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Abstract: The double asymptotic homogenization method originated for analyzing physical
systems containing two or more length scales was adopted to predict the characteristic of 1-3 type
cement-based piezoelectric composites for the first time. The piezoelectric properties of 1-3 type
cement-based piezoelectric composites were measured and comparisons between the experimental
data and predicted values validate the effectiveness of the present analytical model. Moreover,
numerical discussions and experiments show that one should choose proper volume fraction of
constituents to achieve the best performance of the 1-3 type cement-based piezoelectric composites.

Keywords: effective piezoelectric properties; theoretical prediction; experimental study; 1-3 type
cement-based piezoelectric composites; double asymptotic homogenization method

1. Introduction

Establishment of structural health monitoring (SHM) for important civil infrastructure is
considered as an effective tool to ensure the safety, integrity and durability of the structures during
their service life [1]. Inspired from the successful experiences in the field of mechanical engineering
and space structures, the application of piezoelectric intelligent systems in SHM for civil engineering
structures with higher efficiency and lower cost has been the research focus in recent decades [1–9].
However, as the key component of intelligent monitoring systems, the conventional smart sensors
or actuators originated from aerospace and mechanical engineering are not applicable for concrete
structures mainly due to material compatibility problems [10]. Therefore, the concept of cement-based
piezoelectric materials which have good interfacial compatibility and acoustic impedance to match
the concrete materials is then proposed and regarded as novel functional materials for smart sensor
fabrication in civil engineering.

Li et al. [11] first developed a 0-3 connectivity cement based piezoelectric composite using
normal mixing and spread approaches, and the effect of the piezoelectric ceramic volume fraction
on the acoustic impedance compatibility between the composite and concrete materials was
discussed. After that, Huang et al. [12] fabricated the 0-3 sulfoaluminate cement-based piezoelectric
composites and investigated the dominant factors influencing overall behavior of the composites.
Chaipanich et al. [13,14] further studied the effect of forming pressure on properties of cement-based
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piezoelectric composites, where the piezoelectric coefficients and dielectric constants were found to
increase with the pressure growth, while the electromechanical coupling coefficient was not sensitive
to the pressure changes. To obtain better performance and meet the requirements of engineering utility,
2-2 type cement-based piezoelectric composites were proposed. Li et al. [15] prepared cement-based
2-2 type piezoelectric composites by casting cement-based mortar into a series of pre-arranged
piezoelectric thin plates, and the electromechanical and mechanical properties of the composites
were then tested. Zhang et al. [16] investigated the actuator effect of the cement-based 2-2 type
piezoelectric composites under free and pre-compressed boundary conditions. The influence of the
polarization direction of piezoelectric layers on both static and dynamic response of cement-based
2-2 type piezoelectric composites under different loads was studied by Shi’s group [17–19].

As compared with other biphasic piezoelectric composites, the 1-3 type cement-based piezoelectric
composites with even better piezoelectric, electromechanical and mechanical properties have received
much research attention recently. By the dice-and-fill technique, Lam and Chan [20] fabricated the
1-3 type PZT (Lead Zirconate Titanate)-cement composites and investigated the effect of volume
fractions of PZT on the electromechanical coupling coefficient. Li et al. [21] prepared and tested
the 1-3 type cement-based composites with PMN (Lead Magnesium Niobate) as inclusion, the
experimental results indicated that piezoelectric voltage constant g33 of the composites was much
higher than those of pure PMN, and the acoustic impedance of the composites could be tailored
to match the concrete materials. After that, the composites were embedded into concrete beams as
the transducers, and the active as well as passive detecting functions of the damage evolution were
investigated [22]. Cheng et al. [23] studied the influence of the shape of the piezoelectric inclusion
as well as environmental temperature on the effective piezoelectric and dielectric properties of the
1-3 type piezoelectric ceramic-cement composite. Potong et al. [24,25] reported research work on the
1-3 type BZT (Barium Zirconate Titanate)-Portland cement composites, in which the variation of overall
dielectric, piezoelectric and hysteresis properties with respect to different parameters was discussed
in detail.

