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Abstract: In this paper, the superelasticity effects of architected shape memory alloys (SMAs) are
focused on by using a multiscale approach. Firstly, a parametric analysis at the cellular level with a
series of representative volume elements (RVEs) is carried out to predict the relations between the
void fraction, the total stiffness, the hysteresis effect and the mass of the SMAs. The superelasticity
effects of the architected SMAs are modeled by the thermomechanical constitutive model proposed
by Chemisky et al. 2011. Secondly, the structural responses of the architected SMAs are studied by the
multilevel finite element method (FE2), which uses the effective constitutive behavior of the RVE to
represent the behavior of the macroscopic structure. This approach can truly couple the responses of
both the RVE level and structural level by the real-time information interactions between two levels.
Through a three point bending test, it is observed that the structure inherits the strong nonlinear
responses—both the hysteresis effect and the superelasticity—of the architected SMAs at the cellular
level. Furthermore, the influence of the void fraction at the RVE level to the materials’ structural
responses can be more specifically and directly described, instead of using an RVE to predict at the
microscopic level. Thus, this work could be referred to for optimizing the stiffness, the hysteresis
effect and the mass of architected SMA structures and extended for possible advanced applications.

Keywords: shape memory alloys; architected cellular material; numerical homogenization; multiscale
finite element method

1. Introduction

Cellular materials are widely used for their high strength-to-weight ratio and high energy
absorption performance (Gibson and Ashby [1]; Ashby et al. [2]). For instance, honeycomb, folded
cellular materials and foam are usually used as the core of the sandwich structures for dissipating the
kinetic energy, damping or reducing the weight of the structure (Ashby et al. [2]; Yazdani et al. [3];
Garcia-Moreno [4]; Hangai et al. [5]; Strano et al. [6]). However, honeycomb and folded cellular
materials have high manufacturing costs and moisture problem, as well as buckling problems
(Rashed et al. [7]). The mechanical behaviors of foams are too difficult to be accurately measured for
their stochastic cells, which always results in the excessive use of materials to satisfy the safety factor.
To overcome these shortcomings, partially-ordered foams allowing limited structural control of the
pore and spatial distribution of pore levels, such as metal syntactic foams (Taherishargh et al. [8–10];
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Broxtermann et al. [11]; Linul et al. [12]; Luong et al. [13]) are studied. Furthermore, architected cellular
materials with an ordered structure were designed and studied during these years (Rashed et al. [7];
Pingle et al. [14]; Schaedler et al. [15]; Schaedler and Carter [16]; Lehmhus et al. [17]). Thanks
to the highly developed additive manufacturing techniques, such as 3D printing (Ngo et al. [18];
Mostafaei et al. [19]) and selective laser welding (Mehrpouya et al. [20]; Rashed et al. [7]), the
manufacturing of architected cellular materials is no longer impossible. Users can design a cellular
material with a certain behavior by tuning its cellular parameters, such as the geometry, components,
local mechanical properties, etc.

Architected cellular materials’ functionality could be extend by combining the features of various
materials, such as shape memory alloys. It is well known that shape memory alloys, such as NiTi,
can endure large deformation and recover their initial shape after unloading (see for example the
reviews of Lagoudas [21], Patoor et al. [22], Lagoudas et al. [23], Tobushi et al. [24] and Cisse et al. [25]).
This superelasticity effect brings high performance to SMA in energy absorption. When the given
load reaches a critical level in a superelastic test, SMA will apparently soften due to its inner phase
transformation. This behavior enables SMA to absorb the external energy as much as possible and
prevents material from crushing or buckling. Such a kind of response is very similar to the ideal
response of the cellular material designed by Schaedler et al. [15]. Meanwhile, the hysteresis effects of
SMA can dissipate a large amount of energy. All mentioned features of SMAs meet the requirements of
an architected structure for energy absorption applications very well. In addition, taking advantage of
the lightweight and shape memory effect, architected SMAs may be designed for advanced applications
in aerospace, civil engineering, etc.

To investigate the behavior of architected cellular SMAs, rare, but valuable works have been
proposed (Machado et al. [26]; Ravari et al. [27]; Ashrafi et al. [28]). Machado et al. [26] proposed
an experimental and modeling study on the cellular NiTi tube-based materials. In order to design
and optimize the architected SMA tube materials, the authors studied the effective behavior of the
thin-walled NiTi cellular materials by carrying out a study based on experiment and numerical
simulation. The influences of SMAs’ material properties and cellular architecture on the effective
behavior were investigated. To reduce the high cost of fabrication, Ravari et al. [27] focused mainly
on numerical modeling for designing and optimizing SMA cellular lattice structures. The effects of
the geometry and cellular imperfections on the effective behavior of the material were investigated
by unit cell and multi-cell methods. This work was later developed by Ashrafi et al. [28], who
proposed an efficient unit cell model with modified boundary conditions for SMA cellular lattice
structures. The shape memory effect was also simulated by this model, which had good agreement
with the experiment.

