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Abstract: Diclofenac (DCF) is one of the most detected pharmaceuticals in environmental water
matrices and is known to be recalcitrant to conventional wastewater treatment plants. In this
study, degradation of DCF was performed in water by photolysis and photocatalysis using a
new synthetized photocatalyst based on hydroxyapatite and TiO2 (HApTi). A degradation of
95% of the target compound was achieved in 24 h by a photocatalytic treatment employing the
HApTi catalyst in comparison to only 60% removal by the photolytic process. The investigation
of photo-transformation products was performed by means of UPLC-QTOF/MS/MS, and for
14 detected compounds in samples collected during treatment with HApTi, the chemical structure
was proposed. The determination of transformation product (TP) toxicity was performed by using
different assays: Daphnia magna acute toxicity test, Toxi-ChromoTest, and Lactuca sativa and Solanum
lycopersicum germination inhibition test. Overall, the toxicity of the samples obtained from the
photocatalytic experiment with HApTi decreased at the end of the treatment, showing the potential
applicability of the catalyst for the removal of diclofenac and the detoxification of water matrices.
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1. Introduction

The most common wastewater treatment plants (WWTPs) used worldwide are mainly based
on the activated sludge technique and are not able to remove and/or degrade several families of
trace compounds, known as “contaminants of emerging concern” (CECs). Particularly, the use of
pharmaceuticals (PhACs) in everyday human life, continually introduced from the market for the
healthy population and easily accessible without a prescription, represents a relevant source of
contamination of the aquatic environment, as several of these are not completely metabolized by the
human organism; they are, therefore, eliminated by urine and faeces [1–3].
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Moreover, biological processes in WWTPs as well as subsequent chemical treatments may convert
PhACs into transformation products (TPs) that can be more toxic than their parent compounds [4–6].
Several toxicological and ecotoxicological studies have been performed to obtain an overview of the
risk assessment of TPs detected in waters and wastewaters [7–9].

Both trace compounds and their relative TPs have been found in different environmental
compartments, including WWTP effluent, surface water, groundwater, drinking water, soil, sediments,
and sludge, and their concentration ranged from µg L−1 to ng L−1. At present, CECs are not regulated,
but the relevance of addressing this issue was acknowledged by the Directive 2013/39/EU listing
priority substances and further supported by the implementation of Decision (EU) 2015/495 [10].
In addition, no relevant knowledge is available about the potential ecological impacts of CECs.
The continuous discharge of and long-term exposure to these contaminants, however, may have
long-term effects on human health. Reproductive impairment, hormonal dysfunction, development of
antibiotic-resistant bacteria, and cancer may be possible consequences [11,12].

Among the PhACs, biodegradation of nonsteroidal anti-infiammatory drugs (NSAIDs) has been
found to be slow or negligible. Several reviews published in recent years have discussed the occurrence,
persistence, and fate of the diclofenac (DCF). DCF is one of the most detected PhACs in the water
matrix and it is recalcitrant to conventional wastewater treatment plants. Data reported in the literature
have shown that WWTPs remove DCF with an efficiency in the range of 21–40% [13–16].

After consumption, DCF is mostly transformed into hydroxyl metabolites from human metabolism
and subsequently excreted from the body in the aqueous environment. Furthermore, more DCF
metabolites are present in aqueous matrices due to biological processes in WWTPs which convert
DCF to hydroxydiclofenac; the same process takes place through a photochemical process, i.e.,
photolysis. These data highlight that not only DCF but also its metabolites and photo-transformation
products with different physicochemical properties can be sources of contamination in the aqueous
environment [17,18].

The literature reports that the combination of biological processes with advanced oxidation
processes (AOPs) led to increased efficiency in the removal of organics [19,20]; because of this, a great
amount of work has been published on AOPs as efficient treatments for the removal of PhACs and their
metabolites in water [21–23]. Among the AOPs, particular attention has been given to heterogeneous
photocatalysis based on materials such as TiO2, as they represent a promising and environmentally
sustainable wastewater treatment technology. Their activity is based on the formation of highly
reactive OH radicals which are nonselective and have a high oxidative power (E0 = +2.80 V) [24,25].
In the field of photocatalysis, a large number of new TiO2-based photocatalysts have been developed
combining TiO2 with other materials that can enhance its performance [26–29]. The combination
with hydroxyapatite (Ca10(PO4)(OH)2, HAp), in particular, seems very promising due to its excellent
absorption properties. In fact, in a multiphasic HAp-TiO2 material, pollutants get adsorbed on the
surface more easily, leading to a higher degradation rate ([30] and references therein).

