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Abstract: In this paper, we investigate the coupled band gaps created by the locking phenomenon
between the electric and flexural waves in piezoelectric composite plates. To do that, the distributed
piezoelectric materials should be interconnected via a ‘global’ electric network rather than the
respective ‘local’ impedance. Once the uncoupled electric wave has the same wavelength and opposite
group velocity as the uncoupled flexural wave, the desired coupled band gap emerges. The Wave
Finite Element Method (WFEM) is used to investigate the evolution of the coupled band gap with
respect to propagation direction and electric parameters. Further, the bandwidth and directionality
of the coupled band gap are compared with the LR and Bragg gaps. An indicator termed ratio
of single wave (RSW) is proposed to determine the effective band gap for a given deformation
(electric, flexural, etc.). The features of the coupled band gap are validated by a forced response
analysis. We show that the coupled band gap, despite directional, can be much wider than the LR gap
with the same overall inductance. This might lead to an alternative to adaptively create band gaps.

Keywords: piezoelectric composite plates; interconnected electric network; locking phenomenon;
coupled band gap; wave and finite element method

1. Introduction

Periodic structures feature frequency band gaps (also termed the stop bands) in which certain wave
mode (Bloch wave modal shape) cannot propagate and the associated energy flow is forbidden [1–3].
Such unique wave filtering characteristics can find applications in vibration reduction [4–6],
energy focus [7] and even acoustic cloaking [8]. There are three main mechanisms to create a band gap,
namely the Bragg scattering, local resonance (LR) and locking phenomena respectively.

The creation of a Bragg or a LR band gap attributes to the frequency evolution of a single wave
mode, as the results of interference generated by the interaction of incident and scattered waves at
the unit-cell boundaries that periodically presented in space [9]. The Bragg band gaps appear around
frequencies governed by the Bragg condition L = n(λ/2) where n is an integer, λ is the wavelength
and L is the unit-cell length (also termed the lattice constant). This implies that the structural periodicity
must be of the same order as the wavelength of the band-gap frequencies, as observed in periodic
engineering structures such as truss beams [10], perforated plates [11], and stiffened cylinders [12].
If the impedance mismatch in the unit cell involves an internal resonance, then a band gap centred at
the resonant frequency can be created, termed the local-resonance (LR) band gap [13]. Thus, the LR
band gaps are not restricted to wavelengths on the same order as the lattice spacing, and they can lie
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in the sub-wavelength regime whereby waves with wavelengths larger than that of the unit cell will
be prohibited from propagation. Please note that the creation of Bragg and LR band gaps does not
necessarily need two different configurations of the unit cell. Transition between the Bragg and LR
band gaps can occur once the parameters of the same kind of periodicity satisfy certain criteria [14].

However, a coupled band gap is created by the frequency evolution and interaction of two weakly
coupled wave modes [15–17], notably when the locking phenomenon between such two waves
is triggered. The term ‘couple’ does not mean that the two wave modes break the orthogonal
relations but refers to the fact that they comprise more than one basic form of wave (termed the
‘uncoupled’ waves). Typical examples are the torsional-bending waves in a beam with an asymmetric
cross section [18,19]. The term ‘weak’ means a relatively lower magnitude of the coupling force
compared with the magnitudes of the inertial and elastic forces in the uncoupled waveguides [16].
This could also mean that the coupling coefficient is relatively low compared with the mass and stiffness
coefficients. In this regard, the locking phenomenon will be triggered once: (1) the dispersion curves
of the uncoupled waves intersect, namely the waves have identical wavelength at the intersection
frequency; and (2) the uncoupled waves have opposite group velocity when they are approaching
to intersect. Consequently, an identical band gap for each coupled wave will appear around the
intersection frequency, and it is referred to as the coupled band gap. Please note that if the signs of
the group velocity for the uncoupled waves are the same, the veering phenomenon will be triggered
and the coupled band gaps will not be created. General physical and mathematical descriptions of the
locking phenomenon in elastic waves can be found in the work of Mace and Manconi [16].

The main features of the Bragg, LR and coupled band gaps are illustrated in Figure 1. The creation
of the Bragg and LR band gaps explicitly requires the presence of periodicity as mentioned. As for the
coupled band gaps, one of the uncoupled waves should have a declining dispersion curve, so as to
satisfy the requirement of ‘opposite group velocity’. This cannot be the case of a uniform structure,
but can be achieved by the presence of periodicity where the waves in the propagating zone between
two Bragg band gaps may have such features [18,19].

Figure 1. Schematic illustration of the main features for the dispersion curves, the mechanical and
piezoelectric-based implementations for the Bragg, LR and coupled band gaps.

The engineering of periodic structures involves the creation of the band gaps in the desired
frequency zone. Due to periodicity, the wave propagation characteristics of a periodic structure are
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governed by the dynamics of a single unit cell (smallest repetitive substructure). Hence one can
intentionally design the material and geometric parameters, as well as the boundary conditions of the
unit cell to tailor or artificially create band gaps [20,21]. These artificial periodic structures are often
referred to as phononic crystals [5,22]. Especially, the periodic structures with LR band gaps have been
regarded as a new kind of acoustic metamaterials for they possess novel (effective) physical behaviour
such as negative mass and/or stiffness [7,23]. Pure mechanical implementations of the band gaps
require high machining precision and cannot adjust the features in accordance with the environmental
changes. Alternatively, if we introduce piezoelectric materials to the unit cell, and deploy local electric
impedance (via the shunting circuits) to the electrodes as shown in Figure 1; the electric impedance
will be transmitted to the mechanical field and equivalent to for example local stiffness or mass [24,25]
thanks to the piezoelectric effects. This provides light-weight and adaptive implementations for the
Bragg [6,26] and LR band gaps [27–30].

Engineering the coupled band gaps can be a difficult task for both mechanical and
piezoelectric-shunting implementations. Both two waves for the creation of a coupled band gap
can be tailored by the change of material and geometric parameters, or via the local electric impedance,
therefore triggering the locking phenomenon at the desired frequency can be a more challenging
task than the creation of a Bragg or a LR band gap. This issue impedes the utilization of the locking
phenomenon in the design of structures with extensive band gaps.