The above works mainly focused on the effective cellular response in order to represent or predict
the behavior of architected SMA structures. Considering the scale separation between the microscopic
cellular scale and macroscopic structural scale, however, it is difficult to predict the structural response
of a unit cell without certain assumed boundary conditions, because the stress-strain states of the
macroscopic structure are usually not uniform and the deformations at the microscopic level could
be totally different. Thus, in order to directly simulate the structural responses of architected SMA,
more appropriate numerical methods should be used. During the past few decades, multiscale
modeling approaches have been developed and widely used (Kanoute et al. [29]; Geers et al. [30];
El Hachemi et al. [31]; Kinvi-Dossou et al. [32]). As one of the most popular and effective multiscale
methods, the multilevel finite element method (FE2, see Feyel [33]) to describe the response of high
nonlinear structures using generalized continua shows good performance in various applications,
such as fiber buckling (Nezamabadi et al. [34]), composite shells (Cong et al. [35]), rate-dependent
response (Tikarrouchine et al. [36]) and SMA-based fiber/matrix composites (Kohlhaas and Klinkel [37];
Chatzigeorgiou et al. [38]; Xu et al. [39]). In this approach, both the structural level and the RVE level
are simulated by the finite element method (FEM). Two levels are fully coupled and computed
simultaneously, where the unknown constitutive behaviors on the structure level are represented
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by the effective behaviors of homogenized RVEs, and the strain states of the RVEs are given by the
associated integration points. The FE2 method shows good performance on multiscale modeling of
SMA-based materials. Xu et al. [39] proposed a 3D FE2 model for simulating composites with stiff
SMA fibers embedded in a soft matrix. This model was validated by the literature and showed a good
ability in modeling the superelasticity and the shape memory effects of SMA composites.

Following previous works, it is therefore necessary and feasible to investigate the behavior of
architected SMAs with a multilevel finite element model. Towards a better understanding of the
studied architected SMA, unit cells (RVEs) with different void fractions are introduced to study the
superelasticity effect of the materials and structures. In Section 2, a constitutive model for SMA is
introduced briefly. Then, a parametric analysis with different void fractions at the cellular level is
performed to predict the relations between the void fraction, the total stiffness, the hysteresis effect
and the mass of the architected cellular SMAs. In Section 3, after a short presentation for the multilevel
finite element model, multiscale modelings on architected SMA structures are carried out to simulate
the structural and the cellular responses simultaneously.

2. Cellular Response

To investigate the architected SMA structures, RVEs with different geometrical parameters
are studied firstly, then the structural response is investigated further by the computational
homogenization method. First of all, a short presentation of the SMA constitutive model is given in
the next subsection.

2.1. SMA Constitutive Model

The SMA model, proposed by Chemisky et al. [40], is adopted for the thermomechanical behavior
modeling of the architected SMA. This model follows the work of Peultier et al. [41], who proposed
a macroscopic phenomenological SMA approach based on the Gibbs free energy. This model was
implemented on ABAQUS via user-defined materials (UMAT ) and validated by experiments. It was
later improved by Chemisky and Duval; see Chemisky et al. [40]; Duval et al. [42]. Here, only a brief
introduction is presented for the readers due to the limited length of the paper.

The SMA constitutive model used here is able to describe four different strain mechanisms:
the elastic strain εe, the thermal expansion strain εth, the martensitic transformation strain εtr and the
twin accommodation strain εtw. To this end, the total strain is decomposed in the following form:

ε = εe + εth + εtr + εtw, (1)

where the above strains are formulated as:

εe = S : σ,

εth = α(T − Tre f ),

εtr = f ε̃tr,

εtw = f FA ε̃tw.

(2)

where S denotes the isotropic fourth order compliance tensor, α represents the isotropic thermal
expansion tensor, Tre f gives the temperature without expansion strain, f gives the martensitic volume
fraction in SMA, the transformation strain ε̃tr describes the mean strain over the martensite related to
martensite reorientation and the mean strain ε̃tw and self-accommodated martensitic volume fraction
f FA are introduced to describe the twin accommodation over the martensite.