A recent study showed that it is possible to obtain a photocatalyst based on HAp and TiO2

using cod fish bones as a source; HAp, in fact, is the main component in human and animal bones.
Piccirillo et al. showed that treating the bones in a Ti (IV)-containing solution and successively calcining
them leads to a photoactive multiphasic material [31]. This material was tested in the degradation
of DCF in aqueous matrices using a bench-scale system [32]. Results showed that when compared
to photolysis, HAp-titania significantly increases the diclofenac removal and is also effective when
employed in a complex matrix (wastewater) or when reused in subsequent cycles of treatments.
FTIR measurements of the photocatalyst taken before and after the photodegradation experiments
showed that the powder material did not present any significant property change [32].

However, measurements of total organic carbon at the end of the experiments showed incomplete
mineralization of the target pollutant. This indicates the production of some TPs which can be less
biodegradable and/or more toxic than the parent compound.
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Previous studies have investigated diclofenac TPs in water matrices after photocatalytic
degradation [33–35]; to the best of our knowledge, however, no work has been done when
hydroxyapatite-based catalysts were used.

The aim of this work is, therefore, a follow-up of the experimental results described in E. Màrquez
Brazòn et al.’s work [32] in order to investigate the possible presence of photo-transformation products
of diclofenac in water after photolysis and photocatalysis with hydroxyapatite and TiO2 (HApTi) and
to assess their level of toxicity in comparison with the parent DCF.

The investigation of TP structure was performed by means of an analytical approach based on
high-resolution mass spectrometry coupled with liquid chromatography (LC-HRMS), providing a
proposed molecular formula and elucidating the respective chemical structures [36]. Considering the
proposed chemical structures of the identified TPs, the degradation mechanism of DCF with only
photolysis and with photocatalysis (in the presence of a hydroxyapatite-based catalyst) was compared.
Finally, for a complete risk valuation study on TPs of DCF formed during the investigated treatments,
determination of their toxicity was performed by using different assays: Daphnia magna acute toxicity
test, Toxi-ChromoTest, and Lactuca sativa and Solanum lycopersicum germination inhibition test.

2. Materials and Methods

2.1. Chemicals

DCF was purchased from Sigma-Aldrich (Steinheim, Germany). HPLC-grade methanol (Riedel-de
Haën, Baker) was used to prepare a stock standard solution of DCF as well as for ultra-performance
liquid chromatography (UPLC) analysis. Ultrapure water (18.2 MΩcm, organic carbon ≤ 4 µg/L) was
supplied by a Milli-Q water system (Gradient A-10, Millipore SAS, Molsheim, France) and used for
both UPLC analysis and to perform investigated treatments. All the analysed samples were previously
filtered on syringe CA membrane filters with a 0.45-µm pore size.

2.2. Synthesis and Characterisation of HApTi

A detailed description of the photocatalytic material preparation and characterization was
previously published [31]. Briefly, the photocatalyst was prepared from cod fish bones, which were
treated in a basic Ti(SO4)2 solution and successively calcined at 800 ◦C. The powder was constituted by
hydroxyapatite (HAp), tricalcium phosphate, and TiO2 (anatase) in a proportion of 54, 45, and 1 wt %,
respectively. For a more complete description of the material, see the reference literature.

2.3. Bench-Scale Experiments

Photocatalysis experiments were performed as previously described [32]. Briefly, a volume
of 50 mL of DCF solution at 5 mg/L in distilled water was placed in 100-mL flasks with 0.2 g of
photocatalyst to achieve a concentration of 4 g/L. The flasks were magnetically stirred and irradiated
from the top with a XX-15 BLB UV lamp (λ 365 nm) (see reference [37] for the full emission spectrum);
the irradiation density was 1.80 mW/cm2 (value given by the producer). Experiments were also
performed as described above but with no photocatalyst to monitor the DCF degradation due to
UV illumination. Before starting the experiments, the solutions were left stirring in the dark for
30 min to ensure that removal of DCF was due to photodegradation and not to adsorption on the
surface of the photocatalyst. Samples were taken at regular intervals to assess the degradation of
DCF. DCF concentration was determined by a validated HPLC-UV method [38,39]. Experiments were
performed in duplicate. New experiments were performed in triplicate for the identification of the TPs.
Samples were analysed by UPLC-QTOF/MS/MS as described in the following section.

