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Abstract: This paper reports a nontoxic, soft and electroactive hydrogel made with polyvinyl alcohol
(PVA) and cellulose nanocrystal (CNC). The CNC incorporating PVA-CNC hydrogels were prepared
using a freeze–thaw technique with different CNC concentrations. Fourier transform infrared
spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy results
proved the good miscibility of CNCs with PVA. The optical transparency, water uptake capacity
and mechanical properties of the prepared hydrogels were investigated in this study. The CNC
incorporating PVA-CNC hydrogels showed improved displacement output in the presence of an
electric field and the displacement increased with an increase in the CNC concentration. The possible
actuation mechanism was an electrostatic effect and the displacement improvement of the hydrogel
associated with its enhanced dielectric properties and softness. Since the prepared PVA-CNC hydrogel
is nontoxic and electroactive, it can be used for biomimetic soft robots, actively reconfigurable lenses
and active drug-release applications.

Keywords: electroactive hydrogel; polyvinyl alcohol; cellulose nanocrystals; freeze–thaw
method; actuation

1. Introduction

Hydrogels are hydrophilic three-dimensional network structures that are cross-linked physically
or chemically and which maintain their structural integrity during formation [1]. They can hold large
amounts of water molecules/biological solutions, which turn them into soft and viscoelastic materials.
The soft, flexible, elastic and wet features of the hydrogels promote them as potential candidates for
various biomedical and pharmaceutical applications including diapers, contact lenses, membranes,
tissue engineering, drug delivery systems and biosensors [2–5]. Stimuli–response hydrogels change
their structure (especially volume and shape) due to such conditions as pH, ionic strength, temperature
and electric field [6,7]. Several studies revealed that acrylic acid and its polymers, as well as other
hydrogels based on polymeric materials, are electric or pH responsive. However, acrylic acid is
known to be toxic in nature [8]. This toxicity problem can be overcome by blending or reinforcing
natural polymers into synthetic polymers. Accordingly, natural polymer-based hydrogels can show
stimuli-responsive behavior, resulting in their high number of potential applications including
biomimetic soft robots, haptic actuators, artificial muscles, active tunable lenses and active drug
release. Thus far, many natural polymers have been used to develop hydrogels such as chitosan,
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cellulose, whey protein and carboxymethyl cellulose [9–13]. Among them, cellulose has merits in
terms of renewability, biocompatibility, abundance, low price, superior mechanical properties and easy
chemical modification.

Cellulose consists of crystal and amorphous parts connected in a row. Cellulose nanocrystal
(CNC), a rod-like shaped nanocrystal, can be isolated from cellulose resources including wood pulp,
tunicates, bacterial cellulose, cotton, ramie, hemp as well as other agricultural residues by treating
them with acid hydrolysis [14–16]. CNC has a high degree of crystallinity, mechanical properties and a
specific surface area [17,18]. The typical width of CNCs is in the range of 5–50 nm, but their length and
width depend on the source and the process conditions. CNC produced by sulfuric acid hydrolysis
is electrostatically stable and easily dispersed in polar aqueous suspensions due to the sulfate ester
groups on their surfaces [19–22]. Based on their attractive characteristics, CNCs have been used as
reinforcing agents for a wide range of applications in packaging films, nanocomposites, microchips,
tissue engineering, actuators and sensors [23–27].

In hydrogels, reinforcement technology is playing a key role [21,26–29]. Cellulose can easily interact
with various polar and water-soluble polymer materials. Thus, blending of CNC with hydrogels can
reinforce the hydrogels in terms of mechanical properties and electromechanical properties. Especially the
integration of CNC in hydrogels can increase their dielectric constant so as to improve its electroactive
properties. With this background, this study aims to improve the transparency and electroactive properties
of hydrogels by incorporating CNC into polyvinyl alcohol (PVA) to develop nontoxic electroactive
hydrogels. PVA hydrogel was reported as an electroactive material [30] and showed higher transparency
when the hydrogels were prepared using the solvent mixture of dimethyl sulfoxide (DMSO) and water
(80:20 wt.%) [31]. PVA and CNC are known to be nontoxic. The basic physical properties of the prepared
hydrogels including the swelling behavior, transparency and surface morphology were investigated using
the water uptake capacity test, UV-vis spectroscopy and scanning electron microscopy (SEM). To study
the CNC interaction and its structural and thermal characteristics, the prepared hydrogels were tested
using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric
analysis (TGA). The mechanical properties of the prepared hydrogels were characterized using a universal
testing machine. Furthermore, the actuation properties of the prepared hydrogels were tested by applying
actuation voltage.