In this paper, we conduct theoretical and numerical analysis, adaptively creating the coupled
band gaps by interconnecting the electrodes in a piezoelectric composite plate via an inductive electric
network, as shown in Figure 2b. This interconnected configuration of piezoelectric system is termed
the ‘piezoelectric network’ in the literature [31,32] and also in this paper. An example of the 1D case
is illustrated in Figure 1 as well. Please note that the network connection can have many forms,
as proposed by Maurini et al. [33]. The intrinsic capacitance of the piezoelectric materials and the
interconnected inductance as a whole performs like a mass-spring network, and can be regarded
as an attached ‘elastic media’ to the host structure. This leads to an additional electromechanical
wave [31–37]. Yi et al. [34] used this wave to trigger the veering phenomenon to modify the out-of-plane
wave in a piezoelectric composite plate, such that acoustic coincidence frequency is cancelled and
a very good sound isolation performance is achieved. Alessandroni et al. [35] tailored the created
electromechanical wave such that it has the same dispersion relation with the target wave in the host
plate, leading to a multi-mode vibration absorber. Yu and Wang [31], and Liu et al. [32] utilized the
created electromechanical wave as an additional energy transmission path, to destroy the localization
mechanism in the near-periodic structures. Despite that the additional electromechanical wave is
promising to trigger the locking phenomenon with the existing mechanical waves, to the authors’
knowledge, no previous work has been devoted to the detailed analysis of the creation and the
characteristics of coupled band gaps by means of a piezoelectric network.

A uniform plate is considered as the host structure, for it is representative for 2-dimensional
waveguides and it underlies many engineering applications. Piezoelectric materials (PZT-5H) are
periodically bonded to the plate, and in each unit cell two piezoelectric patches are collocated and
their electrodes are connected such that the electromechanical coupling only exists for the flexural
waves (Figure 2). A simple electric network is imposed, comprising only inductance as shown in
Figure 2b. Theoretical solutions for the dispersion curves in such an electric network is available,
which can be used to predict the creation of coupled band gaps. Please note that a LR band gap can be
created, if we shunt an identical inductance to the piezoelectric materials in each unit cell, as shown
in Figure 2a. This motivates us to also compare the features of the LR and coupled band gaps by the
same amount of overall inductance. The results can lead to an alternative mean to create band gaps in
piezoelectric composites by inductance, and can advance the related fields such as vibration control
and sound isolation.
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(a) (b)

(c)

Figure 2. Piezoelectric composite plates with (a) local shunting impedance and (b) one form of the
global electric impedance (considered in this paper). The unit cell of the piezoelectric composite plates
is shown in (c), where ‘1’ and ‘2’ refer to shunting and network circuits respectively.

In the remainder of this paper, we will introduce the numerical tools for the analysis of the band
gaps in the piezoelectric composite plates (Section 2); investigate the characteristics of uncoupled
(Section 3.1) and coupled (Section 3.2) waves; compare the coupled band gaps with the Bragg band
gaps (Section 3.3) and LR band gaps (Section 3.4); and validate the obtained results by forced response
analysis (Section 4).

2. Wave and Finite Element Method (WFEM)

Since it is difficult to find analytical solutions for the considered electromechanical plates, in this
paper a numerical tool termed the wave finite element method (WFEM) is adopted to analyse the wave
propagation characteristics in the piezoelectric composite plates. WFEM requires only the modelling
of a unit cell for the analysis of time harmonic wave characteristics and forced response of periodic
structures [10,19,38–40], therefore it is much faster than the conventional finite element method. It can
be applied to piezoelectric structures with external electric circuits [41–43] once the finite element
model of such an electromechanical unit cell is obtained and the degree-of-freedoms (DOFs) are
partitioned appropriately. The dispersion curves of the waves are obtained by solving the eigenvalue
problem which can be formulated in many different ways [44].

In this work we use ANSYS 17 (ANSYS, Inc., Canonsburg, PA, USA) to model the host plate and
the piezoelectric materials. The HBMAT command in ANSYS is used to export the mass, stiffness and
damping matrices to the external files with the Harwell-Boeing Format. The Matlab HB_TO_MSM
program is used to recover these sparse matrices from the external files into Matlab workspace, and the
full Matlab function is used to convert those data to full matrices. An in-house Matlab code is developed
to give the finite element model of the electric circuits. The mechanical and electric models of the unit
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cell are assembled in the Matlab code, yielding a complete model of the unit cell. All the following-up
procedures of WFEM, including the solving of the eigenvalue problem, and the post-processing are
implemented by an in-house Matlab code developed by the authors. For the sake of clarity, we briefly
outline the method in this section.

The unit cells of the two kinds of piezoelectric composite shown in Figure 2 can be represented in
a uniform way as shown in Figure 2c. The dynamic equations of the unit cell write:

Mq̈ + Cq̇ + Kq = f (1)

where q is the generalized coordinates vector containing both mechanical and electric DOFs.
Please note that in piezoelectric theory the full electromagnetic equations are not usually needed.
The quasi-electrostatic approximation is adequate because the phase velocities of acoustic waves are
approximately five orders of magnitude less than the velocities of electromagnetic waves. Under these
circumstances magnetic effects can be shown to be negligible compared with electric effects [45].
Thus in this paper we use the term electric instead of electromagnetic to describe the corresponding
variables, forces, waves etc. The mechanical DOFs consist of the nodal displacement while the electric
DOFs refer to the nodal flux (whose first derivative with time is nodal voltage). Likewise, f is the
generalized force vector which contains both force and charge loads. In this regard, M, C and K are
generalized mass, damping and stiffness matrices respectively. Choosing the magnetic flux as nodal
DOF enables us to incorporate inductance, resistance and capacitance into K, C and M respectively [46].