2.4. Analytical Setup and Data Processing

An Ultimate 3000 System (Thermo Fisher Scientific, Waltham, MA, USA) interfaced with a
TripleTOF 5600+ high-resolution mass spectrometer (AB-Sciex), equipped with a duo-spray ion source
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operated in electrospray (ESI) mode (in positive and negative ion modes), was used to identify TPs.
An information-dependent acquisition (IDA) method was used.

The mass spectrometer was calibrated using standards recommended by AB SCIEX for calibrating
the AB SCIEX TripleTOF® 5600 Instrument, i.e., ESI Positive Calibration Solution and ESI Negative
Calibration Solution. These solutions consist of a list of TOF MS Calibration Ions in the range of
140–1500 Da, including reserpine and sulfinpyrazone for MS/MS calibration in positive and negative
mode, respectively, for which the list of product ions is known. All the information related to these
lists are saved in reference tables available in the calibration section of the instrument. Briefly, before a
run of analyses, a manual calibration was carried out by injecting the calibration solution by means of
a Calibrant Delivery System (CDS) in tuning mode. Each calibration solution was configured on the
CDS by a specific valve position. The instrument was therefore calibrated by comparing the exact mass
of the acquired ions (experimental mass) with respect to that of the ions listed in the reference tables
(theoretical mass), both in TOF MS and Product Ion MS/MS mode. When the batch was submitted,
the calibration samples were inserted into the queue every five samples. Each run started with a
calibration sample. With the CDS configured, the software automatically created a calibration method
that matched the acquisition method that was used for the next sample in the queue. Calibration data
were saved to a separate data file for each calibration sample.

The MS interface conditions for sample acquisition were the following: curtain gas (psig) 35, ion
source gas 1 nebulizer gas (psig) 55, ion source gas 2 turbo gas (psig) 55, IonSpray voltage (V) 5500
(positive mode) and −4500 (negative mode), source temperature (◦C) 450, declustering potential (V)
80, m/z range 100–1000 Da.

A Waters BEH C18 column 2.1 × 150 mm, 1.7 µm, was used for the chromatographic separation,
operating at a flow of 0.200 mL/min. Five-microliter samples were injected and eluted with a binary
gradient consisting of 1.5 mM ammonium acetate in H2O/MeOH 95/5 (A) and 1.5 mM ammonium
acetate in methanol (B) as follows: 0% B at the initial point, linearly increased to 95% in 12 min,
and held for 5 min. A 7-min equilibration step at 0% B was used at the end of each run to bring the
total run time per sample to 24 min. As for the data processing, both suspect target and nontarget
screenings, with identification of already known in the literature and novel TPs, respectively, were
carried out. Specifically, all the collected samples corresponding to the reaction times for a specific
treatment were processed by a specific analytical protocol, including two steps:

- Suspect screening: The AB-Sciex software, i.e., SciexOS 1.2, PeakView 2.2, MasterView 1.1,
and LibraryView 1.1.0, were employed by using a list of likely TPs collected from the literature
or from prediction models. The samples were screened for those candidates on the basis of
the mass exact, isotopic pattern, fragmentation MS/MS patter, and chromatographic retention
time. However, since no reference standards are available for all revealed TPs, the subsequent
confirmation of the analytes is not completely possible. Therefore, the molecular formula and
structure of suspected molecules can be only predicted.

- Nontarget screening: An open source software, i.e., enviMass 3.5 [40], was used for the
investigation of compounds for which no previous knowledge is available and which is usually
carried out after suspect screening. Briefly, after a first step of peak picking, the following steps
include the removal of peaks found also in the blank sample, the mass recalibration, and the
componentization of isotopes and adducts.