The potential energy of the SMA model is based on the following Gibbs free energy expression:



Materials 2018, 11, 1746 4 of 19

G = (UA − TSA)(1− f ) + (UM − TSM) f − 1
2

σ : S : σ − σ : α∆T − σ : ε̃tr f − σ : ε̃tw f FA

+
1
2

f Htr ε̃tr : ε̃tr +
1
2

H f f 2 +
1
2

f FA Htw ε̃tw : ε̃tw + Cv

[
(T − T0)− T log

T
T0

]
= UA − TSA + B(T − T0) f − 1

2
σ : S : σ − σ : α∆T − σ : ε̃tr f − σ : ε̃tw f FA +

1
2

f Htr ε̃tr : ε̃tr

+
1
2

H f f 2 +
1
2

f FAHtw ε̃tw : ε̃tw + Cv

[
(T − T0)− T log

T
T0

]
.

(3)

where UA and UM are the austenitic and the martensitic internal energy and SA and SM are the
austenitic and the martensitic entropy. Several terms, such as ∆U = UM − UA, ∆S = SM − SA

and ∆T = T − Tre f , are also introduced. Considering T0 = ∆U
∆S the equilibrium temperature of

transformation, a linear variation of entropy around T0 is defined as B = −∆S. The terms Htr, H f and
Htw comprise, respectively, a set of material parameters characterizing interactions between grains of
the microscopic RVE, between variants inside grains and between twins. Cv is the transformation latent
heat coefficient. The control equation of the thermodynamic system is established by introducing the
Clausius–Duhem inequality:

− Ġ− ε : σ̇ − SṪ −−→q ·
−−→
grad T

T
≥ 0. (4)

Substituting Equation (3) to Equation (4) and considering the thermo-elastic balance conditions,
the Clausius–Duhem inequality is reduced to:

φ = −∂G
∂ f

ḟ − ∂G
∂ε̃tr : ˙̃εtr − ∂G

∂ε̃tw : ˙̃εtw −−→q ·
−−→
grad T

T
≥ 0. (5)

Here, driving forces related to this dissipation expression are introduced:

1. Transformation driving force related to f :

A f = −
∂G
∂ f

=σ : ε̃tr + ζFAσ : ε̃tw − B(T − T0)−
1
2

f Htr ε̃tr : ε̃tr

− H f f − 1
2

ζFA Htw ε̃tw : ε̃tw.
(6)

where the definition of ḟ FA = ζFA ḟ is introduced here.
2. Orientation force related to ε̃tr:

Aε̃tr = −
1
f

∂G
∂ε̃tr = σ′ − Htr ε̃tr. (7)

where σ′ denotes the deviatoric part of the stress tensor σ.
3. Twin accommodation related to ε̃tw:

Aε̃tw = − 1
f FA

∂G
∂ε̃tw = σ′ − Htw ε̃tw. (8)

By introducing a series of predefined critical thresholds related to these driving forces,
the evolution of phase transformation is controlled. For more clarity of the relations between the main
control equations, the constitutive equations for this model are summarized in Table 1.

The implementation of this model in a finite element code is realized; for more details about
the implementation process, see Chemisky et al. [40] and Duval et al. [42]. Moreover, the evolution
of tension-compression asymmetry and internal loops during the partial loadings can also be well
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simulated with this adopted model. In the following subsection, architected SMA RVEs with different
geometric parameters are studied to see the cellular response of the material.

Table 1. Summary of the control equations for the SMA model.

Strain mechanisms:
ε = εe + εth + εtr + εtw.
Thermodynamical potential:
G = UA − TSA + B(T − T0) f − 1

2 σ : S : σ − σ : α∆T − σ : ε̃tr f − σ : ε̃tw f FA + 1
2 f Htr ε̃tr : ε̃tr +

1
2 H f f 2 + 1

2 f FA Htw ε̃tw : ε̃tw + Cv

[
(T − T0)− T log T

T0

]
.

Clausius–Duhem inequality:

−Ġ− ε : σ̇ − SṪ −−→q ·
−−→
grad T

T ≥ 0.
Thermo-elastic balance conditions:
S : σ + α∆T + f ε̃tr + f FA ε̃tw − ε = 0,
SA − B f + σ : α− Cv

(
log T

T0

)
− S = 0.

Thermodynamic forces:
A f = − ∂G

∂ f = σ : ε̃tr + ζFAσ : ε̃tw − B(T − T0)− 1
2 f Htr ε̃tr : ε̃tr − H f f − 1

2 ζFA Htw ε̃tw : ε̃tw,

Aε̃tr = − 1
f

∂G
∂ε̃tr = σ′ − Htr ε̃tr,

Aε̃tw = − 1
f FA

∂G
∂ε̃tw = σ′ − Htw ε̃tw.