With regard to harmonic motions, the dynamic equations of a unit cell at frequency ω are given by[
D̂ii D̂ib
D̂bi D̂bb

](
qi

qb

)
=

(
fi = 0

fb

)
(2)

where D̂ = K + jωC−ω2M is the dynamic stiffness matrix (DSM). Please note that the vectors and
matrices in Equation (1) are partitioned according to the boundary DOFs (with subscript ‘b’) and
internal DOFs (with subscript ‘i’). In case of free wave propagation, there is no external load applied at
the internal DOFs, i.e., fi = 0. Hence the internal DOFs qi can be condensed, leading to:

Dqb = fb (3)

where
D = D̂bb − D̂biD̂

−1
ii D̂ib (4)

is the condensed DSM.
Next, we partition vectors of qb and fb as: four corners q1, q2, q3 and q4; left qL; bottom qB;

right qR, top qT. These notations are illustrated also in Figure 2c as well. Note that when global
impedance is applied, there are electric DOFs both in the boundary and internal vectors, namely in qL,
qR, qT, qB and qi. Only the internal vector qi has electric DOFs if only the local impedance is applied.
Accordingly the nodal displacement and force vectors can now be expressed as:

qb = [ q1 q2 q3 q4 qL qB qR qT ]T (5)

and
fb= [ f1 f2 f3 f4 fL fB fR fT ]T (6)

According to periodic structure theory [47], the aforementioned nodal displacement vector has
the following relation:

qb = T
(
λx, λy

)
q̂ (7)
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where
q̂ =

[
q1 qL qB

]T
(8)

Similarly, due to the periodicity and the equilibrium of the internal force, we have

TT
(

λx
−1, λy

−1
)

fb = 0 (9)

where the matrix T writes

T =



I 0 0
λxI 0 0
λyI 0 0

λxλyI 0 0
0 I 0
0 0 I
0 λxI 0
0 0 λyI


(10)

In these equations, λx = eµx and λy = eµy , where µx = −jkxLx and µy = −jkyLy are the
propagation constants respectively along x and y directions; j =

√
−1; kx and ky are wavenumber with

which the wave propagates along x and y directions; Lx and Ly are the length of unit cell along the x
and y directions.

Substituting Equations (7) and (9) into Equation (4), we have:

TT
(

λx
−1, λy

−1
)

D(ω)T
(
λx, λy

)
q̂ = 0 (11)

where three parameters ω, λx and λy are unknown. In this paper, we solve Equation (11) by fixing
one of the propagation constants (say λy) and the frequency ω, leading to a quadratic eigenvalue
problem in the other propagating constant (λx):(

λxX + Y + λ−1
x Z

)
q̂ = 0 (12)

which can be solved by the polyeig function in Matlab. The detailed formulas of matrices X, Y and Z can
be found in Appendix A. Please note that it is also feasible to solve the eigenvalue problem by other
schemes such as having kx to be real and reaching for complex ω, to get the so called ‘phase constant
surface’ and in this case the ω with an imaginary part indicates an evanescent wave [10,48]. It can
be an alternative to analyse the wave propagations characteristics but the carried information and
conclusions will be the same as the currently employed numerical scheme.

Each solution of Equation (12) represents a plane wave of shape q̂ travels freely in the structure
at frequency ω with wavenumber kx and ky. Repeating this calculation at different frequencies,
dispersion curves (kx, ω) for the fixed ky can be obtained. Sometimes it is more intuitive to present

the angular wave number kθ =
√

k2
x + k2

y and its evolution along θ = arctan(ky/kx), and they will be
used later to illustrate the directionality of wave propagation.

Given the dispersion curves (k, ω) where k can be either kx or ky, the characteristics of the wave
can be known by the properties of k. First let us consider the undamped case, there are three situations:

1. If k is a real number, namely λ is a complex number whose amplitude is 1, this indicates
a propagating wave. The wave is propagating along the positive direction of the axis if k > 0,
along the negative direction if k < 0.

2. If k is a complex number with real(k) equals to nπ where n is an integer, namely λ is a real number
less (positive going) or larger (negative going) than 1, this indicates an evanescent wave. There is
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no phase change during the passage of this kind of evanescent wave, which is the case for the
waves in a Bragg or a LR band gap.

3. If k is a complex number but real(k) does not equal to nπ, namely λ is a complex number
whose amplitude is less (positive going) or larger (negative going) than 1, this also indicates
an evanescent wave. However there are both decaying of the amplitude and phase change
associated with this wave, which is the case for the waves in a coupled band gap.

The presence of damping mechanisms, including the materials damping and resistance in the
circuits, may turn the propagating waves into evanescent ones (case 3). Then all the waves will be
attenuated during passage. The damped waveguides can also be analysed by the WFEM formulas
described in this paper through the introduction of damping matrix C in Equation (1). It is worth to
note that the attenuation caused by damping is associated by the energy dissipation, but the attenuation
caused by a band gap is related to energy reflection [41]. Thus, band gap and damping are two different
mechanisms to achieve wave isolation. For this reason, in this paper we concentrate on the analysis of
the coupled band gaps and do not consider any dissipation or damping.

The WFEM code is first benchmarked against the uniform host plate, as shown in Figure 3.
The analytical solutions for wavenumber of the longitudinal (kl), shear (ks) and flexural waves (kf) at
angular frequency ω are:

kl = ω/

√
E

(1− ν2)ρ

ks = ω/

√
E

2(1 + ν)ρ

k2
f = ω/

√
Eh2

12(1− ν2)ρ

(13)

(14)

(15)

respectively, where Young’s modulus E = 4.35× 109 Pa, Poisson’s ratio ν = 0.37, mass density
ρ = 1.18× 103 kg/m3 and thickness h = 5× 10−3 m. In WFEM, the plate unit cell (Figure 3a) is
modelled by SHELL181 element in ANSYS, which is a four-node element with six degrees of freedom
at each node. The comparison is presented in Figure 3b, where the WFEM results match very well
with the theoretical solutions. This also verifies that the mesh density as well as the choice of element
type are correct. Another benchmark of the WFEM code is presented in the next section.

(a) (b)

Figure 3. Unit cell model (a) and (b) the dispersion curves of the propagation waves long the x
direction in the uniform host plate. The theoretical solutions are denoted by ◦ and the WFEM results
are denoted by −. These are three curves, and they represent the longitudinal, torsional and flexural
waves respectively. Note that in (a), the thickness of the shell element is shown.



Materials 2018, 11, 1656 8 of 27

3. Results and Discussions

The considered host plate is made of epoxy with Young’s modulus 4.35 N/m2, Poisson ratio
0.37 and mass density 1.18× 103 kg/m3. The piezoelectric materials PZT-5H (see Appendix B for the
material parameters) are collocated and the size of each PZT patch is 40× 40× 0.2 mm3. The unit
cell size for such a piezoelectric composite is 80× 80× 5 mm3. Later, the plate with interconnected
inductance is referred to as ‘L-network’ and the plate with locally shunted inductance is referred to
as ‘L-shunt’.