In conjunction with the experimental studies, the theoretical prediction of the effective
electromechanical behavior of cement-based piezoelectric composites also plays a prominent part in the
research. Actually, there exist several methods for predicting the effective properties of piezoelectric
composites. Among these approaches, the famous parallel and series models, due to the concise
form, have been widely adopted to calculate the effective material constants, especially for the
cement based piezoelectric composites [25–27]. However, this method can only provide the lower
and upper bounds for the effective property estimation. Another one is generally known as the
effective medium approach, originated from Eshelby’s classic study [28], which includes the dilute
method [29], the Mori–Tanaka method [30], the differential scheme [31], the self-consistent method [32],
and the generalized self-consistent method [33]. By generalizing the Mori–Tanaka and Self-consistent
approaches, Odegard [34] proposed a new modeling approach to estimate the mechanical properties
of piezoelectric composites with better accuracy and convenience. These analytical micromechanical
methods allow us to predict multi-axial properties and responses of heterogeneous materials in
principle, but usually are used to deal with the particle reinforced composites (e.g., 0-3 piezoelectric
composite). Besides the two methods mentioned above, homogenization theory is also a powerful
tool to study the global responses of the composites, including the effective material constants, overall
stains/stresses, displacements, etc. As for 2-2 type piezoelectric composites, Grekov et al. [35] and
Benveniste and Dvorak [36] derived the effective properties based on the hypothesis of equivalent
homogeneity, but in different constitutive forms. Using the same theoretical framework, Ray and
Batra [37] investigated the effective piezoelectric and elastic properties of 1-3 type carbon nanotube and
piezoelectric fiber reinforced composites. It should be noted that the key idea of such homogenization
method is to create a uniform field in heterogeneous media by applying proper boundary conditions.

On the numerical side, Bennett and Hayward [38] employed the finite element model to simulate the
effective behavior of 1-3 type piezoelectric composites hydrophones under the hydrostatic environment,
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and further gave the design guidelines for 1-3 type piezoelectric composites hydrophones with better
performance. A finite element model with a unit-cell approach was adopted for the modeling of 0-3
and 1-3 type composites made of piezoceramic fibers embedded in a soft non-piezoelectric matrix,
where the estimated longitudinal and transversal effective piezoelectric constants were deduced
and compared with some other analytical and experimental data [39]. Pettermann and Suresh [40]
developed a comprehensive unit cell model for studying piezoelectric composites with periodic
hexagonal or square arrangements of continuous aligned fibers, in which any arbitrary combination
of mechanical and electrical loading could be included. Based on a comprehensive finite element
numerical model, Kar-Gupta and Venkatesh [41] investigated the effects of variations in the poling
characteristics of the matrix and the fiber phase on the overall electromechanical behavior of a 1-3 type
piezoelectric composites.

Noticing that the inclusion phase in 1-3 type cement-based piezoelectric composites is usually
arranged in a specific pattern with same shape and equal distance, the composites thus can be
regarded as a certain periodic structure. Owing to this, in this paper, an alternative homogenization
approach called multi-scale asymptotic method is introduced and adopted to estimate the effective
properties of 1-3 type cement-based piezoelectric composites. Based on the rigorous mathematical
derivation without the skillful chosen of boundary conditions, this method can enable the accurate
prediction of both the global and local responses of the composites with periodic inclusions [42–44].
Since the inclusions are periodically distributed in a square arrangement in 1-3 type cement-based
piezoelectric composites, the expression of the effective properties in explicit forms will be given by
the double asymptotic homogenization technique, where the two-scale asymptotic homogenization is
implemented twice along two periodic directions, respectively.

Following the Introduction, the rest of the paper is organized as follows: The preparation of the
1-3 type cement-based piezoelectric composites and the effective piezoelectric coefficients measurement
are presented in Section 2. The application of the double asymptotic homogenization method for
analytically determining the effective material properties is introduced in detail in Section 3. Section 4
gives the comparison between the analytical solutions and the experimental results; the influence of
the volume fraction of PZT inclusion on the effective piezoelectric coefficients is also discussed. Finally,
some conclusions are drawn in Section 5 to summarize our main findings.

2. Experiment

The 1-3 type cement-based piezoelectric composites were prepared using the dice-fill method.
The wire electrical discharge machine (WEDM) STX-402 (Figure 1) was used to cut the PZT block
(PZT-5H, Baoding Hengsheng Acoustics Electron Apparatus Co., Ltd., Baoding, China) to form the
square rods along the polarization direction, where groove spacing was determined according to
different volume fraction of constituents. Then, the grooved PZT blocks after cutting (Figure 2) were
filled with fresh cement paste with 0.35 cement–water ratio (Portland cement of grade 42.5 from
Guangdong First Building Materials Co., Ltd., Guangdong, China), and further placed in vacuum
pump (Figure 3) to reduce pores between cement matrix and piezoelectric ceramic rods during casting.
The compacted specimens were then cured at 60 ◦C and 100% relative humidity for 24 h before the
gradient drying approach was applied, which includes sequential drying: 60 ◦C for 4 h, 80 ◦C for 8 h
and 100 ◦C for 1 h. After polishing the top and bottom surfaces with polishing instrument (Figure 4),
the dried specimens were scrubbed with acetone and coated with low-temperature silver paint as
electrodes. Figure 5 depicts the specimens with different PZT ceramic volume fractions.