2. Materials and Methods

2.1. Materials

Cellulose cotton pulp (MVE, DPw-4580) of 98% purity was obtained from Buckeye Technology Inc.
Poly (vinyl alcohol) (Mw = 85,000~124,000 g/mole, 99% hydrolyzed), sulfuric acid (H2SO4) and sodium
hydroxide were purchased from Sigma-Aldrich Korea, Gyeonggi-do, South Korea. Dimethyl sulfoxide
(DMSO) was purchased from Dae Jung chemicals & Metals Co. Ltd. (Gyeonggi-do, South Korea)
Deionized (DI) water was used throughout the experiments.

2.2. Preparation of CNC

In this study, CNC was prepared using acid hydrolysis treatment. The preparation of CNC was
described in Reference [19,20]; following is a brief explanation. The cotton pulp (20.0 g), a source of
cellulose, was dispersed in H2SO4 (175 mL of 30% (v/v) aqueous) under mechanical stirring with
200 rpm and 6 h at 60 ◦C. An alkaline (NaOH, 1 M) pre-treatment was carried out on the cotton pulp to
remove the non-cellulosic components and to prior obtain the high yield of CNC. The acid hydrolysis
resulted in a suspension, and it was diluted (Ph = 7) by adding excessive deionized (DI) water, followed
by centrifugation (11,000 rpm and 10 min). After this, the CNC suspension was homogenized and
dialyzed overnight. A certain amount of homogenized CNC was dispersed in 20 mL of solvent mixture
of DMSO and DI water (80:20 wt.%) by sonication for 1 h. Finally, 1% of CNC suspension was obtained
and stored at room temperature until use.
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2.3. Preparation of PVA-CNC Hydrogels

For the preparation of the PVA-CNC hydrogels, 9 wt.% PVA solution and 1 wt.% CNC suspension
were used. The transparent PVA solution was prepared by dissolving 9 g of PVA in a 91 g solvent
mixture of DMSO and DI water (80:20 wt.%) by continuous stirring at 80 ◦C for 8 h under a nitrogen
atmosphere. To the PVA solution, different amounts of 1 wt.% CNC suspension were added, while
the weight of the PVA-CNC mixtures was kept constant at 20 g. After adding the CNC suspension,
the PVA-CNC mixtures were sonicated for 20 min and then subjected to magnetic stirring for another
2 h (200 rpm) at 80 ◦C to obtain a homogeneous mixture. Finally, PVA-CNC hydrogels were obtained
via a freeze–thaw process. The PVA-CNC mixtures were poured into a petri dish and subjected to
three freeze–thaw cycles consisting of a 12 h freezing step at −20 ◦C, followed by a 6 h thawing
step at room temperature. After finishing the three freeze and thaw steps, PVA-CNC hydrogels
were formed. The prepared hydrogels were immersed in 100 mL of DI water in order to remove
solvents and water-soluble/unreacted materials [32,33]. The DI water was changed every 8 h up to
3 days. The thickness of the prepared hydrogels was 4 ± 0.05 mm. The prepared PVA-CNC hydrogels
were kept in DI water until use. The sample codes of the PVA-CNC hydrogels were designated as
PVA-CNCx according to the amount of CNC suspension used in the hydrogels. Table 1 provides the
feed composition ratio of PVA to CNC.

Table 1. Feed composition ratio of PVA-CNC hydrogels.