Criterion functions:
Fcrit

f = Fmax
f + (B f − B) · (T − T0) i f ḟ > 0,

Fcrit
f = −Fmax

f + (Br − B) · (T − T0) i f ḟ < 0.
Physical limitations:
0 ≤ f ≤ 1.

2.2. Convergence Analysis for the RVE Mesh

An architected SMA RVE is introduced to describe the microscopic structure; see Figure 1. It is
formed by excavating cylindrical holes through the center of each face of a cube SMA. The size of the
cube is given by 1 mm × 1 mm × 1 mm, while the radius of the cylindrical holes is given as 0.38 mm.
According to computational homogenization theory, periodic boundary conditions are introduced into
the RVE by the multi-point constraints (MPCs) on ABAQUS:

∆u+ − ∆u− = ∆ε̄·(x+ − x−) on ∂ω, (9)

where u is the displacement vector, x is the coordinates of nodes and ε̄ is the strain load applied on
the RVE. The notations + and − denote the nodes on opposite boundaries; the notation ∆ represents
the incremental case. Thus, a set of reference points (RPs) for three different directions is introduced
in MPCs and the meshes on the opposite boundaries must be the same in order to create periodic
boundaries; see Figure 1. Both the continuum 3D solid element with full integration (labeled C3D8 on
ABAQUS) and continuum 3D solid element with reduced integration (labeled C3D8R on ABAQUS) for
the mesh in Figure 1a are studied in order to optimize the computation efficiency on the RVE. Following
the constitutive model introduced in the last subsection, the material parameters of a conventional
NiTi alloy are given in Table 2, which are identified with the experimental data of Sittner et al. [43].

Table 2. Material parameters for SMA.

E (MPa) 39,500 Br (MPa °C−1) 7 H f (MPa) 2
ν 0.3 B f (MPa °C−1) 7 Htr (MPa) 1635
εT

trac 0.056 Ms (°C) −80 Htw (MPa) 25,000
εTFA

trac 0.053 A f (°C) −2 Hs (MPa) 68.5
εT

comp 0.044 Fε (MPa) 220
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To check the effective response of the RVE, a tensile strain up to 10% in the Y direction is applied
on the RVE at a constant temperature of 30 °C.

Z

Y

X

  RP   RP

  RP

(a) 720 elements

Z

Y

X

  RP   RP

  RP

X

Y

Z

(b) 4120 elements

Figure 1. Architected RVE with fine meshes and reference points (RPs).

To describe the effective behavior of RVE, the averaged values, such as stress σ̄, strain ε̄ and
martensitic volume fraction f̄t, are introduced. The averaged values are computed by volume
averaging over the whole 1 mm3 cube from Element 1 to N, where N denotes the total element number.
Note the averaged strain is equal to the prescribed strain due to the periodic boundary conditions,
Equation (9). Figure 2a shows the stress-strain relations simulated with different meshes and element
types. The hysteresis effect is observed during the loading/unloading cycle. This nonlinear response
is caused by the inner forward phase transformation of SMA. The averaged martensitic volume
fraction f̄t increases along with the loads until reaching a maximum value; see Figure 2b. When the
unloading begins, f̄t decreases immediately until recovering to zero. From the comparison of the
curves, it is observed that the mesh with 720 elements is fine enough to model this architected SMA
RVE. Furthermore, the RVEs simulated by the C3D8R and C3D8 elements have exactly the same
responses; see Figure 2.

Generally speaking, the mesh with 720 C3D8R elements has relatively enough accuracy and lower
computational cost than other meshes. Thus, meshes like density and C3D8R elements are used for
the RVE in the following work.

ε̄y

0 0.02 0.04 0.06 0.08 0.1

σ̄
y
(M

P
a
)

0

50

100

150

200

250

720-C3D8R

720-C3D8

4120-C3D8

(a) Stress versus strain

ε̄y

0 0.02 0.04 0.06 0.08 0.1

f̄
t

0

0.1

0.2

0.3

0.4

0.5 720-C3D8

720-C3D8R

4120-C3D8R

(b) Martensitic volume fraction versus strain

Figure 2. The evolution of the averaged stress and the averaged martensitic volume fraction simulated
by RVEs with different meshes.

2.3. Cells with Different Geometries

In this subsection, five types of RVEs with different void volume factions ξ are studied,
as illustrated in Figure 3. The size of the cube is given by 1 mm × 1 mm × 1 mm, while the radius of
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the cylindrical hole varying along with ξ is given in Table 3. The material parameters of SMA remain
the same as those in the last subsection.