3.1. The Uncoupled Waves

As mentioned, the creation of a coupled band depends on the properties of the uncoupled waves.
In this section, we analyse the mechanical and electric waves in their respective uncoupled media.
There are two ways to define the uncoupled systems [16], namely the uncoupled disconnected system and
the uncoupled blocked system. In the uncoupled disconnected system the coupled forces are removed,
while in the uncoupled blocked system the displacement of the other wave is forced to be zero.
In the case of the considered piezoelectric composite plate, let us rewrite Equation (1) by partitioning q
into the mechanical qM and electric qE vectors, written:[

D̂MM D̂ME

D̂EM D̂EE

](
qM

qE

)
=

(
fM

fE

)
(16)

By definition, the uncoupled disconnected mechanical system is obtained by setting the coupled
forces to zero, namely D̂EMqM + D̂EEqE = 0, leading to:(

D̂MM − D̂MED̂−1
EE D̂EM

)
qM = fM (17)

Likewise, the uncoupled disconnected electric system is obtained by setting the coupled forces to
zero, D̂MMqM + D̂MEqE = 0: (

D̂EE − D̂EMD̂−1
MMD̂ME

)
qE = fE (18)

On the other hand, the unit cell of the uncoupled blocked mechanical system is governed by:

D̂MMqM = fM (19)

and the uncoupled blocked electric system is governed by:

D̂EEqE = fE (20)

It can be seen that the uncoupled disconnected systems refer to the mechanical waveguide with
the open circuit electric boundary condition and the electric waveguide with the force free mechanical
boundary condition. The uncoupled blocked systems refer to the mechanical waveguide with the short
circuit electric boundary condition and the electric waveguide with all the mechanical displacement
constrained. Starting from Equations (17)–(20), and following the aforementioned WFEM procedures,
the wave propagation characteristics of these uncoupled systems can be obtained.

The unit cells of the uncoupled mechanical and electric systems are shown in Figure 4 where
the host plate is modelled by the SHELL181 elements in ANSYS and the piezoelectric patches by the
SOLID5 elements. The wave propagation characteristics of uncoupled disconnected systems along the
x direction are analysed, by setting λy = 1 and searching for λx at each frequency ω. The results are
shown in Figure 5, where only the flexural wave of the uncoupled mechanical system is presented.
The Bragg band gap of the mechanical wave is induced by the periodicity associated by the presence of
piezoelectric materials. Please note that there is only one propagating zone for the electric wave because
of the configuration of the considered circuit form. After this propagating zone there is a permanent



Materials 2018, 11, 1656 9 of 27

Bragg band gap. The slope of the electric waves can be controlled by the inductance. We highlight
three circumstances where the uncoupled electric waves will intersect with the uncoupled mechanical
wave (flexural wave):

1. When L = 0.1 H, the uncoupled waves intersect with opposite sign of group velocity. Thus the
requirements for the creation of a coupled band gap are satisfied. This case will be further studied
in the next section to verify this and to study the properties of the created coupled band gap.

2. When L = 0.2 H, the uncoupled electric wave intersects with a Bragg band gap of the uncoupled
mechanical wave, where the group velocity of the mechanical wave is zero. Whether a coupled
band gap will appear in this case is not clearly stated in the literature. We will further study this
case in the next section to clarify this point.

3. When L = 0.5 H, the uncoupled waves intersect with the same sign of group velocity. The veering
phenomenon will be triggered and no coupled band gap will appear by expectation. This case will
be further studied in the next section to verify this and to study the electromechanical properties
induced by the veering phenomenon.

(a) (b)

Figure 4. The unit cells of the uncoupled mechanical (a) and electric (b) systems. Note that the thickness
of the shell elements is illustrated in (a).

(a) (b)

Figure 5. The dispersion curves of the uncoupled disconnected systems: (a) real part of the
wavenumber; (b) imaginary part of the wavenumber. The numerical results obtained by WFEM
are validated against the theoretical solutions enclosed in Appendix C for the electric waves.

In this paper we use the uncoupled disconnect waves as references to understand the coupled
waves, this will be justified in the next section. Theoretical solutions are available (enclosed in
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Appendix C) for the uncoupled disconnect electric waves, and they are plotted in Figure 5.
Good agreements can be observed, justifying the correctness of the WFEM code.

3.2. Band Gap Structure and Its Identification of the Coupled Systems

The dispersion curves along x direction of L-network with L = 0.1 H are shown in Figure 6.
Four propagation waves are observed, including two electromechanical waves, shear wave and
longitudinal wave. Two Bragg band gaps are observed when waves 1 and 2 satisfying kx/Lx = π where
Lx is the unit cell width along x direction. The intersection frequency of the uncoupled disconnected
flexural (1’) and electric (2*) waves has good agreement with the coupled band gap, as shown in Figure 6.
However the intersection frequency for the uncoupled blocked electric wave (2’) and mechanical wave
(does not presented because it is very close to 1’) is about 200 Hz higher than the coupled band gap.
Moreover, the uncoupled blocked electric wave even does not agree with the coupled electric wave (2)
at frequencies much lower than the intersection zone. Thus in our case the uncoupled blocked waves
are not appropriate references and we use the uncoupled disconnected waves as references for the
understanding of the coupled band gaps.

(a) (b)

Figure 6. Dispersion curves along the x direction of L-network with L = 0.1 H, (a) shows the real part
of kx and (b) shows the imaginary part of kx. Waves 1 and 2 are electromechanical waves. The dash
lines 1’ and 2* refer to uncoupled disconnected flexural and electric waves respectively. The dash line 2’
refers to the uncoupled blocked electric wave.

In the coupled band gap, waves 1 and 2 have exactly the same wavenumber, and their waveshapes
are very similar as shown in Figure 7c,d. We also find that at frequencies far below the coupled band
gap, wave 1 is dominated by the flexural deformation and wave 2 by electric field. Their waveshapes
are no longer similar as shown in Figure 7a,b. This also happens at frequencies above the coupled band
gap as shown in Figure 7e,f. All these features confirm that such a coupled band gap is corresponding
to the locking phenomenon of waves 1 and 2.