The assignment of the molecular formula to the accurate mass of the selected peak was performed
using AB-Sciex software. Moreover, based on the interpretation of the fragmentation pattern generated
in MS/MS acquisition, a candidate structure was assigned to the identified TPs, which provided a tool
to hypothesize a possible degradation pathway.
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2.5. Toxicity Test

The toxicity of DCF solutions was evaluated through bioassays in samples collected at the times
0, 4, 6, and 24 h in the duplicate experiments, initially performed both with and without photocatalyst
for assessing the DCF decay. Samples were analysed without dilution in order to assess the evolution
of whole sample toxicity during photodegradation experiments and to compare the resulted final
toxicity in the presence and absence of the photocatalytic material. All toxicity assays were performed
in quadruplicate of combined duplicate samples from photodegradation experiments.

The 24–48-h immobilization of crustaceans D. magna bioassays were performed using Daphtoxkit
F Magna (MicroBio Tests, Mariakerke (Gent), Belgium) following manufacturer recommendations.
The toxicity was measured as the immobilization of D. magna according to the procedures of OCED
Guideline 202 [41] and ISO 6341 [42] after 15-min exposure.

The Toxi-ChromoTest (EBPI, Mississauga, ON, Canada) was used according to manufacturer
instructions to determine the samples’ potential for the inhibition of the de novo synthesis of an
inducible β-galactosidase by an E. coli mutant. The activity of the enzyme was detected by the
hydrolysis of a chromogenic substrate.

The acute bioassay with L. sativa and S. lycopersicum evaluated the potential toxicity considering
the inhibition of seed germination and root and shoot elongation according to OECD Guideline 208 [43].
Experiments were performed in triplicate at 25 ◦C for 7 days. The inhibition normalized on negative
control data were expressed as percentage of effect.

3. Results and Discussion

In the present work, the experimental setup used for photodegradation was slightly changed
compared to previous experiments [32] to have a higher irradiation dose and, hence, higher degradation
efficiency. The results of photodegradation of DCF plotted in Figure 1 showed that in the photolytic
assay, i.e., containing no catalyst, a removal of about 60% of the target compound was observed,
and the presence of the HApTi catalyst increased the degradation to 95% at the end of the experiment,
demonstrating the photocatalytic efficiency of the catalyst for DCF removal.
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Figure 1. Diclofenac (DCF) photodegradation over time by UV photolysis (no photocatalyst) and UV
photocatalysis employing hydroxyapatite and TiO2 (HApTi) catalyst in solution (DCF concentration
5 ppm; HApTi catalyst concentration 4 g/L). Error bars refer to standard deviation of duplicate samples.

3.1. Identification of the Transformation Products Produced by DCF Photodegradation

Although almost 95% and 60% of DCF was removed under the investigated treatment in the
presence of HApTi and only UV light, respectively. The TOC measurements showed that the
pharmaceutical was not completely mineralized [32]. From this perspective, samples collected at
different irradiation times (0, 4, 6, and 24 h) during both photolytic and photocatalytic experiments
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were analysed for TPs by UPLC/ESI-QTOF-MS-MS. The acquired chromatograms showed several
peaks, of which only the main ones were identified by merging output results of both the suspect
and nontarget screening protocol. In the first step of identification, the samples were processed by
querying the detected peaks with a list of the main TPs collected from already published works in
which DCF photodegradation was investigated [15,33,44–47]. Based on the analyses acquired in full
scan mode as well as on the corresponding exact masses, considering both the isotopic cluster of
molecular ions and the fragmentation pattern, 10 major photo-transformation products were identified.
The analytical protocol employed for nontarget screening also allowed the detection of four new
photo-transformation products clearly showing in the mass spectra the characteristic isotopic cluster
of chlorine-containing compounds.

In Table 1, the accurate masses (calculated and measured) of the 14 detected Photo TPs,
the ionization mode acquisition, the predicted formula, and the calculated mass errors are listed.
The accurate mass results were found with an error in a range between −2 and +1 ppm,
thus providing the assignment of proposed elemental compositions with confidence. For each potential
photo-transformation product, the elucidation of the structure was assessed based on the interpretation
of the accurate mass of the MS/MS fragments as well as considering all the reaction mechanisms
likely to occur in the oxidation processes applied for DCF removal, i.e., photocatalysis using HApTi as
a catalyst (Figure 2). Oxidation is one of the major degradation mechanisms during photocatalytic
treatment. Indeed, the formation of oxidized compounds was confirmed by the identification of Photo
TPs, the predicted formula of which showed an increase of oxygen atoms with respect to the parent DCF
elemental composition. An oxidative displacement of chloride from DCF was proposed for Photo TP-1,
with a decrease of 18 Da in terms of m/z resulting from the loss of HCl and subsequent hydroxylation,
whereas an increase of 16 Da was indicative of DCF hydroxylation in Photo TP-2. Although MS
data were not enough to define the exact position of the hydroxyl group, the fragment m/z 166.0643
detected on Photo TP-2 (Table 1) proved that the hydroxylation occurred on the nonchlorinated ring.