Z

Y

X

  RP   RP

  RP

(a) ξ = 29.1%

Z

Y

X

  RP   RP

  RP

(b) ξ = 40.7%

Z

Y

X

  RP   RP

  RP

(c) ξ = 72.5%

Z

Y

X

  RP   RP

  RP

(d) ξ = 82.2%

Z

Y

X

  RP   RP

  RP

X

Y

Z

(e) ξ = 90.7%

Figure 3. Meshes for architected SMA RVEs with different void volume fractions ξ.

Table 3. Geometrical parameters for RVEs.

Radius (mm) 0.2 0.24 0.38 0.42 0.47

Void volume f raction ξ 29.1% 40.7% 72.5% 82.2% 90.7%

A tensile strain up to 10% and a compressive strain up to −10% in the Y direction are respectively
applied on the RVEs to simulate effective responses for different RVEs. Figure 4 gives the curves of
averaged stress versus the averaged stain along the loading direction, simulated by the above RVEs
respectively. The absolute value of stress in different RVEs at a certain strain level increases along with
the decreasing of the void volume fraction, as depicted in Figure 4. In more detail, Figure 5 gives the
relation of maximum stress and material volume fraction (1-ξ) when the absolute value of strain is
up to 10%. The trend of the curve shows that the higher the material volume fraction is, the faster
the stress increases. This trend could be explained by exploring the stress distribution on the RVE at
the maximum strain level 10%, as shown in Figures 6 and 7. The high stresses are mainly distributed
over the middle of the pillars along the loading direction. Lower material volume fraction results in
a stronger stress concentration effect. Thus, the stiffness of the RVE decreases more rapidly than the
material volume fraction. This test could be a reference for designers to balance the stiffness and the
mass of the architected structure.

0 0.02 0.04 0.06 0.08 0.1
0

200

400

600

800

1000

1200  = 29.1%
 = 40.7%
 = 72.5%
 = 82.2%
 = 90.7%

(a) Tensile loading

-0.1 -0.08 -0.06 -0.04 -0.02 0
-1500

-1200

-900

-600

-300

0

 = 29.1%
 = 40.7%
 = 72.5%
 = 82.2%
 = 90.7%

(b) Compressive loading

Figure 4. The evolution of the averaged stress-strain curves simulated by RVEs with different void
fractions.

Figure 8 gives the martensitic volume fraction averaged over SMA versus the strain averaged
over the cube. The martensitic volume fraction f̄t increases along with the increasing of the strain level,
but stops before it reaches one. More specifically, each RVE has a certain maximum f̄t value in this
loading case. The maximum martensitic volume fraction versus the material volume fraction at the
maximum absolute strain level of 10% is depicted in Figure 9. It shows that the lower the material
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volume fraction is, the more rapidly the martensitic volume fraction decreases. This also means the
usage rate of SMA is at a very low level when the material volume fraction is low, and it could result in
a waste of SMA. For example, the hysteresis effect of the SMA architected structure is not proportional
to the SMA mass, but to the product of the SMA mass and the SMA usage rate. Thus, the hysteresis
effect could be very weak when the SMA usage rate is very low. Like the stiffness discussed before,
this phenomenon could also be explained by the stress concentration where only the high stress area
transforms into martensite; see Figures 10 and 11. This also means SMA cannot completely transform
from austenite into martensite. Thus, as long as the unloading begins, the reverse transformation starts
immediately, resulting in the reduction of f̄t.

Material volume fraction (1-9) (%)
0 20 40 60 80

M
a
x
im

u
m

j7<
y
j(

M
P
a
)

0

500

1000

1500
Tension
Compression

Figure 5. The relation between the stiffness and the material volume fraction (1-ξ) of the RVE when the
absolute value of strain is up to 10%.
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+2.26e+03
+3.02e+03
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+6.80e+03
+7.56e+03
+8.31e+03
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(a) ξ = 29.1% (b) ξ = 40.7% (c) ξ = 72.5% (d) ξ = 82.2% (e) ξ = 90.7%

Figure 6. Distribution of stress in Y direction (S22) on the RVEs with different void volume fractions ξ

in tension loading at strain level 10%.