The cement-based piezoelectric composites were aged at room temperature for 24 h prior to
the measurement. This study mainly focused on the effective piezoelectric property of the material,
therefore only piezoelectric coefficients d31, d32 and d33 of the composites were involved in experiments,
and were measured directly by the piezometer (ZJ-6A, Institute of Acoustics Academy of Science,
Beijing, China). Figure 6 depicts the piezometer, and the experiment scheme is shown in Figure 7.
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For every volume fraction, the reported experimental data are the average of at least five
measurements. The corresponding results are listed in Section 4 for the comparison with the
analytical solutions.
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3. Multiscale Homogenization Model

3.1. Basic Equations

Considering transversely isotropic piezoelectric materials, the constitutive relations can be
expressed in the Cartesian coordinate system xi(i = 1, 2, 3) in a compact form, i.e., Barnett and
Lothe notation [45].

σi J = Ci JMnuM,n = Ci JMnεMn (1)

where the subscript comma denotes partial derivative with respect to xi. The convention of summation
over repeated indices is employed; the generalized displacement vector uI , strain tensor εMn, stress
tensor σi J and elasticity tensor Ci JMn are defined as follows

uI =

{
ui (I = i = 1, 2, 3)
φ (I = 4)

(2)

εMn =

{
1
2 (um,n + un,m) (M = m = 1, 2, 3)
−En = φ,n (M = 4)

(3)

σi J =

{
σij (J = j = 1, 2, 3)
Dj (J = 4)

(4)

Ci JMn =


cE

ijmn (J = j = 1, 2, 3, M = m = 1, 2, 3)
enij (M = 4, J = j = 1, 2, 3)
eimn (J = 4, M = m = 1, 2, 3)
−κε

in (J = M = 4)

(5)

where ui and φ are the elastic displacements and electrical potential; σij and Di are the stress and
electric displacement components; and cE

ijmn, enij and κε
in are the elastic, piezoelectric and dielectric

constants, respectively.
Then, the compact form of the governing equations can be written as

σi J,i = f J (6)

where f J are the body force fi (J = i = 1, 2, 3) and free charge −ρc(J = 4).
In addition, the boundary conditions should be specified as

σi J Ni = Tb
J (x ∈ St or x ∈ Sd) (7)

uJ = Ub
J (x ∈ Su or x ∈ Sφ) (8)
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in which St is the elastic Neumann boundary, Sd is the electric Neumann boundary, Su is the elastic
Dirichlet boundary, Sφ is the electric Dirichlet boundary, Ni (i = 1, 2, 3) is the outer unit normal on the
boundary, Tb

J is the generalized external load, and Ub
J is the generalized displacement.

3.2. Basic Theory of Multiscale Homogenization

Consider the piezoelectric composites made of periodic unit cells, where either geometrical or
material parameters satisfy the following relation

R (x + NY) = R (x) (9)

where x (x1, x2, x3) is the position vector of the point in the macroscopic scale coordinate, N =

diag[n1, n2, n3] with ni(i = 1, 2, 3) being arbitrary integer numbers, and Y = [Y1, Y2, Y3]
T a constant

vector determining the periodicity of the composite. According to the two-scale asymptotic expansion
method proposed by Babuška et al. [46,47], let the dimensionless parameter ϑ be defined as the ratio
between the characteristic length of the unit cell and that of the entire composite, and introduce the
corresponding local coordinate ξ = x/ϑ. Then, the generalized displacement u(x) and stress σ(x) can
be expressed in the following two-scale expansion as

u(x) = uϑ(x, ξ; ϑ) = u0(x, ξ; ϑ) + ϑu1(x, ξ; ϑ) + ϑ2u2(x, ξ; ϑ) + · · · · · · (10)

σ(x) = σϑ(x, ξ; ϑ) = σ0(x, ξ; ϑ) + ϑσ1(x, ξ; ϑ) + ϑ2σ2(x, ξ; ϑ) + · · · · · · (11)

In view of the expression of material constant Cϑ(x) = C(x/ϑ) = C(ξ), by substituting
Equation (10) into Equation (1), and comparing the terms in Equation (11) with the same power
of ϑ, we may obtain the following expressions

0 = Cϑ
i JMn

∂u0
M

∂ξn
(12)

σ0
i J(x, ξ; ϑ) = Cϑ

i JMn(
∂u0

M
∂xn

+
∂u1

M
∂ξn

) (13)

σ1
i J(x, ξ; ϑ) = Cϑ

i JMn(
∂u1

M
∂xn

+
∂u2

M
∂ξn

) (14)

