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Abstract: As temperature increases, the thermal vacancy concentration in pure metals dramatically
increases and causes some strongly non-linear thermodynamic behaviors in pure metals when close
to their melting points. In this paper, we chose body-centered cubic (bcc) W as the target and
presented a thermodynamic model to account for its Gibbs energy of pure bcc W from 0 K to melting
point by including the contribution of thermal vacancy. A new formula for interaction part was
proposed for describing the quadratic temperature behavior of vacancy formation energy. Based on
the experimental/first-principles computed thermodynamic properties, all the parameters in the
Gibbs energy function were assessed by following the proposed two-step optimization strategy.
The thermodynamic behaviors, i.e., the strong nonlinear increase for temperature dependence of heat
capacities at high temperatures and a nonlinear Arrhenius plot of vacancy concentration, in bcc W
can be well reproduced by the obtained Gibbs energy. The successful description of thermal vacancy
on such strongly non-linear thermodynamic behaviors in bcc W indicates that the presently proposed
thermodynamic model and optimization strategy should be universal ones and are applicable to all
other metals.
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1. Introduction

Thermal vacancy is the simplest but extremely important structural defect in pure metals.
As temperature increases, the thermal vacancy concentration in pure metals dramatically increases,
and makes an apparent contribution to different physical quantities of materials, such as heat capacity,
melting point, diffusivity, thermal conductivity, and so on [1–3]. Taking body cubic centered (bcc) W
that has been proposed for use in the divertor of future fusion devices [4,5], for example, its thermal
vacancy concentration can be larger than 0.02 at its melting point [6,7]. With such a large thermal
vacancy concentration, the heat capacity of bcc W over the high-temperature region shows a strong
non-linear increase, as demonstrated by most of the experimental data available in the literature [7–23]
and plotted in Figure 1. Such strongly non-linear behavior on heat capacity in the region close to
the melting point is related to the dramatic increase of thermal vacancy. The recent first-principles
computed heat capacities of bcc W [24] are also superimposed in Figure 1 for a comparison with
the experimental data. As clearly seen in Figure 1, the first-principles calculations only taking the
harmonic/anharmonic vibration and electronic excitation into account [24] cannot accurately predict
the heat capacity of W with such a non-linear increase over the high-temperature region. This fact
indicates that the thermal vacancy contribution to heat capacity is noticeable at high temperatures.
In addition to heat capacity, the thermal vacancy also shows obvious influence on self-diffusivity of bcc
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W. The Arrhenius plot for measured self-diffusivities in bcc W over a wide temperature range shows
significant curvature [25]. Kraftmakher [3] pointed out that one probable reason for such curvature
in self-diffusivities of bcc W lies in the fact that the concentration of thermal vacancy has a similar
temperature dependence.
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Figure 1. Heat capacity of body-centered cubic (bcc) W as a function of temperature. Symbols:
Experimental data [7–23]. Solid line (red): Calculated results according to the presently established
Gibbs energy for bcc W with thermal vacancy contribution. Dashed line (blue): Calculated results
according to the presently established Gibbs energy for defect-free bcc W without thermal vacancy
contribution. Dotted line (green): First-principles calculation [19], which does not include thermal
vacancy contribution.

Furthermore, recent theoretical predictions [26,27] show that formation entropy of vacancies is
not constant as commonly assumed but increases with temperature, resulting in highly nonlinear
temperature dependence in the formation energy. This point may naturally explain the strongly
non-linear increase of the heat capacity at high temperatures and curvature in Arrhenius plot of vacancy
concentration. Thus, in order to quantitatively describe the effect of thermal vacancy on these strongly
non-linear thermodynamic behaviors in bcc W, accurate prediction of the temperature-dependent
thermal vacancy formation energy is the prerequisite, as is the major task of this paper.