As mentioned, wave 2 is dominated by electric field for frequencies above the locking zone
(the coupled band gap), therefore the Bragg band gap of wave 2 can not be used to block the energy
transmission through the flexural deformation. This is also because that at the same frequencies wave 2
is a propagating wave and can be excited by the external forces that generate flexural deformation.
This leads us to the problem of identifying the ‘effective’ band gap for one specific deformation.
This can be a trivial question sometimes. For example, it is easy to find that none of the presented
band gaps in Figure 6 are ‘effective’ for pure shear and longitudinal deformations. Because we know
easily that the waves 1 and 2 don’t have any shear and longitudinal component. However, for waves
with complex shape that contains several ‘basic’ deformations, e.g., the torsional-flexural waves in
an open thin-wall structure, identifying the ‘effective’ band gap for the pure torsional deformation is
not an easy task.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Waveshapes of: (a) wave 1 at 700 Hz; (b) wave 2 at 700 Hz; (B) wave 1 at 1200 Hz; (d) wave 2
at 1200 Hz; (e) wave 1 at 1400 Hz; (f) wave 2 at 1400 Hz. The MAC (modal assurance criterion)
between (a) and (b) is 0.0097, MAC between (c) and (d) is 0.8420, MAC between (e) and (f) is 0.2048.
The waveshapes are normalized such that the amplitude of the largest DOFs is 1.

In this paper, the question is how to identify the ‘effective’ band gap for the flexural and electric
deformation. For this we propose the following indicator termed the Ratio of Single Wave (RSW):

RSW = MAC(φref, φfull) =

∣∣φH
ref · φfull

∣∣2(
φH

ref · φref
) (

φH
full · φfull

) (21)
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where φfull is the actual wave shape of the system and φref is the reference wave shape representing the
target deformation. For example in our case the shell elements are used to construct the FE model of the
unit cell, so φfull =

[
ux, uy, uz, θx, θy, θz, λ

]T. If we would like to know how much flexural deformation
this wave mode φfull has, then we let

φref = φf =
[
0, 0, uz, θx, θy, 0, 0

]T (22)

and introduce it into Equation (21) to get RSWf = RSW(φf). RSW is a real value in [0, 1], where 0
means φfull does not contain any contribution of deformation φref and 1 means φfull is fully contributed
by φref. In this work, if RSW < 0.1, we consider no contribution of φref in φall. Further, if all the
propagation waves in the given frequency band are satisfying RSW < 0.1 with φref, we consider this
frequency band as the band gap of the deformation φref.

Similarly, we can define RSWe = RSW(φe) for the electric deformation where φe = [0, 0, 0, 0, 0, 0, λ]T,
RSWs = RSW(φs) for the shear deformation where φs = [0, 0, 0, 0, 0, θz, 0]T, and RSWl = RSW(φl) for
the longitudinal deformation where φl =

[
ux, uy, 0, 0, 0, 0, 0

]T.
As an example, these indicators are used to analyse the propagating waves at 800 Hz and the

results are shown in Figure 8. There are very weak electromechanical coupling because the frequency
is far away from the locking zone, so each wave contains one deformation. It can be seen that the
longitudinal, shear, electric and flexural waves are clearly identified and match with the observation.
The Bragg band gap for the flexural wave is also obtained, and we find it with strong directionality.
It exists only in a small range of angles including zero, and this agrees with the results in Figure 6b.

(a) (b)

(c) (d)

Figure 8. Wavenumber of the propagation waves at 800 Hz, coloured by: (a) RSWl; (b) RSWs; (c) RSWe;
and (d) RSWf. The purple area in sub-figure (d) indicates the identified Bragg band gap for the
flexural deformation.

To further explain the use of RSW, let us consider only bounding the PZT patches at one side of the
plate, as shown in Figure 9a. The propagating waves at 800 Hz are analysed and shown in Figure 9b.
The RSW results clearly indicate that there are two waves having significant contribution of the flexural
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deformation, and one of them can propagate along all directions. In this regard, there is no effective
band gap for the flexural deformation, even though there is still a band gap for the wave with largest
wavenumber. Note that in practice we often concern more about the band gap of a specific deformation
that can be excited by the external forces, not the band gap of certain wave mode. These results also
explain why we use collocated PZT patches: because we aim to get the effective band gaps for the
flexural deformation.

(a) (b)

Figure 9. Wavenumber of the propagation waves (b) at 800 Hz for unit cell with single-sided PZT
patch (a), coloured by RSWf.

3.3. Coupled Gap Versus Bragg Gap

Note that the Bragg band gaps co-exist with the coupled band gaps as shown in Figure 6, and the
directionality of both band gaps at 1400 Hz is given in Figure 10. The propagation solutions (kx, ky) are
coloured by the associated RSWf or RSWe. Around the Bragg gap, RSWf ' 1 and this indicates such
a band gap is created by the evolution of flexural waves without any electromechanical coupling. On the
contrary, both RSWf and RSWe are varying significantly near the coupled gaps. This confirms that the
coupling gaps are generated by the interaction between two weakly coupled electromechanical waves.

(a) (b)

Figure 10. Wavenumber of the propagation waves at 1400 Hz for L-network with L = 0.1 H:
(a) coloured by RSWf and (b) coloured by RSWe. The grey and purple areas indicate the coupled and
Bragg gaps respectively.

From Figure 10 we can obtain the angular width of the band gaps. Redo this at frequency range
[500, 2000] Hz, the width variation of band gap for flexural deformation is obtained and shown in
Figure 11a. Owing to the symmetry, we only present the results in [0, π/4]. We can observe that the
bandwidth of the coupled band gap is approximately constant for most of the angles, except a small
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region around π/4. This is no longer hold for the Bragg band gap, for which the bandwidth varies
dramatically with respect to the angle and becomes very narrow after π/8. This can be confirmed by
the results shown in Figure 10. Similar conclusion can be drawn if the Bragg gap of the open-circuit
case is used in the comparison, as shown in Figure 11b.

(a) (b)

Figure 11. Variation of the angular width of band gaps with respect to the frequency: (a) L-network
with L = 0.1 H; (b) without circuitry network.

Increasing the network inductance to L = 0.2 H, we found that the uncoupled electric wave
intersects with the uncoupled mechanical wave in a Bragg band gap, where the group velocity of the
mechanical wave is zero as shown in Figure 5. The coupled waves are shown in Figure 12. Interestingly,
a coupled band gap still spears but inside the Bragg band gap, justifying by the frequencies in the
Bragg gap where real(k) 6= π. The attenuation (the imaginary part of k) is slightly enhanced, but both
the angular and frequency width (Figure 13) are not extended significantly in comparison with original
Bragg band gap as shown in Figure 11c. The uncoupled blocked electric wave is also presented,
leading to an inaccurate prediction of the results. This once again justifies the use of the uncoupled
disconnected waves in this paper.