Similarly, substitution of Equation (11) into Equation (6) yields

∂σ0
i J

∂ξi
= 0 (15)

∂σ0
i J

∂xi
+

∂σ1
i J

∂ξi
+ f J = 0 (16)

It can be observed from Equation (12) that u0
M only depends on the macroscopic coordinate X,

therefore the generalized displacement in Equation (10) can be written as

u(x) = uϑ(x, ξ; ϑ) = u0(x; ϑ) + ϑu1(x, ξ; ϑ) + ϑ2u2(x, ξ; ϑ) + · · · · · · (17)

where u0(x; ϑ) is the macroscopic displacement, and u1(x, ξ; ϑ), u2(x, ξ; ϑ), . . . are the mesoscopic
displacements [48], which denote the perturbation displacements of the mesoscopic structure.

Since σ1
i J(x, ξ; ϑ) are functions with a periodicity of Y, it follows that Equation (16) will have a

unique solution if ∫
Y
(−

∂σ0
i J

∂xi
− f J)dξ = 0 (18)
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which can be written as
∂ < σ0

i J >

∂xi
+ f J = 0 (19)

where
< · >=

1
V

∫
Y
(·)dξ (20)

in which V is the volume of the unit cell.
Assuming that the displacement u1(x, ξ; ϑ) takes the form as [49]

u1
I (x, ξ; ϑ) = LI Jm(ξ)

∂u0
J (x; ϑ)

∂xm
(21)

where LI Jm(ξ) with respect to ξ are auxiliary functions with a periodicity of Y.
Substitution of Equation (21) into Equation (13) and taking the average volume integration over

the unit cell yields

< σ0
i J(x, ξ; ϑ) >= CEff

i JPq
∂u0

P(x; ϑ)

∂xq
(22)

where

CEff
i JPq =< Cϑ

i JPq + Cϑ
i JMn

∂LMPq

∂ξn
>=

1
V

∫
Y
(Cϑ

i JPq + Cϑ
i JMn

∂LMPq

∂ξn
)dξ (23)

can be considered as the effective material properties of the composite.
As we can see, the key step to solve the effective material properties lies on the function L(ξ),

which usually can be easily determined for the two-phase composites with only one periodic direction
(2-2 type composites) [50]. However, for most kinds of 1-3 type composites with reinforced phase
periodically distributed in the matrix along two directions, it is very difficult to obtain the analytical
expression of the auxiliary function L(ξ), although there is an exception for the cylindrical inclusions
where the explicit form of ∂LPMn/∂ξq can be solved invoking the potential methods of complex variable
and Weierstrass elliptic functions [51]. Of course, complicated numerical implementation through
the finite element method (FEM) can also achieve the same goal (see [52] for more details). Therefore,
for the 1-3 type cement-based piezoelectric composites with inclusions of square cross-section involved
in this paper, the double asymptotic homogenization method which means twice implementation
of multiscale homogenization along two periodic directions, is adopted to analytically predict the
effective material properties.

3.3. First Homogenization for the 1-3 Type Cement Based Piezoelectric Composite

Consider the 1-3 type cement-based piezoelectric composite shown in Figures 8 and 9, in which
the PZT rods with the polarization direction parallel to x3 axis are assumed to array periodically
along the x1 and x2 direction, and the material constants of the cement and PZT are denoted by C(1)

and C(2), respectively. The cross section perpendicular to x3 axis will first be divided into laminated
structure composed of alternate stacking of homogenous cement layers and inhomogeneous mixed
layers with periodic PZT inclusions, as depicted in Figure 10. After that, the first homogenization will
be conducted along x2 direction only in the mixed area, where the material properties of the unit cell
can be expressed as

C =


C(1) (0 ≤ x2 < 1

2 c)

C(2) ( 1
2 c ≤ x2 < a + 1

2 c)

C(1) (a + 1
2 c ≤ x2 ≤ 1

2 c)

(24)

in which a is the side length of the PZT cross section along x2 direction, while c is the distance between
two PZT rods along the same direction, as shown in Figure 10.
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Since each two-phase layer has periodicity only in x2 direction, during the first homogenization,
the expression of the effective property for the inhomogeneous layer C∗i JPq can be reduced to

C∗i JPq =< Cϑ
i JPq + Cϑ

i JM2
∂LMPq

∂ξ2
> (25)

In view of Equations (21) and (13), Equation (15) can be written in the ordinary differential form
with respect to ξ2 while noticing the fact that u0(x; ϑ) is independent of the local coordinate ξ, i.e.,

d(Cϑ
2JMn + Cϑ

2JP2
dLPMn

dξ2
)

dξ2
= 0 (26)