Table 1. DCF photo-transformation products detected by UPLC/ESI–QTOF–MS IDA.

Compounds Ionization
Mode

Calculated
m/z

Measured
m/z

ppm
Error Products MS/MS Predicted

Formula Ref.

Photo TP-1 ESI (+) 278.0579 278.0577 −0.6 168.0794, 196.0755, 232.0508, 260.0470 C14H12ClNO3 [44]
Photo TP-2 ESI (+) 312.0189 312.0186 −1.0 166.0643, 194.0612, 230.0357, 265.9974 C14H11Cl2NO3 [44,47]
Photo TP-3 ESI (+) 310.0032 310.0031 −0.4 166.0657, 201.0345, 263.9987, 291.9941 C14H9Cl2NO3 [44,47]
Photo TP-4 ESI (−) 323.9836 323.9835 −0.3 152.0507, 208.0423, 252.0300, 280.0045 C14H9Cl2NO4 [15]
Photo TP-5 ESI (+) 282.0083 282.0084 0.4 166.0646, 194.0598, 229.0285, 263.9979 C13H9Cl2NO2 -
Photo TP-6 ESI (−) 266.0145 266.0147 0.8 127.0543, 166.0662, 184.0961, 206.0185 C13H11Cl2NO [44,45]
Photo TP-7 ESI (+) 276.0422 276.0420 −0.8 166.0650, 194.0597, 202.0424, 230.0360 C14H10ClNO3 -
Photo TP-8 ESI (−) 246.0327 246.0329 0.7 141.0214, 164.0516, 200.0265, 228.0234 C13H10ClNO2 -
Photo TP-9 ESI (−) 230.0378 230.0378 −0.1 143.113, 166.0646, 194.0606, 215.0134 C13H10ClNO -
Photo TP-10 ESI (+) 260.0473 260.0468 −1.8 125.0442, 151.0545, 165.0902, 179.0732 C14H10ClNO2 [33,45]
Photo TP-11 ESI (−) 214.0430 214.0431 1.1 65.9613, 138.0405, 142.9975, 178.0652 C13H10ClN [45]
Photo TP-12 ESI (−) 240.0666 240.0667 0.3 99.9485, 142.0667, 168.0815, 196.0768 C14H11NO3 [33,45,46]
Photo TP-13 ESI (+) 256.0604 256.0604 −0.1 95.0885, 127.0543, 182.0595, 210.0552 C14H9NO4 [15]
Photo TP-14 ESI (−) 196.0768 196.0768 0.2 59.0159, 135.0128, 152.0321, 168.0804 C13H11NO [45]

Photo TP-3 revealed two fewer hydrogen atoms with respect to Photo TP-2 with the formation
of an additional double bound. The presence of the carboxylic acid functionality confirmed by the
MS/MS fragment (fragment showed the loss of CO2) led to assigning the structure of a benzoquinone
imine species to the Photo TP-3. For Photo TP-4, a mass increase of 16 Da in relation to Photo TP-3
reveals a subsequent addition of one oxygen atom; according with the fragmentation pattern, this could
be explain by a hydroxylation on the chlorinated ring. The Photo TP-5 (MW 281 Da) and Photo TP-6
(MW 267 Da) were rationalized to be formed from Photo TP-4 and Photo TP-2, respectively, both by a
decarboxylation reaction of the aliphatic chain.

From plotting the time profiles of the identified Photo TPs (Figure 3), it is evident that Photo TP-1,
TP-2, TP-3, TP-4, TP-5, and TP-6 are formed only during the photocatalytic treatment in the presence of
HApTi, with an intensity that significantly increased during the first hours of treatment (Figure 3a–f).
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Figure 2. DCF degradation pathway proposed for the Photo TPs identified during treatment with HApTi.