(Avg: 75%)
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−1.04e+04
−9.53e+03
−8.66e+03
−7.80e+03
−6.93e+03
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−5.19e+03
−4.33e+03
−3.46e+03
−2.59e+03
−1.72e+03
−8.56e+02
+1.17e+01 X

Y

Z

(a) ξ = 29.1% (b) ξ = 40.7% (c) ξ = 72.5% (d) ξ = 82.2% (e) ξ = 90.7%

Figure 7. Distribution of stress in Y direction (S22) on the RVEs with different void volume fractions ξ

in compression loading at strain level −10%.
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(a) Tensile loading
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(b) Compressive loading

Figure 8. The evolution of the martensitic volume fraction versus the averaged strain curves simulated
by RVEs with different void volume fractions.
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Figure 9. The relation between maximum martensitic volume fraction versus the material volume
fraction when the absolute value of strain is up to 10%.
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Figure 10. Distribution of martensitic volume fraction f̄t (named SDV7 in colorbar) on the RVEs with
different void volume fractions ξ in tension loading at strain level 10%.

To design a light weight architected SMA structure, it is required to minimize the material volume
fraction in order to decrease the weight and cost of the structure. However, the necessary stiffness of
the structure should be firstly satisfied. It should be noticed that the waste of SMA should also be
avoided as much as possible due to SMA’s high price. Therefore, the results given in Figures 5 and 9
can be a reference for the designers to balance the stiffness, mass and SMA usage according to their
specific requirements.

Following the tests at the RVE level, the structural response of the architected SMAs is studied in
the next section.
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Figure 11. Distribution of martensitic volume fraction f̄t (named SDV7 in colorbar) on the RVEs with
different void volume fractions ξ in compression loading at strain level −10%.

3. Structural Response

In this section, the structural responses of the architected SMAs are focused on. The constitutive
behavior of the macroscopic structure is represented by the computational homogenized RVEs in
the last subsection. To simulate the structural response, a short introduction of the multilevel finite
element method (FE2) is presented firstly.

3.1. FE2 Formulation

Generally speaking, an architected SMA with a periodic microscopic structure can be divided into
two scales and be simulated by the multiscale homogenization method. As depicted in Figure 12, each
point at the macroscopic level is represented by a periodic RVE after homogenization. The constitutive
behavior and the stress of each macroscopic point are transferred from the RVE by the computational
homogenization technique, while the macroscopic strain is applied on the RVE with periodic boundary
conditions. Both levels are simulated by FEM, which can capture their mechanical fields accurately.
This approach is implemented on ABAQUS via the user subroutine UMAT. The real-time interaction
of the two levels is realized by the iteration of the Newton–Raphson method. This method is
able to compute both the macroscopic and microscopic responses of the structures simultaneously.
The authors have developed this FE2 approach on the ABAQUS platform for SMA-based composites;
see Xu et al. [39] for more detailed formulations. Related valuable works on multiscale modeling of
SMA composite could be also referred to, such as Kohlhaas and Klinkel [37], Chatzigeorgiou et al. [38],
Chatzigeorgiou et al. [44] and Fatemi Dehaghani et al. [45].

Ω

Macro Micro

Figure 12. Basic concept of the finite element squared method.

3.2. Beam with Three Kinds of Cells Subjected to Three-Point Bending

The multiscale finite element method mentioned above has been validated by the reference
and shows good ability in modeling the superelasticity and the shape memory effect of the SMA
composites [39]. Therefore, this multiscale model is used to simulate the multiscale response of
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the architected SMA structure herein. A 3D beam subjected to three-point bending load is shown
in Figure 13.

This beam is composed of architected SMA. The width, length and height of the beam are 5 mm,
20 mm and 5 mm, respectively. Edge Y = 5 mm, Z = 10 mm is fixed in the Y and Z directions.
A displacement load up to 0.5 mm in the Y direction is applied on the edges Y = Z = 0 mm and
Z = 20 mm, Y = 0 mm. Node X = 0 mm, Y = 5 mm, Z = 10 mm is fixed in the X direction in order to
eliminate the rigid body displacement in the X direction. Considering the symmetry of the structure
and the boundaries, only the left half of the structure is simulated in order to reduce the computation
cost. To do this, an additional displacement constraint in the Z direction is given on face Z = 10 mm.
Since the deformation in the X direction is not obvious in the three-point bending test, one element is
used in this direction. Each edge in the Y direction is meshed by two elements and in the Z direction
by four elements; see Figure 14. The continuum 3D solid element with incompatible modes (labeled
C3D8I in ABAQUS) is adopted for the modeling of the macroscopic beam since it is enhanced by
incompatible modes to improve its bending behavior. The RVEs studied in the last section are used
herein with void volume fractions ξ of 40.7%, 72.5% and 82.2%, respectively.