Hydrogels Weight of 9 wt.% PVA (g) Weight of 1% wt. CNCs (g)

PVA 20 0
PVA-CNC1 17 3
PVA-CNC2 15 5
PVA-CNC3 13 7

3. Characterization

3.1. Physical Properties

A water uptake capacity test of the prepared PVA-CNC hydrogels was carried out. The hydrogels
were dried in an oven for 24 h at 60 ◦C until their weight reached saturation. The weight of the
dried hydrogels were noted and immersed in a 100 mL beaker containing 50 mL distilled water
at room temperature to equilibrate for up to 48 h. Then the samples were taken out and blotted
with wiper paper to remove water on their surface and again reweighed using an analytical balance
(GH-200, A&D weighing, Tokyo, Japan). The water uptake ratio, W.U., can be represented using the
following equation:

W.U.(g/g) = (Wwet − Wdry)/Wdry, (1)

where Wwet and Wdry denote the weight of the equilibrated hydrogel at 48 h and initial weight of the
dried hydrogel, respectively.

The optical transparency of the prepared PVA-CNC hydrogels was measured using a UV-visible
spectrophotometer (HP8452A, Agilent, Santa Clara, CA, USA). For the measurement, the hydrogels
were cut into the desired shape and the spectra range of 200–800 nm wavelengths were recorded.

A Scanning electron microscope (SEM, S-4000, Hitachi, Tokyo, Japan) was used to observe
morphologies of the prepared hydrogels. To prepare specimens, the prepared hydrogels were freeze-dried
and coated with platinum. The images were taken using the SEM, at 15 kV accelerating voltage.

3.2. FTIR, XRD and TGA

FTIR spectroscopy was used to study the transmission of light and the interaction of CNCs of the
prepared PVA-CNC hydrogels. For the FTIR analysis, the samples were completely dried in a vacuum
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oven at 60 ◦C for 6 h. The FTIR spectra were recorded on a FTIR spectrometer (Bruker Optics, Billerica,
MA, USA) with the range of 400–4000 cm−1 using the KBr disk pellet method and averaging 16 scans.

XRD patterns of the prepared CNC, PVA, and PVA-CNC hydrogels were recorded using an X-ray
diffractometer (DMAX 2500, Rigaku, Japan), with Cu Kα radiation source (λ = 0.1542 nm) at 40 kV
and 300 mA. The scan speed was 2◦ per min and the spectra of 2θ (Bragg angle) ranged from 2.5 to
60◦. The thermal stability of the prepared CNC, PVA and PVA-CNC hydrogels was studied using a
TGA (STA 409 PC, NETZSCH , Selb, Germanay) at a constant heating rate of 10 ◦C/min in the range of
30–600 ◦C under a constant nitrogen flow (20 mL/min).

3.3. Mechanical Testing

The compression test of the PVA-CNC hydrogels was conducted at a fully-hydrated stage and
was followed by the ASTM D-882-97 test method using a universal test machine (Won Shaft Jeong
Gong, Gyeonggi-do, South Korea) under the ambient condition with compression rate of 0.0005 mm/s.
The size of the specimens was 20 × 20 × 5 mm3. The specimen was kept between two parallel plates
and the upper plate pressed the specimen until it reached the maximum value.

3.4. Actuation Test

The actuation test was carried out using a laser displacement sensor (Keyance LK-G85, Tokyo,
Japan), a high voltage amplifier (Model 10/10, Trek, Lockport, NY, USA) and a function generator
(33220A, Agilent, Santa Clara, CA, USA). Figure 1 shows the schematic setup of the actuation test.
Before conducting the actuation test, the hydrogel specimens (10 × 10 × 4 mm3) were equilibrated
in DI water for 24 h and kept between two electrodes (polyimide tape attached to indium tin oxide
coated glass (ITO glass)). A high voltage was applied on the electrodes via the function generator and
the high voltage amplifier. The displacement of the hydrogel specimen was measured using the laser
displacement sensor along with a data acquisition system (Pulse, B&K, Nærum, Denmark) connected
to personal laptop. The actuation test was conducted at a constant environmental condition (25 ◦C,
95% RH) using an environmental chamber.

Figure 1. Schematic setup of the actuation test.

4. Results and Discussion

4.1. Physical Properties

The water uptake ratios of the pure PVA and PVA-CNC hydrogels were calculated using Equation (1).
Figure 2A shows the results for the pure PVA and the hydrogels. As the CNC concentration increased,
the water uptake ratio consistently increased from 220% to 250%. This might be due to the fact that the
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hydrogen bonds between the CNC and PVA chains decreased the residual hydrogen bonds in the PVA
chains, which resulted in increased water uptake [34].