The loss of one chlorine atom from Photo TP-1 and the subsequent cyclization reaction, forming a
five-membered ring with nitrogen, generated Photo TP-7. The time profiles show that TP-7 formation
increases with the time of photocatalytic treatment, as does Photo TP-9, which forms from Photo
TP-6 by a loss of one chlorine atom (Figure 3g,i). Photo TP-8 is formed both during photolysis and
photocatalysis, but only the latter treatment was able to quickly remove it (Figure 3h).

As for Photo TP-10, the isotopic pattern of which indicates the presence of only one chlorine
atom, a chlorocarbazole acetic acid structure was proposed. Considering the mass decrease of 44 Da
between Photo TP-10 and Photo TP-11 and the predicted formula, Photo TP-11 corresponds to the loss
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of the carboxylic acid group. Photo TP-12 revealed a mass decrease of 18 Da with respect to Photo
TP10; the absence of the typical isotopic pattern of chlorine and the assigned formula for the detected
compound could be attributed to the replacement of the chloride atom with the OH group.

The time profiles of these products (Figure 3j–l) reveal no significant difference between photolysis
and photocatalysis. In both treatments, the detected TPs achieve the maximum of formation after
4 h of treatment with a subsequent decay. Although the removal is not complete at the end of the
treatments, it was slightly faster in the presence of HApTi.

Two more products of MW 255 and 197 Da were observed and the molecular ion isotopic cluster
indicated that no chlorine atom was present in both of these products, Photo TP-13, and Photo TP-14,
respectively. The photolytic treatment generates Photo TP-13 with higher intensity with respect to
photocatalytic treatment, with a subsequently slower removal of the compound over time (Figure 3m),
whereas a complete removal for Photo TP-14 at the end of both treatments was observed.
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Figure 3. Time profiles of detected Photo TPs during investigated treatments, namely, photolysis (only
UV light) and photocatalysis (UV light in the presence of HApTi). Error bars refer to standard deviation
of triplicate samples.

The time profiles of the identified Photo TPs (Figure 3) show the average values of the peak area
measured during three subsequent cycles of both photolytic and photocatalytic treatments for DCF
removal. In each cycle of photocatalysis, the HApTi catalyst was removed from the aqueous solution by
means of a centrifugation step at the end of the treatment and then reused for a new subsequent batch
of photocatalytic treatment. The results confirm the general trend of identified Photo TPs, for which
some transformation products tend to accumulate in the water matrix and some others are transiently
formed with a tendency to disappear. Moreover, the results showed that the photocatalytic activity of
HApTi catalyst is approximately the same in different subsequent cycles of treatment.

3.2. DCF Degradation: Photolysis versus Photocatalysis with HApTi

Based on the 14 identified Photo TPs, a pathway of DCF degradation in the presence of HApTi
was proposed (Figure 2). The principal degradation mechanisms were explained by hydroxylation,
oxidation, and decarboxylation reactions. Among these products, six Photo TPs were also identified
during photolytic treatment (Figure 3 h, j–n) in the presence of only UV light. Moreover, 22 additional
molecular ions (Table 2) showing significant abundance only in the LC-MS chromatograms of
photolysis samples by comparing the initial and the last sample (time zero with respect to reaction
time 24 h) were detected between 13.3 and 13.6 min (Figure 4) by nontarget screening in positive
mode ionization.
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Table 2. DCF photo-transformation products detected in positive ionization mode in the 24-h
photolysis sample.

Compounds Measured
m/z

Retention
Time (min)

MS Error
(ppm)

Predicted
Formula

Formula Finder
Score

Profile as
Function of Time

Ion-1 230.2471 13.37 1 C14H31NO 39.7 Increase
Ion-2 258.2789 14.18 −1 C16H35NO 40 Increase
Ion-3 352.3052 13.66 0.2 C14H37N7O3 18.1 Increase
Ion-4 379.3046 13.67 0 C21H38N4O2 43.1 Increase
Ion-5 383.2867 13.67 0.1 C17H34N8O2 73.7 Increase
Ion-6 396.3316 13.67 −0.8 C16H41N7O4 25.4 Increase
Ion-7 427.3124 13.66 0.4 C19H38N8O3 67.8 Increase
Ion-8 440.3575 13.67 −0.7 C23H45N5O3 23.2 Increase
Ion-9 449.3258 13.66 −0.4 C23H40N6O3 26.3 Increase