As the macroscopic constitutive behavior on each integration point is not clear, it has to be
represented by the effective behavior of the associated RVE at each macroscopic increment. A brief
flow diagram, showing how this multiscale problem is solved, is illustrated in Figure 15. Specifically,
the effective behavior of the RVE is computed by seeking the relations between the averaged stresses
and averaged strains over the RVE via a series of loading tests. Once the effective behavior is obtained,
the macroscopic problem is to be solved. Considering the nonlinear response of the RVE during loading,
the macroscopic convergence has to be checked in each macroscopic iteration of the Newton–Raphson
framework. In an iteration, the strain states of RVEs are updated with the macroscopic strains, and in
return, the macroscopic stresses are renewed by updating the averaged stress of the RVE at the new
strain states.

20	mm

10	mm
5	mm

5	mm
Y

X

Z

(b)

(a)Figure 13. Geometry and boundary conditions for the three-point bending beam.

Y
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Integration point order
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Figure 14. The meshes for the left half beam and the integration points in each C3D8I element.
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Figure 15. The nonlinear interaction between two scales in the Newton–Raphson framework.

3.3. Stress Distributions at the Macroscopic and Microscopic Levels

Let us consider the case with volume fraction ξ = 40.7%. The stress distribution of the bending
beam with the prescribed displacement in the Y direction reaching 0.5 mm is illustrated in Figure 16.
The deformations of both the macroscopic and microscopic structures are magnified by three times.
The high compressive stresses in the Z direction are observed in the elements above the middle plane
Y = 2.5 mm, while in contrast, the compressive stresses are observed in the elements below the middle
plane. In the meantime, for different macroscopic points, the RVEs have different stress states in
correspondence with their associated macroscopic strain states. To specify the microscopic structure
more clearly, we introduce RVEkl to denote an RVE corresponding to the integration point l of the
macroscopic element k. The RVEs above the middle plane, such as RVEA4 and RVED4, are mainly
subjected to compression, while the RVEs below the middle plane, such as RVEE3 and RVEH3, are
mainly subjected to tension. The stresses in the RVEs far from face Z = 10 mm, such as RVEA4 and
RVEE3, are at a relatively low level compared to those RVEs near face Z = 10 mm, such as RVED4

and RVEH3.

RVE
RVE

RVERVE

Figure 16. The distribution of stress in Z direction (S33) for the macroscopic structure and microscopic
structure with ξ = 40.7%, where the deformations of both levels are magnified by three times.

3.4. Evolution of the Loading

Figure 17 shows the nonlinear response of the macroscopic structure with three different void
fractions. The linear response is observed at the very beginning, and the microscopic structures deform
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without any phase transformation. As the loading increases, the forward phase transformation begins
over the high stress area of the beam. For example, Figure 18 gives the stress strain relations of
integration points in element D and element H with ξ = 40.7%, which also represent the effective
behavior of the associated RVEs. Note that Integration Points 5 to 8 in each element are not illustrated
considering the symmetry of the structure in the middle plane X = 2.5 mm. It is observed that the
hysteresis effects in RVED3 and RVEH3 are relatively much more obvious than those in RVED4 and
RVEH4; because RVED3 and RVEH3 are located in the high stress area. The martensite transformation
states of the RVEs with the prescribed displacement in the Y direction reaching 0.5 mm, shown in
Figure 19, also give a reasonable confirmation from the RVE level. This figure depicts the RVEs
corresponding to these integration points closest to the face Z = 10 mm. Only the RVEs far from
the middle plane Y = 2.5 mm have an obvious phase transformation. Simultaneously, the phase
transformation at the RVE level is accompanied by the softening of macroscopic stiffness. This
softening goes gradually, because the thermomechanical phase transformations at the microscopic
level are not synchronous, considering that the stress states of the macroscopic structure are not
uniform over the whole beam and that the microscopic structure is architected. Once the unloading
begins, the behaviors of the structure and RVEs immediately turn into the linear case. Later, the reverse
transformation follows, and finally, all the phases transform back into austenite.

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

700

800

=	72.5%

=	40.7%

=	82.2%

Figure 17. Force-displacement curve of the boundary Z = 20 mm, Y = 0 mm on the bending beam.
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Figure 18. The stress-strain relations on the macroscopic integration points with ξ = 40.7%.
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Figure 19. Distribution of martensitic volume fraction f̄t (named SDV7 in colorbar) on the RVEs with
the prescribed displacement in the Y direction reaching 0.5 mm and ξ = 40.7%.