(a) (b)

Figure 12. Dispersion curves along the x direction of L-network with L = 0.2 H, (a) shows the real part
of kx and (b) shows the imaginary part. Waves 1 and 2 are electromechanical waves. The dash lines 1’
and 2* refer to uncoupled disconnected flexural and electric waves respectively. The dash line 2’ refers
to the uncoupled blocked electric wave.
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Figure 13. Variation of the angular width of band gaps with respect to the frequency, for L-network
with L = 0.2 H.

If we continue to increase the network inductance to L = 0.5 H, the veering phenomenon
rather than the locking between flexural wave and electric wave will happen, as shown in Figure 14.
The veering zone is well predicted by the intersection of the uncoupled disconnected waves (1’ and 2*).
We also confirm that the use of the uncoupled blocked wave (2’) is inappropriate. The RSWf of the
propagation waves at four representative frequencies are shown in Figure 15. When the frequency is low
and far from the veering zone, i.e., at 440 Hz shown in Figure 15a, the wave with higher wavenumber
is the one dominated by the flexural deformation. This wave is progressively coupled with the electric
field when the frequency is approaching to the veering zone, as shown in Figure 15b. Interestingly
the wave with lower wavenumber is dominated by the flexural deformation when the frequency is
higher and two waves are separating, as shown in Figure 15c. This is termed ‘mode switching’ in
the literature [17]. Note that the distribution of flexural wave is no longer a quarter of circle arc in
the veering zone, indicating that it no longer propagates uniformly. In Figure 15d there are only 3
propagation waves because the wave dominated by the electric field is in a permanent band gap.

(a) (b)

Figure 14. Dispersion curves along the x direction of L-network with L = 0.5 H, (a) shows the
real part of kx and (b) shows the imaginary part of kx. Waves 1 and 2 are electromechanical waves;
3 and 4 are respectively shear wave and longitudinal wave. The dash lines 1’ and 2* refer to uncoupled
disconnected flexural and electric waves respectively. The dash line 2’ refers to the uncoupled blocked
electric wave.
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(a) (b)

(c) (d)

Figure 15. Wavenumber of the propagation waves for L-network with L = 0.5 H, coloured by RSWf:
(a) at 440 Hz; (b) at 540 Hz; (c) at 640 Hz; (d) at 840 Hz.

Although the veering phenomenon cannot be used to generate a coupled band gap, it does
facilitate strong energy exchange between the electric and mechanical field. This may lead to significant
damping when resistance is introduced. Moreover, it makes the flexural deformation can only be
transmitted via a limited angles, as shown in Figure 15b,c. All these aspects can be used to control the
vibration and energy transmission.

3.4. Coupled Gap Versus LR Gap

In the previous sections, we showed that the coupled band gaps can be created by an electric
network with only inductance (L-network). It may be interesting to compare the features of the coupled
band gap with the local resonance (LR) gap, because the later is also created only by inductance
through local impedance (L-shunt). Especially, it is worthy to conduct the comparison under the same
overall inductance.

The comparison is summarized in Figure 16a, where the coupled band gap is created by L-network
with L = 0.1 H and the LR band gap created by L-shunt with L = 0.4 H. The overall inductance
of such two cases are the same, because each unit cell of L-network consists of 4 inductors. We can
see that the LR band gap is an absolute band gap that forbids the flexural wave to propagate along
any direction. The coupled band gap also covers all the angles but the frequency zone changes with
the angle. This is so, because currently we are using square piezoelectric patches, and this exhibits
different periodicity for different angles. We might use circular patches and design the periodic pattern
to mitigate this tendency and achieve a nearly absolute band gap. On the other hand, the LR gap is
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quite narrow (less than 10 Hz) comparing to the coupled band gap (approximately 200 Hz). This is the
main advantage of the coupled band gap.

(a) (b)

Figure 16. (a) Comparison of coupled band gaps created by L-network with L = 0.1 H and LR
band gap created by L-shunt with L = 0.4 H. The overall inductance of of such two cases are the
same; (b) Variation of the angular width of band gaps with respect to the frequency, for L-shunt with
L = 0.05 H. In this case the LR band gap is merged with the Bragg band gap.

Note that if we intentionally design the LR gap such that it is merged with the Bragg gap, a ‘super’
band gap can be created [49], as shown in Figure 16b. Despite complex, this does cover a wider space
in the θ-frequency plane. Recall the situation when we attempted to merge the coupled band gap with
the Bragg band gap, shown in Figure 13, the overall band gap is not significantly intensified. It may be
interesting to further study the interaction of the coupled band gap with other types of band gaps.

4. Validation of the Coupled Band Gaps

In this section, we conduct a numerical analysis concerning the transient forced response on
an intentionally designed plate, so as to verify the results presented in Section 3.2. The analysed
structure is shown in Figure 17 where the piezoelectric system is only implemented on the right half of
the host plate. The plate has finite extent and free boundary conditions are applied to its four sides.
The unit cell of the PZT composite is the same as shown in Figure 4a. A network impedance is imposed
with only inductance L = 0.1 H between two adjacent unit cells. Such a piezoelectric composite is
analysed in the previous sections: the dispersion curves along x direction are presented in Figure 6;
the angular bandwidth of the Bragg and coupled band gap at different frequencies are presented in
Figure 11. The dynamics of the piezoelectric composite can be validated by comparing the results with
the right part of the structure.

A transient force is applied to the centre of the plate, namely the ‘F’ point in Figure 17. To minimize
dispersion effects, narrow band signals are used, composed of 3 cycles modulated by a Hanning
window with the central frequency f0 equals to 700 Hz, 900 Hz and 1300 Hz respectively. The maximum
amplitude is 0.5 N and the sampling frequency is 30 times greater than the central frequency in order
to guarantee the signal quality of the wave packet. The initial displacement, velocity and accelerations
all equal to zero. We do not consider any forms of damping (or resistive impedance) in the calculation.
The forced response is calculated by ANSYS 17 using the ‘FULL’ option, which means that no model
reduction techniques are applied. We use this option to ensure the accuracy of the results.

To monitor the angular energy propagation characteristics, a set of elements is selected at the arc
whose radius is six times the unit cell, namely 0.48 m, as illustrated in Figure 17. For the piezoelectric
composite, the propagation angle θ = 0 along the positive x direction. For the uniform (half) plate,
the propagation angle θ = 0 along the negative x direction for the sake of comparison.
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Figure 17. Finite element model used for validation purpose.