Ion-10 459.4875 13.38 0.2 No formula found 0 Increase
Ion-11 471.3387 13.65 −0.1 C21H42N8O4 33.8 Increase
Ion-12 484.3839 13.68 -1 C25H49N5O4 25.6 Increase
Ion-13 493.352 13.65 −0.6 C22H48N6O4S 72.9 Increase
Ion-14 537.3772 13.64 0.7 C20H48N12O3S 40.5 Increase
Ion-15 559.3899 13.64 1 C21H46N14O4 45.3 Increase
Ion-16 572.4355 13.68 −0.2 C26H49N15 37.8 Increase
Ion-17 577.3903 13.69 0.5 C38H48N4O 91.8 Increase
Ion-18 581.4031 13.63 0.7 C25H48N12O4 14.9 Increase
Ion-19 621.4163 13.68 0.3 C30H48N14O 30.6 Increase
Ion-20 704.5142 13.67 −0.6 No formula found 0 Increase
Ion-21 748.5391 13.67 0.1 No formula found 0 Increase
Ion-22 792.5668 13.66 −0.4 No formula found 0 Increase

An accurate processing of the 20 detected molecular ions by AB-Sciex software allowed us to
define for each one a consistent elemental composition based on the exact mass and isotopic pattern.
The obtained elemental compositions seem to be mainly nitrogen-containing compounds, but since
not enough data are available in the literature about these products, further investigation would be
needed in order to identify a relative molecular structure.

These 20 TPs were detected only in samples collected during photolytic treatment; indeed, no
evidence of such TPs was found in samples subjected to photocatalytic treatment in the presence of
HApTi. This clearly indicates that the photodegradation mechanisms are significantly different when
the HAp-based photocatalyst is employed.

It is known that different reactive oxygen species (ROS) are formed with a photocatalyst under
light irradiation [30], including •OH, O2−, and h+. Depending on the nature of the catalyst and the
experimental conditions, some ROS will prevail over others and will determine the photodegradation
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mechanism [48]. This affects the nature of the TPs formed during degradation. Regarding the HApTi
photocatalyst, some studies report •OH as the main species [49,50]. The present investigation seems to
confirm these data, as the identified TPs PhotoTP-1 and TP-2 both have an OH group added to the
parent compound. Neither of these products was detected in photolysis experiments (see Figure 3a,b);
this confirms a different mechanism that does not involve such ROS.

The TPs identified for the experiment without the catalyst (Figure 3) seem to indicate that UV
irradiation induces the breaking of some chemical bonds (i.e., C–Cl) and the formation of some others
(i.e., N–H) in the DCF molecule. The identification of the TPs listed in Table 2 could give some further
clarifications. This study will be performed in the future as a separate investigation; no further details
were added here since the main aim of the present work was to assess the performance of the HApTi
photocatalyst in terms of TP toxicity.

3.3. Evaluation of Toxicity of the Treated Water

Figure 5 shows the evolution of the acute toxicity on D. magna during photodegradation
experiments. DCF solutions (5 mg/L) at the beginning of the experiments exhibit high toxicity
on D. magna (100% inhibition). It can be seen that the toxicity of the water samples obtained from the
photolysis experiment (i.e., no catalyst, Figure 5a) did not vary significantly and remained very high
after 24 h of UV irradiation; similar results were observed for a 48-h exposition. When the photocatalyst
was employed (Figure 5b), however, the toxicity drastically decreased after 4 h (15% inhibition) and
completely disappeared at the end of the experiment (24 h).
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Figure 5. Acute toxicity on Daphnia magna during photodegradation of DCF using (a) UV light and
(b) UV light + HApTi. Bars in dark grey refer to 24-h immobilization, while those in pale grey to
48-h immobilization (values to be read on the left axis). Error bars refer to standard deviation of
quadruplicate measurements of combined duplicate samples. DCF concentration is reported on the
right axis and error bars refer to standard deviation of duplicate samples.
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These results indicate that, despite DCF mineralization not being complete, a significant reduction
of water toxicity was achieved; this makes photodegradation with the HApTi catalyst a very suitable
method for water decontamination.