Integration of Equation (26) leads to

Cϑ
2JMn + Cϑ

2JP2
dLPMn

dξ2
= G2JMn (27)

which can be further rewritten as

LPMn,2 = KPJ(G2JMn − Cϑ
2JMn) (28)

where G2JMn are the unspecified constants and the constant matrix K is the inverse matrix of Cϑ
2JP2

KRJCϑ
2JP2 = δRP(R = 1, 2, 3, 4; J = 1, 2, 3, 4; P = 1, 2, 3, 4) (29)

Making use of the periodic condition LPMn(ξ2) = LPMn(ξ2 + Y2), the average volume integration
of Equation (28) over the unit cell gives rise to the following equation

0 =
∫ 0.5c

0 K(1)
PJ (G2JMn − Cϑ(1)

2JMn)dξ2+∫ a+0.5c
0.5c K(2)

PJ (G2JMn − Cϑ(2)
2JMn)dξ3 +

∫ a+c
a+0.5c K(1)

PJ (G2JMn − Cϑ(1)
2JMn)dξ2

(30)

where superscripts (1) and (2) denote the cement and PZT phases, respectively. Since the two phases
of the composite are assumed to be homogeneous, then the above equation can be rewritten as

(cK(1)
PJ + aK(2)

PJ )G2JMn = cK(1)
PJ Cϑ(1)

2JMn + aK(2)
PJ Cϑ(2)

2JMn (31)

which can be further arranged as

G2JMn = ZJP(cK(1)
PQCϑ(1)

2QMn + aK(2)
PQCϑ(2)

2QMn) (32)

where the constant matrix Z is the inverse matrix of cK(1)
PJ + aK(2)

PJ

ZRP(cK(1)
PJ + aK(2)

PJ ) = δRJ(R = 1, 2, 3, 4; P = 1, 2, 3, 4; J = 1, 2, 3, 4) (33)

By virtue of Equations (25), (28), (29), (32) and (33), the analytical solution of effective property
C∗i JPq after first homogenization can be finally determined as

C∗i JPq =< Ci JPq > −v1(1− v1)TMN RMNiJPq (34)

where
v1 =

a
a + c

(35)
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〈Ci JPq〉 =
1
V

∫
Y

Ci JPqdξ = v1C(2)
i JPq + (1− v1)C

(1)
i JPq (36)

TMN = (v1C(1)
2MN2 − (1− v1)C

(2)
2MN2)

−1
(37)

RMNiJPq = (C(1)
i JM2 − C(2)

i JM2)(C
(1)
2NPq − C(2)

2NPq) (38)

For the sake of brevity, the non-zero components of C∗i JPq in Voigt notation are listed in
Appendix A.

3.4. Second Homogenization for the 1-3 Type Cement Based Piezoelectric Composite

After the first homogenization, the initial 1-3 type cement-based piezoelectric composite has
been turned into the 2-2 type composite composed of cement and effective piezoelectric phase whose
material properties C∗ are calculated previously, as shown in Figure 11. Following a similar procedure
to that presented in Section 3.3, the second homogenization over the unit cell (Figure 11) along x1

direction will give rise to final effective properties of the composite denoted as CEff, of which the
analytical solution can be expressed similar to Equations (34)–(38)

CEff
i JPq =< Ci JPq > −v2(1− v2)TMN RMNiJPq (39)

where
v2 =

b
b + d

(40)

〈Ci JPq〉 =
1
V

∫
Y

Ci JPqdξ = v2C∗i JPq + (1− v2)C
(1)
i JPq (41)

TMN = (v2C(1)
1MN1 − (1− v2)C∗1MN1)

−1
(42)

RMNiJPq = (C(1)
i JM1 − C∗i JM1)(C

(1)
1NPq − C∗1NPq) (43)

As we can see, the actual difference from the previous calculation in Equations (34)–(38) is just the
replacement of C(2)

i JPq with C∗i JPq and subscript 2 with 1 in property tensor. The non-zero components of

CEff
i JPq in Voigt notation are also listed in Appendix B for brevity.Materials 2018, 11, x FOR PEER REVIEW  12 of 21 
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4. Results and Discussion

This section illustrates the comparison between the experimental results and the theoretical
prediction of the effective material properties. Besides the described homogenization model, the
comparison is also made with other proposed model [53] from the literature. The corresponding
material parameters in the calculation are listed in Table 1. Since the electromechanical coupling
coefficients calculated by the analytical model are the piezoelectric stress coefficients which cannot be
directly compared with the measured piezoelectric strain coefficients, dij, the following transformation
should be carried out before comparison

dEff
ij = eEff

im gEff
mj (44)

where eEff
mj is the effective piezoelectric stress coefficient, and gEff

mj is the inverse matrix of the elastic

constant cEff
mj .