3.5. Structural Response with Different Microscopic Structures

The differences between structural responses with three void fractions are observed in Figure 17.
With a higher void fraction, the macroscopic structure shows lower stiffness and a weaker hysteresis
effect, because the macroscopic behavior is represented by the mean behavior of the microscopic
structures. The stress-strain relations of Integration Points H3 and D4, which are also the averaged
stress-strain relations of RVEH3 and RVED4, are depicted in Figure 20 to investigate the microscopic
response of the structure. Figure 21 gives the stress distributions in the Z direction for associated
RVEs at maximum loads corresponding to the displacement of the beam ends U2 = 0.5 mm. It is
observed that the averaged stiffness and the hysteresis effect of the RVE with a higher void fraction are
lower than those of the RVE with a lower void fraction, which is consistent with the response at the
macroscopic level. As we have discussed in Section 2, the high void fraction results in less SMA, which
can provide low stiffness for the structure. For this architected structure, the stresses are concentrated
over the pillars along the main loading direction when the void fraction is high. This also results in the
martensite phase being mainly concentrated over the pillars.

-0.02 -0.01 0 0.01 0.02
-300

-200

-100

0

100

200

300

Figure 20. The comparison of the stress-strain relations on the macroscopic Integration Points H3 and
D4 simulated by three kinds of RVEs respectively.
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Figure 21. Distribution of stress in Z direction (S33) on RVEH3 and RVED4 of different beams
corresponding to the displacement of the beam ends U2 = 0.5 mm.

3.6. Comments on the Computational Efficiency

The proposed numerical tool contributes to the design of innovative SMA applications, which can
optimize the quantity of material with the required functionalities (actuation, recovery force, damping,
energy absorption, etc.), lighten the structure and consider alternative manufacturing processes such
as additive manufacturing. The latter can consider more complex geometries of the unit cell, which
has a direct influence on the overall behavior of the structure. Note that this numerical multiscale
procedure is very time consuming. To reduce the CPU time, the authors propose to associate this
method with model reduction techniques. Among these techniques, we can introduce the proper
orthogonal decomposition (POD) to build up a small number of basis functions where the solution
can be computed (Yvonnet et al. [46]). When this technique is used in an optimization procedure
requiring several repetitive calculations, it can significantly reduce the computation time. We can also
consider the proper generalized decomposition (PGD) technique (Ammar et al. [47]; Kpogan et al. [48]),
which can reduce the dimensionality of the problem to be solved and which is well adapted for
unsteady problems, as well as parametric studies. Another technique that has proven its efficiency
in solving non-linear problems and that was developed by our group is the asymptotic numerical
method (ANM). This technique is based on the development of variables in the form of Taylor series
truncated at large order, which allows one to reduce the computation time significantly by reducing the
number of computation steps. This technique can be considered as a high order predictor algorithm
without the need for any iteration phase. It is particularly suited for strong nonlinearities and for
thin-structure problems involving instability phenomena (Nezamabadi et al. [49]; Assidi et al. [50];
Aggoune et al. [51]). In addition, bridging techniques (Hu et al. [52]; Yu et al. [53]) can also be
considered to combine the advantages of different reduced finite element models. These tools will
be associated with the present algorithm to reduce the computation time and to deal with complex
structural geometry and complex response curves.
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4. Conclusions

In this paper, the superelasticity behavior of the architected SMA structure is studied with a 3D
multiscale finite element model. Firstly, RVEs with architected SMA are built to simulate the cellular
responses of the structure. The behavior of SMA is described by the constitutive model proposed
by Chemisky et al. [40]. Both tension and compression loading cycles are applied on the RVEs with
different void fractions. The superelasticity responses and the hysteresis effects are observed in the
RVEs. The effect of changing the void fraction on the stiffness, the maximum martensitic volume
fraction and hysteresis effect are discussed in detail. Moreover, a multiscale approach is carried out to
model the structural response, as well as the cellular response. The relations between the structural
and cellular responses are studied in a three-point bending test. It is observed that the macroscopic
response is related to the phase transformation in the RVE, which changes the effective constitutive
behavior of the structure. The stress-strain state of the RVE directly depends on the stress strain
state of the associated macroscopic point. Thus, the multiscale model is necessary and successful for
simulating the nonlinear behavior of the architected SMA structure. Furthermore, structural responses
with different void fractions are studied, which gives a good reference of the void fractions’ influences
on structural stiffness and hysteresis.
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Abbreviations

The following abbreviations are used in this manuscript:

SMA Shape memory alloy
RVE Representative volume element
FE2 Multilevel finite element method
FEM Finite element method
UMAT User-defined materials
MPCs Multi-point constraints
RP Reference point
C3D8 Continuum 3D solid element with full integration
C3D8R Continuum 3D solid element with reduced integration
C3D8I Continuum 3D solid element with incompatible modes
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