First, let us set the central frequency of the wave package to 700 Hz, and the forced response
are summarized in Figure 18. Frequency 700 Hz locates at the first propagating zone along arbitrary
angle according to Figure 11. This implies that the energy can be delivered by the propagating
waves along all the angles in the piezoelectric composite, and the point is verified by Figure 18c.
However the kinetic energy does not distribute perfectly uniform along different angles, as shown in
Figure 18a. This happens even for the uniform (half) plate, as shown in Figure 18b. For the uniform
plate, this might be induced by scattering of energy from the border between the uniform and composite
plates. For the piezoelectric composite, the dispersion relations are naturally different along different
angles, despite that at lower frequencies it can be regarded as a homogeneous media. For these reasons,
the non-uniform of the kinetic energy is observed.

Second, we set the central frequency of the wave package to 900 Hz, which locates inside the
a Bragg band gap along some angles as shown in Figure 11. The forced response is summarized
in Figure 19. The kinetic energy difference between monitor points along θ = 0 and θ = π/4 is
enlarged in comparison with Figure 18a. This is so, because 900 Hz is inside the band gap along θ = 0
but in the propagation zone along θ = π/4. It can be observed in Figure 19b that the kinetic energy
distribution along different angles in the uniform plate is highly non-uniform. Note that the 1/2 of
uniform plate is connected to the piezoelectric composite plate from the left side and connected to
another 1/2 uniform plate, as shown in Figure 17. At 900 Hz, band gaps emerge along some angles
therefore the piezoelectric composite no longer behaves like a homogeneous media. For these reasons
the results for the uniform plate in Figure 19b is highly asymmetric with π/4. However, the results
for the piezoelectric composite in Figure 19b is approximately symmetric with π/4 and the energy
is concentrated around π/4. This can be attributed to the weak energy transfer capability of the
evanescent waves. The boundary conditions become less influential the structural dynamics inside
a Bragg band gap [6]. The low kinetic areas match very with the band gap angles identified by RSW as
shown in Figure 19b and more intuitively in Figure 19c.
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(a) (b)

(c)

Figure 18. Summaries of the forced response results at 700 Hz: (a) the time-history of the element
kinetic energies at the monitor points with propagation angle θ = 0 and θ = π/4 in the piezoelectric
composite; (b) The angular distribution of the instantaneous element kinetic energy at the monitor
points; (c) The distribution of the instantaneous kinetic energy of the whole structure (only the upper
half is shown due to symmetry). The results in Figure 18b,c are obtained at the same time point
t = 3.4× 10−3 s marked by the dotted line in Figure 18a.

At last, we set the central frequency of the wave package to 1300 Hz, which locates inside the
a coupled band gap along some angles as shown in Figure 11. The forced response is summarized
in Figure 20. We observe similar phenomenon, such as the energy concentration, the non-symmetric
angular distribution of the kinetic energy for the uniform plate, and the near symmetric distribution for
the piezoelectric composite in Figure 20a,b. The directionality of the energy flow is clearly presented in
Figure 20c and matches very well with the results identified by RSW. Figure 21 compares the angular
distribution of the kinetic energy (normalized in percentage) with the angular frequency location of
the coupled band gap predicted by WFEM and identified by RSW. A good agreement between the
low energy zone and the band gap is observed. Hence the existence of the coupled band gaps is
completely verified. The results presented in this section also illustrate the potential application in
vibration isolation using the directionality of the coupled band gap.
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(a) (b)

(c)

Figure 19. Summaries of the forced response results at 900 Hz: (a) the time-history of the element
kinetic energies at the monitor points with propagation angle θ = 0 and θ = π/4 in the piezoelectric
composite; (b) The angular distribution of the instantaneous element kinetic energy at the monitor
points; (c) The distribution of the instantaneous kinetic energy of the whole structure (only the upper
half is shown due to symmetry). In Figure 19b,c, the results are obtained at the same time point
t = 3.6× 10−3 s marked by the dotted line in Figure 19a, and the identified band gap angles are
highlighted by the blue areas.

(a) (b)

Figure 20. Cont.



Materials 2018, 11, 1656 21 of 27

(a)

Figure 20. Summaries of the forced response results at 1300 Hz: (a) the time-history of the element
kinetic energies at the monitor points with propagation angle θ = 79◦ and θ = π/4 in the piezoelectric
composite; (b) The angular distribution of the instantaneous element kinetic energy at the monitor
points; (c) The distribution of the instantaneous kinetic energy of the whole structure (only the upper
half is shown due to symmetry). In Figure 20b,c, the results are obtained at the same time point
t = 2.6× 10−3 s marked by the dotted line in Figure 20a, and the identified band gap angles are
highlighted by the grey areas.

Figure 21. The angular distribution of the kinetic energy (normalized in percentage) at the monitoring
points from 1000 Hz to 1800 Hz. The while patched area indicates the angular frequency location of the
coupled band gap predicted by WFEM and identified by RSW, as shown in Figure 11.

5. Conclusions

We show that a coupled band gap can be created by the locking phenomenon between
two electromechanical waves in the piezoelectric composite plates. By designing the interconnected
electric network, the uncoupled electric wave can be tailored such that the locking phenomenon can
be triggered. Namely if the uncoupled disconnected electric and mechanical waves have opposite
sign of group velocity when intersect, a coupled band gap will be created and centred on intersection
frequency. Otherwise if they have the same sign of group velocity, the veering phenomenon will occur
and there will be no such a coupled band gap.

Through piezoelectric effects, the uncoupled electric and mechanical waves are tailored into
two electromechanical waves. At most of the frequencies, such two waves are dominated by electric or
mechanical (flexural) fields. They exhibit strong coupling only at the locking (coupled band gap) and
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veering zones. An indicator is proposed to identify the effective band gap for a given deformation.
It is applied to identify the band gaps for the flexural deformation in this paper.

The coupled band gap has similar bandwidth as the Bragg band gap in the best situation. However,
the bandwidth of coupled band gap hardly vary with the propagation angle. This may be a favourable
feature for the application of controlling the energy transmission.

The bandwidth of the coupled band gap is much larger than the LR band gap when the overall
inductance is the same. Both band gaps cover all the propagation angle. The LR band gap does this at
the same frequency zone, but the frequencies of the coupled band gap vary with propagation angle.
In the considered case, the coupled band gap cannot cover all the angle for a same frequency. In future
work, this may be improved by the geometric design of the PZT patches.