As opposed to what happened in the test with D. magna, in the Toxi-ChromoTest, the original
DCF solution did not present any toxicity to the mutant bacteria, which was able to produce the
β-galactosidase enzyme and convert the chromogenic substrate at levels similar to negative control
(Figure 6). In the photolysis experiment, the toxicity factor increased till 6 h, reaching a maximum
of 11% inhibition; it successively decreased. In the presence of the catalyst, the toxicity increased
faster, reaching its maximum at 4 h (6.8%) but then decreased, with the final toxicity being lower than
that observed in the experiment in the absence of the catalyst. Since the original solution of DCF did
not show toxicity, it can be concluded that the toxicity observed in this test for the samples from the
photodegradation experiments is exclusively due to the toxicity of the products formed. The difference
in toxicity between the two experiments can be related to the different rates at which the TPs are
formed and then degraded; such a rate is faster when the HApTi photocatalyst is employed.
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Figure 6. Acute toxicity on mutant bacteria using the Toxi-ChromoTest kit. Red and white bars refer
to photolysis and photocatalysis experiments, respectively; the values should be read on the left axis.
DCF concentration is reported for both experiments on the right axis—red and black curves respectively.
Error bars refer to standard deviation of quadruplicate measurements of combined duplicate samples.

The toxicity trend of L. sativa and S. lycopersicum exposed to DCF during photodegradation sample
(no catalyst) is reported in Figure 7; data for the experiments with the catalyst are not shown since
no inhibition at all was observed for the whole photocatalysis process for both seeds. For L. sativa
(Figure 7a), there was no inhibition of germination for the whole 24-h period of the photolysis
experiment. Considering the growth of the germinated seeds, however, a small inhibition of the root
growth was observed for the initial DCF sample (0 h). This low toxicity is in agreement with results
previously reported for the phytotoxicity of this pharmaceutical on L. sativa [1]. The inhibition on root
growth increased at 4 h of photolysis; for this time, an inhibition of shoot growth was also registered.
The root growth inhibition was lower at 6 and 24 h; however, values still higher than those of the
original DCF sample were seen. This is in agreement with literature, since increased phytotoxicity
of DCF photolysis transformation products in relation to parent compound was also observed after
exposure to sunlight [2]. Moreover, some inhibition was also observed for the shoot growth, which
was not registered for the original DCF.

In the case of S. lycopersicum, an inhibition of all the analysed parameters was seen with the
exposure to the initial DCF sample; also, the inhibition of germination increased during photolysis.
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This indicates that exposure to DCF intermediates produced in the absence of photocatalyst was more
inhibitory for seed development than the initial DCF solution.

These data show that for both seeds, the intermediates produced by photolysis, i.e., with no
photocatalyst, are more toxic than the parent DCF compound; for the photocatalytic experiments, on
the other hand, no toxic effects were observed. These data show that photocatalysis using the HApTi
catalyst is a more effective way to degrade DCF without generating toxic compounds. Faster DCF
removal and faster metabolite transformation may also play a role.
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Figure 7. Acute toxicity on (a) Lactuca sativa and (b) Solanum lycopersicum during photodegradation
of DCF using UV light only (i.e., no catalyst). Experiments with the catalyst showed no toxicity at all
(data not shown). Error bars refer to standard deviation of quadruplicate measurements of combined
duplicate samples.

4. Conclusions

The present investigation demonstrated the effectiveness of the novel multiphasic
hydroxyapatite–TiO2 material for the photocatalytic treatment of diclofenac. Specifically, the novel
material gave rise to same transformation products of the photolytic treatment, but the abundance
of most of them was minimized at shorter reaction times. It is worth noting that the novel employed
catalyst has a size mesh much greater than a conventional TiO2 catalyst and, consequently, its removal
at the end of the water treatment process is much easier.

As for the toxicity investigation, it was observed that reduced toxicity of the samples resulted
from the photocatalytic experiment in comparison with photolysis and in relation to the original DCF
sample. Indeed, the hydroxyapatite–TiO2 material was effective at detoxifying the samples containing
DCF and DCF transformation products. It led to a significant decrease in the toxicity of the water
samples despite DCF mineralization not being complete. Therefore, such a catalyst represents an
interesting and eco-safe technology for DCF degradation.
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