The optical transparency of the prepared hydrogels was measured using the UV-vis spectroscopy
at 300 to 700 nm. Figure 2B shows the optical transparency of the pure PVA and PVA-CNC hydrogels.
The optical transparency taken at 500 nm of pure PVA was 92.4% and it decreased to 91.0, 77.7 and 75.9%,
as the CNC concentration in the PVA-CNC hydrogels increased. Increasing the CNC concentration reduced
the transparency due to CNC aggregation, which enhanced the turbidity of PVA hydrogel so as to decrease
its transparency [20].

The SEM images of PVA-CNC3 hydrogel were taken to observe the morphology of the
hydrogel. Figure 3A,B shows the surface morphologies of the pure PVA and PVA-CNC3 hydrogel,
respectively. The pure PVA showed a smooth surface morphology, meanwhile the CNC-incorporated
PVA-CNC3 hydrogel exhibited a uniform but rough surface. The CNCs were shown to be
well-dispersed in the hydrogel. The cross-sectional SEM image of the PVA-CNC3 hydrogel (Figure 3C)
showed that the rod-shaped CNCs were dispersed in the cross-sectional image of the hydrogel.
This uniform dispersion might be associated with the interaction between the PVA and the CNC.

Figure 2. (A) Water uptake capacity of pure PVA and PVA-CNC hydrogels and (B) Optical transparency
of the pure PVA and PVA-CNC hydrogels.

Figure 3. SEM images: (A) the pure PVA, (B) surface of PVA-CNC3 hydrogel and (C) cross-section of
PVA-CNC3 hydrogel.

4.2. FTIR, XRD and TGA

To study the transmission of light and the interactions of CNC in the prepared PVA-CNC
hydrogels, FTIR spectroscopy analysis was performed. Figure 4 shows the FTIR spectra of the
prepared CNC, PVA, and PVA-CNC3 hydrogel. The O-H stretching vibration of the pure PVA is
shown at 3422 cm−1. The characteristic peaks at 1070 cm−1 and 2901 cm−1 are related to stretching
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vibrations of the C-O and C-H. The peak at 1628 cm−1 is related to an acetyl group (C=O), which is
induced from the preparation of PVA. A bending vibration related to CH2 groups is observed in the
region of 1430–1446 cm−1 [10]. The FTIR spectra of the prepared CNC indicates the characteristic
peaks assigned to cellulose I structures: Peaks are shown at 3374 cm−1 (O-H region), 2900 cm−1

(C-H stretching vibration), 1430 cm−1 (CH2 symmetric bending) and 1320 cm−1 (CH2 wagging at
C-6). Peaks at 1065 cm−1, 1124 cm−1 and 1160 cm−1 demonstrate the presence of sulfate ester bonds,
which are induced by the sulfuric acid hydrolysis for CNC preparation [35]. In the case of the
PVA-CNC3 hydrogel, the O-H stretching vibration peak shifted to 3402 cm−1 due to the overlap of
intermolecular hydrogen bonded O-H peaks from PVA-PVA and CNC-CNC. There is a new peak
at 3201 cm−1 on the FTIR spectrum of PVA-CNC3. This peak might correspond to intermolecular
hydrogen bonded between PVA and CNC. The result shows that CNC and PVA are well-interacted.
This gives rise to the increase in the water uptake capacity of PVA-CNC hydrogels.

Figure 5A represents XRD patterns that give crystalline information for the pure PVA, CNC and
PVA-CNC3 hydrogel. PVA is known to be semi-crystalline in nature and the pure PVA shows the
main strong diffraction intensity characteristic peak at 2θ = 19.5◦ [36] and the CNC sample exhibits
four well-defined diffraction peaks at 2θ = 14.6, 16.2, 22.5, and 34.4◦, which correspond to a typical
cellulose I structure [22]. Note that the PVA-CNC3 hydrogel exhibits a similar diffraction peak at
2θ = 19.6◦, with decreased intensity, and a shoulder peak at 2θ = 22.4◦, with increased intensity, which
suggests the physical interaction of PVA and CNC. This observation indicates that the incorporation of
CNCs in PVA does not affect the crystalline structure of the PVA matrix. This means that the CNCs
are well-dispersed in the PVA matrix so as to form the PVA-CNC hydrogel [37]. This fact was also
confirmed for the FTIR spectra shown in Figure 4.

