, which is much higher than in the
present work.

Figure 1 illustrates the processing steps for fabricating porous Al2O3 ceramics in this work.
Ball-milled Al2O3 suspensions were poured into a metal mold (Figure 1a), and monomers were then
polymerized to form crosslinked networks (Figure 1b) at 60 ◦C, for about 15 min. Then, the wet green
bodies were dried at 70–110 ◦C and pores were retained (Figure 1c). The polymers within the dried
green bodies were burnt out at 600 ◦C in air for 2 h. This process is called “degreasing” (Figure 1d).
These samples were then sintered in air at 1300 ◦C, 1350 ◦C and 1400 ◦C for 2 h to obtain porous Al2O3

ceramics (Figure 1e).
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2.2. Material Characterization 
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Materials Testing Co. Ltd., Shanghai, China) under a three-point bending setup with a span length of 
30 mm and a crosshead speed of 0.5 mm/min. The size of the sample was 3 mm × 4 mm × 36 mm. For 
the compressive strength test, the sample size was 5 mm in diameter and 10 mm in height, and it was 
measured with the same instrument and the same crosshead speed. The porosities and pore sizes of 
the Al2O3 porous ceramics were measured using the mercury porosimetry analysis method 
(AutoPore IV 9500, Micromeritics, Norcross, GA, USA). 

Figure 1. Fabrication steps of porous Al2O3 ceramics by gelcasting, (a) Al2O3 suspension;
(b) polymerization of monomers; (c) drying; (d) burning out of polymers; and (e) sintering.

2.2. Material Characterization

The Archimedes method was used to measure the bulk densities of the porous Al2O3 ceramics,
and their flexural strength was measured with an electronic universal testing machine (Sans Materials
Testing Co. Ltd., Shanghai, China) under a three-point bending setup with a span length of 30 mm
and a crosshead speed of 0.5 mm/min. The size of the sample was 3 mm × 4 mm × 36 mm. For the
compressive strength test, the sample size was 5 mm in diameter and 10 mm in height, and it was
measured with the same instrument and the same crosshead speed. The porosities and pore sizes of
the Al2O3 porous ceramics were measured using the mercury porosimetry analysis method (AutoPore
IV 9500, Micromeritics, Norcross, GA, USA).
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A field emission scanning electron microscope (FESEM, Hitachi S4800, Tokyo, Japan) was used
to investigate the microstructural characteristics of the porous Al2O3 ceramics. The Al2O3 particle
size was analyzed using an image analysis software system (ImageJ, National Institutes of Health,
Bethesda, MD, USA).

3. Results and Discussion

3.1. Microstructural Characteristics

Figures 2 and 3 show the microstructural morphologies of the porous Al2O3 ceramics, which
were prepared with the Al2O3 content in the ceramic slurries with 30 vol.% (Figure 2) and 40 vol.%
(Figure 3), respectively. The pore structures can be readily seen in Figures 2 and 3, and the Al2O3

particles can also be clearly identified. As shown in Figures 4 and 5, the Al2O3 particle size and
the density of the porous Al2O3 ceramics steadily increased with the sintering temperature. This is
generally expected for ceramics [31]. For the porous Al2O3 ceramics prepared with an Al2O3 content
of 30 vol.% in the slurries, the particle size and density increased from about 1.03 µm and 1.96 g/cm3

for sintering at 1300 ◦C, to 1.52 µm and 2.24 g/cm3 for sintering at 1400 ◦C, respectively. For the
porous Al2O3 ceramics prepared with Al2O3 content at 40 vol.% in the slurries, the particle size and
the density increased from about 1.10 µm and 2.02 g/cm3 for sintering at 1300 ◦C, to 1.49 µm and
2.38 g/cm3 for sintering at 1400 ◦C, respectively.
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Tables 1 and 2 list the porosities and median pore diameters of the porous Al2O3 ceramics prepared
with the Al2O3 contents in the ceramic slurries at 30 vol.% (Table 1) and 40 vol.% (Table 2), respectively.
Figure 6 shows the pore size distribution functions of the porous Al2O3 ceramics sintered at 1300 ◦C
(Figure 6a) and 1400 ◦C (Figure 6b). It can be seen from Tables 1 and 2 that the porosity decreased with
the sintering temperature. The closed porosities of the porous Al2O3 ceramics prepared with 40 vol.%
Al2O3 content in the slurries were generally smaller than the samples prepared with 30 vol.% Al2O3

content in the slurries. In both of the two series of porous Al2O3 ceramics, the closed porosities were
much smaller than the open porosities. This suggests that most of the pores in these samples were
open pores [27]. This will be beneficial for filtration applications [1]. For the porous Al2O3 ceramics
prepared with 30 vol.% Al2O3 content in the slurries, the median pore diameter decreased quickly
from about 371.9 nm for sintering at 1300 ◦C, to about 299.8 nm for sintering at 1400 ◦C (Table 1).
For the porous Al2O3 ceramics prepared with 40 vol.% Al2O3 content in the slurries, however, the pore
diameter only slightly decreased (Table 2). The median pore diameter decreased from about 363.1 nm
for sintering at 1300 ◦C, to about 355.4 nm for sintering at 1400 ◦C (Table 2). In fact, these results are in
good agreement with the microstructural morphologies shown in Figures 2c and 3c. It can be noted
that the pore size in Figure 3c of the 1400 ◦C-sintered porous Al2O3 ceramics prepared with 40 vol.%
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Al2O3 content in the slurries was larger than that in Figure 2c of the 1400 ◦C-sintered porous Al2O3

ceramics prepared with 30 vol.% Al2O3 content in the slurries.