Table 1. Material properties of the considered composites a,b.

Material
Elastic Constant

(GPa)

Piezoelectric
Coefficient
(C/m2)

Relative Dielectric Constant c

c11 c12 c13 c33 c44 e31 e33 e15 κε
11/κ0 κε

33/κ0 κσ
11/κ0 κσ

33/κ0

PZT-5H 127 80.2 84.7 117 23 −6.6 23.2 17 3131 3400 4551 5366
Cement d 15.4 3.9 3.9 15.4 5.8 0 0 0 19 19 19 19

a Voigt notation is used. b Only the inclusion phase is polarized. c κ0 = 8.85× 10−12(C2/Nm2) vacuum dielectric
constant; κε dielectric constant at constant strain; κσ dielectric constant in the stress-free state. d Young’s modulus is
13.9 GPa, Poisson’s ratio is 0.2.

Figures 12 and 13 display the influence of volume fraction f ( f = v1v2 = ab/[(a + c)(b + d)])
of PZT on the variation of dEff

31 , dEff
32 and dEff

33 . In Figure 12, the theoretical curves of −dEff
31 and −dEff

32
obtained by the present approach grow almost linearly with the increase of volume fraction of PZT, and
show good agreement with the experimental data. Meanwhile, the dotted line calculated by theoretical
model introduced in [53] over predicts the piezoelectric coefficients, thus proves the accuracy of the
double homogenization method. Furthermore, one can also notice that the calculated values of dEff

31
and dEff

32 are not exactly the same, as expected, which is mainly due to the adoption of the asymptotic
homogenization method along two directions but not at the same time. However, such difference is
quite slight, which can be ignored in the practical application.

In Figure 13, the two theoretical curves of piezoelectric coefficient dEff
33 having the same trend show

an evident non-linear variation with the change in inclusion volume fraction, while the agreement
between theoretical and experimental results is seen to be good. Note that the results obtained from [53]
agree remarkably well with the present method, which may correspond to the similar hypotheses
concerning the states of stress and strain in the body as in parallel model.

In addition to the above-mentioned electromechanical coupling coefficients, hydrostatic charge
coefficient dEff

h which has the definition as dEff
h = dEff

31 + dEff
32 + dEff

33 , is another useful parameter
in evaluating piezoelectric materials, especially in the application of hydrophone [54]. Therefore,
Figure 14 illustrates the experimental values of dEff

h as well as the theoretical ones versus different
volume fraction of PZT. Due to the difference between the two predicted curves of dEff

31 and dEff
32 observed

in Figure 12, the theoretical model from [53] underestimates the hydrostatic charge coefficient, while
the present model can matches quite well with the experimental results. The calculated value of dEff

h
grows rapidly at first and then decreases as the volume fraction of PZT increases, where the peak value
appears near f = 0.35. It also implies that the optimal effective piezoelectric property of the composites
depends on the proper volume fraction of the PZT inclusion.
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To further analyze the quantitative difference between the calculated and experimental results in
Figures 12–14, specified data comparison and relative errors for different volume fraction f of PZT are
listed in Table 2, where almost the same tested values of dEff

31 and dEff
32 indicate that the homogenized
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composite is transversely isotropic, which is mainly due to the equal-spaced distribution of the PZT
inclusion with square cross section. The possible source of discrepancy observed in Table 2 may
correspond to the fact that the characteristic size of the periodic substructure in composite is not
small enough and the samples might not be regarded as homogeneous materials by the probe of the
piezometer, which would subsequently affect the test results. We believe that the theoretical prediction
would match the experiment quantitatively much better if the characteristic size of the composite
is reduced.

Table 2. Comparison between theoretical and experimental values of the piezoelectric strain coefficients.

Effective Piezoelectric Parameters
Sample Number

1 2 3 4

Size parameter (mm)

a 1.24 0.95 2 3
b 1.24 0.95 2 3
c 0.74 0.49 0.65 0.75
d 0.74 0.49 0.65 0.75

h e 6.67 6.47 5.3 5.8

Volume fraction of PZT f 0.39 0.435 0.57 0.64

−dEff
31

(pC/N)

Present model 145 157 190 206
Experimental 123 138 169 193

Relative error f 0.15 0.12 0.11 0.06

−dEff
32

(pC/N)

Present model 135 148 184 202
Experimental 121 141 174 190
Relative error 0.10 0.04 0.05 0.06

dEff
33

(pC/N)

Present model 408 431 488 512
Experimental 363 398 440 475
Relative error 0.11 0.08 0.10 0.07

dEff
h

(pC/N)

Present model 128 126 114 104
Experimental 119 119 97 92
Relative error 0.07 0.06 0.15 0.12

e Height of the specimen in x3 direction (Figure 8); f Relative errors are defined as |Theoretical −
Experimental|/Theoretical.