Figure 4. FTIR spectra of CNC, PVA, and PVA-CNC3 hydrogel.

Figure 5. (A) X-ray diffraction patterns of CNC, PVA, and PVA-CNC3 hydrogel, (B) TGA curves of the
pure PVA, CNC and PVA-CNC3 hydrogel.
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TGA measures the weight changes as a function of temperature. As the temperature increases,
the weight of the sample decreases, indicating the continuous decomposition of the sample. Figure 5B
shows the TGA curves of the pure PVA, CNC and PVA-CNC3 hydrogel. Below 150 ◦C, a minor weight
loss occurred in all samples near 89 ◦C, which is associated with the evaporation of the absorbed water
molecules. The pure PVA hydrogel showed mainly two weight-loss steps. The first weight loss started
from 179 ◦C and finished at 216 ◦C (the weight loss was 8.9%), and was mainly associated with the
dehydration of the hydroxyl groups by applying heat. The second weight loss started at 345 ◦C and
degraded rapidly up to 500 ◦C (the weight loss was 95.4%), which was due to the degradation of the
main chain. The PVA-CNC3 hydrogel showed two weight loss steps. The weight loss started from
212 ◦C and continually decreased up to 500 ◦C and a maximum 88.4% of weight loss was observed.
Note that the PVA-CNC3 hydrogel showed higher thermal stability than the pure PVA, which might be
due to the formation of the intermolecular bond between the CNC and the PVA. A similar observation
has been reported previously [38,39]. In addition, the TGA spectrum of the CNC sample showed
that the starting degradation temperature (160 ◦C) was lower than that of the pure PVA and the
PVA-CNC3 hydrogel because CNC has many hydroxyl groups on its surface [40].

4.3. Mechanical Testing

The mechanical properties of the pure PVA and PVA-CNC hydrogels were studied using the
universal testing machine. The test specimens were fully hydrated in distilled water. Figure 6A
shows the compressional stress–strain curves of the pure PVA and PVA-CNC hydrogels with various
CNC concentrations. Figure 6B shows the compressive modulus values of the hydrogels with
different CNC concentrations. The modulus decreased with the increasing CNC concentration.
The compressive modulus decrease of the PVA-CNC hydrogels can be surmised from the water
uptake results. The mechanical property was inversely proportional to the water uptake capacity
in the hydrogels: Increasing the water uptake capacity decreased the compressive modulus, due to
the softening of the hydrogel structures. The CNC concentration plays an important role in the
successful dispersion and formation of strong interfaces within the PVA polymer matrix. When the
CNC concentration is above a critical value, the compressive strength of the hydrogels could be
significantly decreased due to poor dispersion of the CNC as well as limited interfacial interaction
between the CNC and PVA [41]. The compressive modulus of the pure PVA hydrogel was 82 kPa,
and as the CNC concentration increased, it gradually decreased to 7 kPa for the PVA-CNC3 hydrogel.

Figure 6. (A) Compressive stress–strain curves of PVA, PVA-CNC composite hydrogels and
(B) compressive modulus.

Figure 7 shows the formation of PVA-CNC hydrogels. The hydroxyl groups of the PVA as well as
on the surface of the CNC can interact with each other to form hydrogen bonds. However, as a large
amount of CNC is dispersed in the hydrogel, for example PVA-CNC3, it seems that CNC aggregation
occurs due to the hydrophilic nature of CNC, resulting in the evenly rough surface of the hydrogel.
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Figure 7. Formation of the PVA-CNC hydrogel.