2. Thermodynamic Model for bcc W with Thermal Vacancy

By considering the contribution of both thermal vacancy and W atoms, the molar Gibbs free
energy of pure element W in consistency with Compound Energy Formalism (CEF) can be described
as [28,29]:

Gm =
1

yW
[yWGW + yvaGva + RT(yW ln yW + yva ln yva) + yWyvaΩ] (1)

where R is the gas constant, T the absolute temperature, while yw and yva the site fractions of species
W and thermal vacancy, respectively. The summation of yw and yva should be unity. GW is the molar
Gibbs energy of the defect-free element W, Gva the molar Gibbs energy of a virtual empty bcc lattice,
while Ω is the interaction parameter.
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2.1. Expression for GW

The molar Gibbs energy of the defect-free element W, i.e., GW, from 0 K to melting point in
Equation (1) can be expressed by using the following physical model [30]:

GW = E0 +
3
2

RθE + 3RT ln[1− exp(− θE

T
)]− a

2
T2 − b

6
T3 −

T∫
0

[

T∫
0

Cmag
p

T
dT]dT (2)

where E0 is the total energy of ferromagnetic pure W at 0 K which can be directly obtained from the
first principles calculations, while the second term is the energy of zero-point lattice vibration [31,32]
with θE as the Einstein temperature. The remaining four terms are derived from the integration of the
heat capacity model for pure metals proposed in 1995′s Ringberg Workshop [30]:

Cp
Pure W = 3R(

θE

T
)

2 eθE/T

(eθE/T − 1)2 + aT + bT2 + Cmag
p (3)

The first term in Equation (3) is the Einstein heat capacity, which is mostly contributed from
harmonic vibration. The second term aT in Equation (3) is related to electronic excitations and low-order
anharmonic corrections, while the third term bT2 contains the high-order anharmonic corrections.
Cmag

p is the contribution from the magnetic ordering. It should be noted that, in order to obtain the
heat capacities for defect-free W, the coefficients a and b need to be evaluated by considering the
experimental data without any contribution from thermal vacancy.

2.2. Expression for Gva

For the molar Gibbs energy of a virtual empty bcc lattice, Gva, in Equation (1), it is very difficult
to define its standard reference value in a physical, meaningful way [33]. In order to make the
balance between the different terms in Equation (1) over the wide temperature range, Gva is usually
suggested to be proportional to temperature [27]. Besides, it would be desirable to set a general
value for Gva, which is independent of the elements, if for a universal usage for i.e., developing a
common thermodynamic database. In 2014, Franke [28] pointed out that the value of Gva should be
larger than a critical value (i.e., (ln 2− 1/2)RT) to ensure a unique equilibrium state. In other words,
the critical value can also ensure the second derivative of Gibbs energy ∂2Gm/∂yva

2 to be positive at
any temperatures, resulting in a unique equilibrium state. Moreover, such a critical value was obtained
from a thorough mathematical analysis by Franke [28], and should thus serve as a common one which
does not depend on the types of elements or phases.

In this work, the molar Gibbs energy of vacancy is simply set to 0.2RT, which is slightly larger
than the critical value, as also proposed in Reference [28].

2.3. Expression for Interaction Parameter Ω

As for the interaction parameter Ω, one needs to figure out its relation with the non-linear
concentration of thermal vacancy before proposing its expression. Based on Equation (1), for the
equilibrium state of bcc W, one can have,

∂Gm

∂yva
=

1

(1− yva)
2 Gva +

1

(1− yva)
2 RT ln yva + Ω = 0 (4)

by applying the constraint yw + yva = 1. From Equation (4), the equilibrium concentration of thermal
vacancy satisfies the following relation:

yva = exp(−Gva + Ω(1− yva)
2

RT
) (5)
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Meanwhile, the vacancy concentration can be also expressed as

yva = exp(−Gf
va/RT) = exp(−(Hf − TSf)/RT) (6)

where Gf
va is the vacancy formation energy, Hf and Sf are the formation enthalpy and entropy of