5. Conclusions

In this study, the overall piezoelectric properties of the 1-3 type cement-based piezoelectric
composites were studied both experimentally and theoretically. Composites with different volume
fraction of PZT inclusion were prepared using the dice-fill approach, and the corresponding
piezoelectric strain coefficients were measured directly by the piezometer and subsequently compared
with the theoretically estimated results which were calculated through the double asymptotic
homogenization method and other analytical models from the literature. Good agreement between
the calculated results and the experimental data validates the analytical model adopted in this paper
and further parametric studies show how the volume fraction of PZT inclusion affects the variation of
the effective piezoelectric properties of the composites. Owing to the explicit formula and accuracy,
the double homogenization method is very suitable for the prediction and optimization of the effective
properties of the 1-3 cement-based piezoelectric composites.
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Appendix A. Non-Zero Components of the Generalized Elasticity Tensors after the
First Homogenization

(a) Piezoelectric coefficients:

e∗24 =

(
−e(2)24 +e(1)24

)
κ

ε(1)
22 v1+e(1)24 q42

q42

e∗32 = −
(

e(2)32 −e(1)32

)
c(2)22 v1+

(
−e(2)32 +e(1)32

)
c(2)22 −e(2)32 q12

q12

e∗15 = e(2)15 v1 + e(1)15 − e(1)15 v1

e∗33 = − v1e(1)33 q12−v1 p52−v1e(2)33 q12+v1
2 p52−e(1)33 q12

q12

e∗31 = −−e(1)31 q12+v1
2 p62−v1 p62−v1e(2)31 q12+v1e(1)31 q12

q12

(A1)

(b) Relative dielectric constants:

κε∗
11 = κ

ε(2)
11 v1 + κ

ε(1)
11 − κ

ε(1)
11 v1

κε∗
33 =

−v1κ
ε(1)
33 q12+v1κ

ε(2)
33 q12−v1

2 p72+κ
ε(1)
33 q12+v1 p72

q12

κε∗
22 = − κ

ε(1)
22 κ

ε(2)
22

q42

(A2)

(c) Elastic constants:

c∗11 = − v1
2 p12+v1(−c(2)11 q12−p12+c(1)11 q12)−c(1)11 q12

q12

c∗12 = − (c(2)12 −c(1)12 )c(2)22 (v1−1)−c(2)12 q12
q12

c∗13 = − v1
2 p22+v1(−c(2)13 q12−p22+c(1)13 q12)−c(1)13 q12

q12

c∗22 = − c(1)22 c(2)22
q12

c∗23 = − (c(2)23 −c(1)23 )c(2)22 (v1−1)−c(2)23 q12
q12

c∗33 = − v1
2 p32+v1(−c(2)33 q12−p32+c(1)33 q12)−c(1)33 q12

q12

c∗44 =
−2κ

ε(1)
22 v1e(2)24 e(1)24 q32q42+

(
2κ

ε(1)
22 v1q32q42+q32(q42)

2
)(

e(1)24

)2

q32κ
ε(1)
22 κ

ε(2)
22 q42

+
κ

ε(1)
22 v1

(
e(2)24

)2
q32q42−

(
c(2)44 κ

ε(1)
22

)2
κ

ε(1)
22 −c(2)44 κ

ε(2)
22

(
κ

ε(1)
22

)2
q32

q32κ
ε(1)
22 κ

ε(2)
22 q42

+

(
−q32(q42)

2−κ
ε(1)
22 v1q32q42

)(
e(1)24

)2
+c(2)44 c(1)44

(
κ

ε(2)
22

)2
κ

ε(1)
22

q32κ
ε(1)
22 κ

ε(2)
22 q42

+
v1

2
(

κ
ε(1)
22

)2
q32 p42+c(2)44

(
κ

ε(2)
22

)2
κ

ε(1)
22 q32−

(
c(2)44

)2
q42κ

ε(1)
22 κ

ε(2)
22

q32κ
ε(1)
22 κ

ε(2)
22 q42

c∗55 = c(2)55 v1 + c(1)55 − c(1)55 v1

c∗66 = 1
2
(c(1)22 −c(1)12 )(c(2)22 −c(2)12 )

q22−q12

. (A3)
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where v1 = a/(a + c) is volume fraction of the unit cell during the first homogenization, and the
components of the matrix p and the matrix q are defined as