4.4. Actuation Test

A soft actuator deforms in the presence of an external electric field. In this study, the deformation
was defined as displacement and investigated in terms of the applied electric field and frequency.
The actuation test of the prepared hydrogels was carried out in an aqueous swollen state in the DI
water of the PVA-CNC hydrogels. Figure 8 shows the displacement of the hydrogels in terms of CNC
concentration with the applied voltage and the frequency. Figure 8A shows the displacement of the
hydrogels with a voltage change at 0.1 Hz. The displacement increased with increased voltage as
well as increased CNC concentration. The maximum displacement of 14.4 µm was shown from the
PVA-CNC3 hydrogel at 1.6 kV. This displacement corresponded to 3600 ppm strain and the applied
voltage does corresponded to 0.4 V/µm electric field strength. This actuation performance is better than
the cellulose hydrogel case (1800 ppm at 0.25 V/µm) [10]. Figure 8B displays the frequency-dependent
displacement of the hydrogels under a constant voltage of 1.6 kV. The displacement output decreased
with an increasing frequency. The CNC concentration played a significant role in the electroactive
behavior of the PVA-CNC hydrogels, and the higher CNC concentration exhibited larger displacement
than the pure PVA case. The PVA-CNC3 hydrogel showed higher displacement than the other
hydrogels. This result is associated with the interfacial polarization between CNCs and the PVA
polymer matrix [42]. It is a known fact that dispersed CNCs in a polymer matrix increases its dielectric
properties, which is beneficial to improving its electroactive behavior.

Figure 8. Actuation results for the pure PVA and PVA-CNC hydrogels: (A) actuation voltage variation
at 0.1 Hz and (B) actuation frequency at 1.0 kV.
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Generally, an electroactive response occurs through a combination of piezoelectricity,
electrostriction, flexoelectricity, electrostatic effect (Coulombic force), electrophoretic effect,
electrochemical effect (ion migration) and electroosmotic interaction [5]. In the PVA/DMSO hydrogel,
electrostrictive interaction was claimed as the mechanism causing its electroactive response since
the displacement was proportional to the square of the electrical actuation voltage [30]. In some
electroactive materials, it is hard to clarify the mechanism because although the same materials are
used, different morphologies or physical/chemical properties could result in different mechanisms of
electroactive behavior.

The prepared PVA-CNC hydrogel is not an ionic hydrogel. Although a sulfate ester bond peak was
observed from the FTIR, this peak was caused by the sulfuric acid hydrolysis for the CNC preparation.
During the CNC preparation, sulfuric acid was applied to isolate CNC from the pulp and some of
the sulfuric ions remained on the surface of the CNCs. However, the remnant sulfuric ions were not
significant because CNCs were dialyzed and washed with DI water several times. Thus, we believe
that the prepared hydrogel was a nonionic hydrogel and the ion migration effect was not significant in
the prepared hydrogel.

When the displacement and voltage curves are considered, as shown in Figure 8A,
the displacements increased linearly or quadratically with the actuation voltage, as well as CNC
concentration. This may give piezoelectricity in the hydrogel. However, it is very hard to possess
dipole domains in the hydrogel. Thus, the prepared hydrogel was far from a piezoelectric material.
On the other hand, as increasing the CNC concentration causes the compressive modulus to decrease,
which is beneficial in terms of increasing the electrostatic effect associated with the Coulombic force.
Under Coulombic force, a large strain can be produced when the electroactive material is soft. This is
a well-known fact for dielectric elastomer electroactive polymers. In summary, since the PVA-CNC
hydrogel is a soft, nonionic hydrogel, and it has high dielectric properties, the electrostatic effect may
be its dominant actuation mechanism.

5. Conclusions

In this research, nontoxic, soft and electroactive PVA-CNC hydrogels were prepared using the
freeze–thaw process with different CNC concentrations, and their characteristics were analyzed.
The water uptake capacity of the hydrogels increased and the compressive modulus decreased as the
CNC concentration increased. The optical transparency of the prepared hydrogels was inversely
proportional to the CNC concentration. The thermogravimetric analysis and scanning electron
microscopy results showed good miscibility of CNC with PVA. The CNC incorporated PVA-CNC
hydrogels showed an improved displacement output in the presence of the electric field and with
the increasing CNC concentration. The maximum 3600 ppm strain was produced under 0.4 V/µm
electric field strength from the PVA-CNC3 hydrogel. The displacement improvement of the PVA-CNC
hydrogels is associated with their enhanced dielectric properties and reduced compressive modulus.
Since the PVA-CNC hydrogel is nonionic, soft, and it possible has strong dielectric properties,
the electrostatic effect may be its dominant actuation mechanism. Since the prepared PVA-CNC
hydrogel is nontoxic and electroactive, it may be a promising material for biomimetic soft robots,
actively reconfigurable lenses and active drug-release.
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