thermal vacancies, respectively. Comparing Equation (5) with Equation (6), it is easy to see that
the value Gva + Ω approaches to the formation energy of thermal vacancy in the limit of negligible
vacancy concentrations. However, it seems to be very difficult and even impossible to separate the
contributions of Gva and Ω from the formation energy of thermal vacancy [33]. The assumption of a
constant entropy of formation of the thermal vacancy would introduce linear temperature dependence
in Gf

va and hence lead to a constant prefactor to the Arrhenius plot of thermal vacancy concentration.
However, for the Arrhenius plot of vacancy concentration with curvature behavior, i.e., yva in bcc
W, such assumption cannot give a reasonable description especially in the high temperature range.
In order for an accurate thermodynamic description, the nonlinear temperature behavior of the vacancy
formation energy needs to be considered. In a first approximation, we here assume a linear temperature
dependence for Sf; therefore, a temperature quadratic term will be included in Hf as well as in Gf

va
due to the thermodynamic relation (∂Hf/∂T)P = T(∂Sf/∂T)P. Moreover, we simply use the linear
temperature dependence of Gva in the present work, i.e., 0.2RT, following the work of Franke [28].
In order to describe the quadratic temperature behavior of vacancy formation energy, we thus propose
an expression for interaction parameter Ω in Equation (1):

Ω = A + BT + CT2 (7)

Here, A, B and C are the parameters, which can be assessed on the basis of the experimental
data, like thermal vacancy concentration, and/or heat capacities at high temperatures. Substituting
Equation (7) into Equation (5), one can easily see that the proposed interaction expression is able to
describe the curvature between log yva and 1/T.

Moreover, based on the molar Gibbs energy expression for bcc W together with Equations (4) and (5),
its heat capacity can be derived as

Cp = Cp
Pure W − yvaT

∂2Ω
∂T2 + (Ω− T

∂Ω
∂T

)
∂yva

∂T
(8)

in which Cp
Pure W represents the heat capacity of defect-free element W. The second and third

terms on the right-hand side of Equation (8) denote the effects of thermal vacancy on heat capacity.
When submitting Equation (7) into Equation (8), it can be found that the effects of thermal vacancy on
heat capacity will become obvious with the increase of the temperature, which is excepted to describe
the strongly non-linear behavior of thermodynamic properties near the melting point.

3. Results and Discussion

The heat capacity of bcc W was experimentally measured by several groups [7–23] from 0 K to
melting point, as shown in Figure 1. The heat capacity shows a rapid increase at high temperatures
especially close to the melting point. Moreover, the enthalpy increment of bcc W was also measured
over a wide temperature range [14,34–39]. Additionally, the concentration of thermal vacancy in bcc W
was also experimentally investigated at melting temperature [6,7]. Although no experimental vacancy
concentration as a function of temperature was reported in the literature, Kraftmakher [3] derived the
equilibrium vacancy concentrations in bcc W from the heat capacities with nonlinear increase [7].

The quantification of all the parameters in the molar Gibbs energy of bcc W (Equation (1)) can
be divided into two steps. The first step is to fix the molar Gibbs energy of the defect-free element W,
i.e., GW. Theoretically, the contribution of thermal vacancy should be excluded for the heat capacity
and Gibbs energy of defect-free bcc W. However, it is also very difficult to separate the contribution of
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thermal vacancy for the experimental heat capacities completely in reality. The accurate first-principles
calculations might provide the data for defect-free bcc W, but the current first-principles computed
heat capacities of defect-free bcc W available in the literature [24] are lower than the experimental
data above 1500 K (see Figure 1). As pointed out by Kraftmakher [3], the vacancy contribution to
specific heat becomes visible only at temperatures above about two-thirds of the melting temperature
(i.e., 2463 K for bcc W). Moreover, for bcc W, the magnetic effects on heat capacity can be ignored.
In addition, Walford [40] experimentally measured the Debye temperature (θD) of bcc W, which was
reported to be 377 K. The corresponding Einstein temperature (θE) can be evaluated as 269.2 K based
on the relation θE ≈ 0.714θD [41]. Then, the heat capacity of defect-free bcc W was obtained by fitting
the experimental heat capacities and enthalpy increments below 2/3 Tm. Because there is no measured
total energy (E0 in Equation (8)) of bcc W at 0 K in the literature, the first-principles calculated result
due to Wang et al. [42] was directly used here to get the expression for Gibbs energy of defect-free bcc
W. The second step is to assess the three coefficients constituting the interaction parameter, Ω, based
on the experimental heat capacities over the range of 2/3Tm~Tm. The finally obtained thermodynamic
parameters in Gibbs energy expression for bcc W are listed in Table 1.