The wave finite element method can be used, in association with the proposed metrics termed
‘Ratio of Single Wave’ to predict and identify the coupled band gaps. The methods are verified by the
analytical solutions and the forced response results with good agreements. The overall work in this
paper shows a promising approach to adaptively generate the coupled band gaps, and this can find
applications in vibration control, energy focusing and so on. Future work involves the design of the
electric network to establish extensive coupled band gaps and experimental studies.
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Abbreviations

The following nomenclature are used in this manuscript:

M generalized mass matrix
C generalized damping matrix
K generalized stiffness matrix
q generalized nodal displacement vector
f generalized force vector
D, D̂ dynamic stiffness matrix
I identity matrix
X, Y, Z matrices
µ propagation constants
k wavenumber, m−1

E Young’s modulus, N/m2

ν Poisson’s ratio, dimensionless
ρ mass density, kg/m3

h thickness, m
ω circular frequency, rad/s
θ rotation angle
λ eigenvalue
L inductance, H or length, m
t time, s
Superscripts:
T matrix transpose
H conjugate transpose
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Subscripts:
x,y,z quantity/property pertaining in the respective direction
b quantity related to the boundary nodes
i quantity related to the internal nodes
1,2,3,4 quantity related to corner nodes
L,B,R,T quantity related to left, bottom, right, top ends of the unit cell
E quantity related to the electric field
M quantity related to the mechanical field
l quantity related to the longitudinal wave
s quantity related to the shear wave
f quantity related to the flexural wave
e quantity related to the electric wave
ref quantity related to the reference wave shape
full quantity related to the actual wave shape

Appendix A. Formulation of the spectral eigenvalue problem (12)

According to Equations (5) and (6), Equation (4) is rewritten as follows:

D11 D12 D13 D14 D1L D1B D1R D1T

D21 D22 D23 D24 D2L D2B D2R D2T

D31 D32 D33 D34 D3L D3B D3R D3T

D41 D42 D43 D44 D4L D4B D4R D4T

DL1 DL2 DL3 DL4 DLL DLB DLR DLT

DB1 DB2 DB3 DB4 DBL DBB DBR DBT

DR1 DR2 DR3 DR4 DRL DRB DRR DRT

DT1 DT2 DT3 DT4 DTL DTB DTR DTT





q1

q2

q3

q4

qL

qB

qR

qT


=



f1

f2

f3

f4

fL

fB

fR

fT


(A1)

and according to Equations (8) and (11), the eigenvalue problem (12) can be rewritten as:λx

X11 X1L X1B

XL1 XLL XLB

XB1 XBL XBB

+

Y11 Y1L Y1B

YL1 YLL YLB

YB1 YBL YBB

+ λ−1
x

Z11 Z1L Z1B

ZL1 ZLL ZLB

ZB1 ZBL ZBB



q1

qL

qB

 = 0 (A2)

where
X11 = D12 + D34 + D32λ−1

y + D14λy (A3)

X1L = D1R + D3Rλ−1
y (A4)

XL1 = DL2 + DL4λy (A5)

XLL = DLR (A6)

XB1 = DB2 + DT4 + DT2λ−1
y + DB4λy (A7)

XBL = DBR + DTRλ−1
y (A8)

X1B = XLB = XBB = 0 (A9)

Y11 = D11 + D22 + D33 + D44 + (D31 + D42)λ
−1
y + (D13 + D24)λy (A10)

Y1L = D1L + D2R + (D3L + D4R)λ
−1
y (A11)

Y1B = D1B + D3T + D3Bλ−1
y + D1Tλy (A12)

YL1 = DL1 + DR2 + (DL3 + DR4)λy (A13)

YLL = DLL + DRR (A14)
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YLB = DLB + DLTλy (A15)

YB1 = DB1 + DT3 + DT1λ−1
y + DB3λy (A16)

YBL = DBL + DTLλ−1
y (A17)

YBB = DBB + DTT + DTBλ−1
y + DBTλy (A18)

Z11 = D21 + D43 + D41λ−1
y + D23λy (A19)

Z1L = D2L + D4Lλ−1
y (A20)

Z1B = D2B + D4T + D4Bλ−1
y + D2Tλy (A21)

ZL1 = DR1 + DR3λy (A22)

ZLL = DRL (A23)

ZLB = DRB + DRTλy (A24)

ZB1 = ZBL = ZBB = 0 (A25)

Appendix B. Material properties of PZT-5H

Mass density: ρ = 7500 kg/m3.
Material stiffness matrix evaluated at constant electric field:

cE = 1010 ×



12.7 8.02 8.47
8.02 12.7 8.47
8.47 8.47 11.7

2.3
2.3

2.35


Pa

Permittivity matrix evaluated at constant strain:

εS = ε0 ×

 1703.7
1703.7

1432.7


where ε0 = 8.85× 10−12 C/(V·m).

Piezoelectric stress coupling matrix:

e =



−6.5
−6.5
23.3

0
17

17


N/(V ·m)

Appendix C. Theoretical solutions for the uncoupled disconnected electric waves

When analysing the wave propagation along the x direction, we set λy = 1 and searching for λx

at each frequency ω. In this way, the dynamic equation of the unit cell shown in Figure 4b writes:[
1
L − 1

L
− 1

L
1
L −ω2C

](
qL

qR

)
=

(
fL

fR

)
(A26)
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where q refers to the magnetic flux (whose first derivative with time is voltage), and f refers to
the charge (whose first derivative with time is current), the subscripts follow the same meanings
as mentioned in Section 2. Please note that qB and qT are omitted for λy = 1, and the equation is
written in the context of harmonic motion. Imposing the periodic boundary conditions fR = λx fL and
fL + λ−1

x fR = 0, we have: [
1 λ−1

x

] [ 1
L − 1

L
− 1

L
1
L −ω2C

] [
1

λx

]
qL = 0 (A27)

leading to the solving of the following polynomial equation concerning λx:

1
λxL

(λ2
x + (ω2CL− 2)λx + 1) = 0 (A28)

where
λx = e−jkx Lx (A29)

Finally, we obtain that

kx = j[ln(2−ω2CL±
√
(ω2CL)2 − 4ω2CL)− ln(2)]/Lx (A30)

Giving a frequency ω, the wavenumber kx can be obtained. Please noted that C = 3.5714× 10−7 H
for the uncoupled disconnected wave, and C = 1.9824× 10−7 H for the uncoupled blocked wave of
considered piezoelectric plates.
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