p12 =
(

c(1)12 − c(2)12

)2

p22 =
(

c(1)12 − c(2)12

)(
c(1)23 − c(2)23

)
p32 =

(
c(1)23 − c(2)23

)2

p42 =
(

e(1)24 − e(2)24

)2

p52 =
(

c(1)23 − c(2)23

)(
e(1)32 − e(2)32

)
p62 =

(
c(1)12 − c(2)12

)(
e(1)32 − e(2)32

)
p72 = −

(
e(1)32 − e(2)32

)2

(A4)

and
q12 = −v1c(1)22 − c(2)22 + c(2)22 v1

q22 = −v1c(1)12 − c(2)12 + c(2)12 v1

q32 = −v1c(1)44 − c(2)44 + c(2)44 v1

q42 = −v1κ
ε(1)
22 − κ

ε(2)
22 + κ

ε(2)
22 v1

(A5)

Appendix B. Non-Zero Components of the Generalized Elasticity Tensors after the
Second Homogenization

(a) Piezoelectric Coefficients:

eEff
24 = e∗24v2 + e(1)24 − e(1)24 v2

eEff
32 = −−e(1)32 q∗11+v2

2 p∗61−v2 p∗61−v2e∗32q∗11+v2e(1)32 q∗11
q∗11

eEff
15 =

(
−e∗15+e(1)15

)
κ

ε(1)
11 v2+e(1)15 q∗41

q∗41

eEff
33 = − v2e(1)33 q∗11−v2 p∗51−v2e∗33q∗11+v2

2 p∗51−e(1)33 q∗11
q∗11

eEff
31 = −

(
e∗31−e(1)31

)
c∗11v2+

(
−e∗31+e(1)31

)
c∗11−e∗31q∗11

q∗11

(B1)

(b) Relative Dielectric Constants:

κε−Eff
11 = − κε∗

11κ
ε(1)
11

q∗41

κε−Eff
22 = κε∗

22v2 + κ
ε(1)
22 − κ

ε(1)
22 v2

κε−Eff
33 =

−v2κ
ε(1)
33 q∗11+v2κε∗

33q∗11−v2
2 p∗71+κ

ε(1)
33 q∗11+v2 p∗71

q∗11

(B2)
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(c) Elastic Constants:

cEff
11 = − c∗11c(1)11

q∗11

cEff
12 = − (c∗12−c(1)12 )c∗11(v2−1)−c∗12q∗11

q∗11

cEff
13 = − (c∗13−c(1)13 )c∗11(v2−1)−c∗13q∗11

q∗11

cEff
22 = − v2

2 p11+v2(−c∗22q∗11−p∗11+c(1)22 q∗11)−c(1)22 q∗11
q∗11

cEff
23 = − v2

2 p21+v2(−c∗23q∗11−p∗21+c(1)23 q∗11)−c(1)23 q∗11
q∗11

cEff
33 = − v2

2 p31+v2(−c∗33q∗11−p∗31+c(1)33 q∗11)−c(1)33 q∗11
q∗11

cEff
44 = c∗44v2 + c(1)44 − c(1)44 v2

cEff
55 =

−2κ
ε(1)
11 v2e∗15e(1)15 q∗31q∗41+

(
2κ

ε(1)
11 v2q∗31q∗41+q∗31(q∗41)

2)(
e(1)15

)2

q∗31κε∗
11κ

ε(1)
11 q∗41

+
κ

ε(1)
11 v2(e∗15)

2
q∗31q∗41−

(
c∗55κ

ε(1)
11

)2
κε∗

11−c∗55κε∗
11

(
κ

ε(1)
11

)2
q∗31

q∗31κε∗
11κ

ε(1)
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(B3)

where v2 = b/(b + d) is the volume fraction of the unit cell during the second homogenization, and
the components of the matrix p∗ and the matrix q∗ are defined as

p∗11 =
(

c∗12 − c(1)12

)2

p∗21 =
(

c∗12 − c(1)12

)(
c∗13 − c(1)13

)
p∗31 =

(
c∗13 − c(1)13

)2

p∗41 =
(

e∗15 − e(1)15

)2

p∗51 =
(

c∗13 − c(1)13

)(
e∗31 − e(1)31

)
p∗61 =

(
c∗12 − c(1)12

)(
e∗31 − e(1)31

)
p∗71 = −

(
e∗31 − e(1)31

)2

(B4)

and
q∗11 = −v2c(1)11 − c∗11 + c∗11v2

q∗21 = −v2c(1)12 − c∗12 + c∗12v2

q∗31 = −v2c(1)55 − c∗55 + c∗55v2

q∗41 = −v2κ
ε(1)
11 − κε∗

11 + κε∗
11v2

(B5)
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