Table 1. List of the evaluated thermodynamic parameters for bcc W.

Parameters Values (Gibbs Energy in J/mol-atom; T in Kelvin)

GW
E0 +

3
2 RθE + 3RT ln(1− exp(− θE

T ))− 1.085× 10−3T2 − 1.1835× 10−7T3

(E0 = −1228665.43, θE = 269.2 )

GVa +0.2RT

Ω +229615.89 + 12.73T − 1.1274× 10−2T2

Figure 1 shows the calculated heat capacity for bcc W using the presently obtained Gibbs energy
expression in comparison with the experimental data [7–23]. As can be seen in the figure, excellent
agreement between the calculations and the experiments is obtained. For a comparison, the calculated
heat capacity of defect-free bcc W is also superimposed in Figure 1. The deviation between the heat
capacity with and without thermal vacancy is quite obvious at high temperatures, and can reach 26.5 J
(mol K)−1 at melting temperature. It indicates that the thermal vacancy has a significant effect on the
thermodynamic properties of the pure metals. Moreover, one can clearly see the strongly non-linear
behavior of heat capacities of bcc W, i.e., the dramatic increase of heat capacity at high temperatures
close to melting point can be well reproduced by the presently obtained Gibbs energy of bcc W with
thermal vacancy.

Figure 2 displays the presently calculated heat contents (H − H298) of bcc W with and without
thermal vacancy along with experimental data [14,34–39]. As shown in Figure 2, the calculated results
with thermal vacancy reproduce the reported data very well, while the results without thermal vacancy
show a small deviation from the experimental data at the high temperature range. It indicates that the
present thermodynamic description can well describe the thermal vacancy contribution to the heat
contents, though the thermal vacancy contribution to heat content at high temperatures is relatively
small compared with that to heat capacity.

Figure 3 presents the model-predicted 10-base logarithm values of thermal vacancy concentration
of bcc W as a function of 10,000/T due to the obtained Gibbs energy of bcc W with thermal vacancy,
compared with the experimental data at melting temperature [6,7]. As can be seen in the figure,
the model-predicted thermal vacancy concentration of bcc W is 0.018, which agrees well with the
experimental data [6,7]. Moreover, as expected, such Arrhenius plot of vacancy concentration shows a
clear curvature, which well reproduces the non-linear behavior stated by Kraftmakher [3] and also
theoretically predicted by Koning et al. [26] and Glensk et al. [27].
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4. Conclusions

In this paper, a thorough thermodynamic study on the effect of thermal vacancy on strongly
non-linear thermodynamic behaviors in bcc W close to its melting point was performed. By considering
the contribution of thermal vacancy, a thermodynamic model was presented for describing the
Gibbs energy of pure bcc W from 0 K to melting point. A new formula for interaction part as
well as a pragmatic two-step optimization strategy was proposed. With the obtained Gibbs energy
of pure bcc W assessed from the experimental/first-principles computed thermodynamic quantities,
the thermodynamic behaviors in bcc W, including the strongly nonlinear temperature-dependence
heat capacity close to the melting point, and a nonlinear Arrhenius plot of vacancy concentration were
well reproduced. It is anticipated that the presently proposed thermodynamic model and optimization
strategy for bcc W should be universal ones and are applicable to all other metals.
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of the results as well as to the preparation of this manuscript.
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