Table 1. Porosities and median pore diameters of porous Al2O3 ceramics (30 vol.% Al2O3 in the
slurries).

Sintering Temperature (◦C) Open Porosity (%) Closed Porosity (%) Median Pore Diameter (nm)

1300 47.2 1.6 371.9
1350 42.5 2.2 330.6
1400 38.3 3.2 299.8

Table 2. Porosities and median pore diameters of porous Al2O3 ceramics (40 vol.% Al2O3 in the
slurries).

Sintering Temperature (◦C) Open Porosity (%) Closed Porosity (%) Median Pore Diameter (nm)

1300 46.5 0.8 363.1
1350 41.7 1.9 358.5
1400 37.0 0.9 355.4
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3.2. Mechanical Properties

The flexural and compressive strength of the porous Al2O3 ceramics are shown in Figure 7.
Figure 7a shows the dependence of the flexural strength of the porous Al2O3 ceramics on the sintering
temperature. The flexural strength increased with the increasing sintering temperature. For the porous
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Al2O3 ceramics prepared with Al2O3 content at 30 vol.% in the slurries, their flexural strength increased
from 15.0 MPa when sintered at 1300 ◦C, to 36.2 MPa and 61.5 MPa when sintered at 1350 ◦C and
1400 ◦C, respectively. For the porous Al2O3 ceramics prepared with Al2O3 content at 40 vol.% in the
slurries, their flexural strength increased from 19.6 MPa when sintered at 1300 ◦C, to 42.5 MPa and
73.1 MPa when sintered at 1350 ◦C and 1400 ◦C, respectively. Compared with our previous work on
gelcasted Al2O3 ceramics [30], in which 55 vol.% Al2O3 content was used in the slurries, the porous
Al2O3 ceramics of the present work had smaller flexural strength.
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As shown in Figure 7a, in general, the porous Al2O3 ceramics prepared with 40 vol.% Al2O3

content in the slurries exhibited higher flexural strength than those prepared with 30 vol.% Al2O3

content in the slurries for all three sintering temperatures. Furthermore, the difference in their flexural
strength became larger at the higher sintering temperature of 1400 ◦C (Figure 7a). This can be attributed
to the larger total porosity of the porous Al2O3 ceramics prepared with 30 vol.% Al2O3 content in the
slurries than those with 40 vol.% Al2O3 content in the slurries (Tables 1 and 2).

The compressive strength of the porous Al2O3 ceramics increased with the increasing sintering
temperature (Figure 7b). This variation in behavior is similar to the flexural strength as shown in
Figure 7a. For the porous Al2O3 ceramics prepared with Al2O3 content at 30 vol.% in the slurries,
their compressive strength increased from 39.1 MPa when sintered at 1300 ◦C, to 82.6 MPa and
150.6 MPa when sintered at 1350 ◦C and 1400 ◦C, respectively. For the porous Al2O3 ceramics prepared
with Al2O3 content at 40 vol.% in the slurries, their compressive strength increased from 43.6 MPa when
sintered at 1300 ◦C, to 96.9 MPa and 182.8 MPa when sintered at 1350 ◦C and 1400 ◦C, respectively.
Therefore, these porous Al2O3 ceramics are mechanically strong enough for practical applications.
The dependence of their compressive strength on the sintering temperature (Figure 7b) is in agreement
with the results of the Al2O3/mullite composite porous ceramics reported by others [32]. However,
the compressive strength of the porous Al2O3 ceramics of this work was consistently higher than the
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Al2O3/mullite composite porous ceramics [32] and the porous Al2O3 ceramics prepared using carbon
black as a pore former [33].

4. Conclusions

Porous Al2O3 ceramics with submicron pores were fabricated using the water-based gelcasting
method. The open porosities and median pore sizes of the porous Al2O3 ceramics with 30 vol.%
Al2O3 content in the slurries were 47.2% and 371.9 nm when sintered at 1300 ◦C, 42.5% and 330.6 nm
when sintered at 1350 ◦C, and 38.3% and 299.8 nm when sintered at 1400 ◦C. The open porosities and
median pore sizes of the porous Al2O3 ceramics with 40 vol.% Al2O3 content in the slurries were 46.5%
and 363.1 nm when sintered at 1300 ◦C, 41.7% and 358.5 nm when sintered at 1350 ◦C, and 37.0%
and 355.4 nm when sintered at 1400 ◦C. The porous Al2O3 ceramics exhibited high mechanical
strength, which increased with both increasing sintering temperature and increasing Al2O3 content in
the slurries.
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