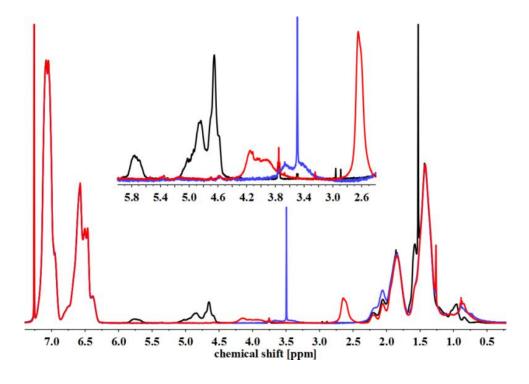
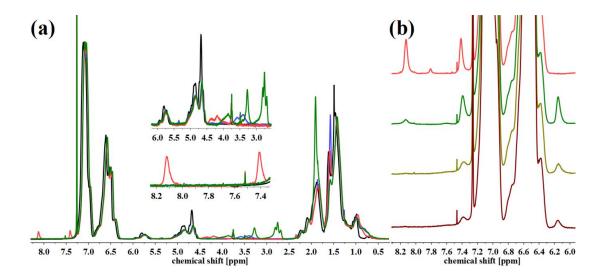

Supramolecular Networks from Block Copolymers Based on Styrene and Isoprene Using Hydrogen Bonding Motifs – Part 1: Synthesis and Characterization

Elaine Rahmstorf 1, Volker Abetz 1,2,*


- ¹ Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; elaine.rahmstorf@chemie.uni-hamburg.de
- ² Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany; volker.abetz@hzg.de
- * Correspondence: volker.abetz@hzg.de; Tel.: +49 40 42838-3460


Figure S1: ¹H NMR spectra of PI-Precursor (red), PI-*b*-PS-Precursor (green) and I₅S₉₀I₅⁶² (blue) in CDCl₃. Spectra of PI-Precursor and PI-*b*-PS-Precursor were normalized to PI signals. Spectra of PI-*b*-PS-Precursor and I₅S₉₀I₅⁶² were normalized to aromatic protons of polystyrene (6.2–7.2 ppm, 5H).

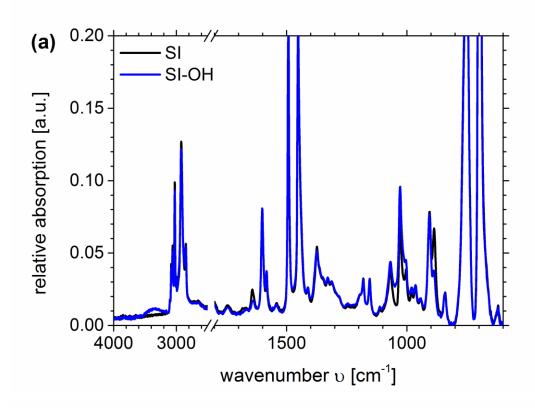
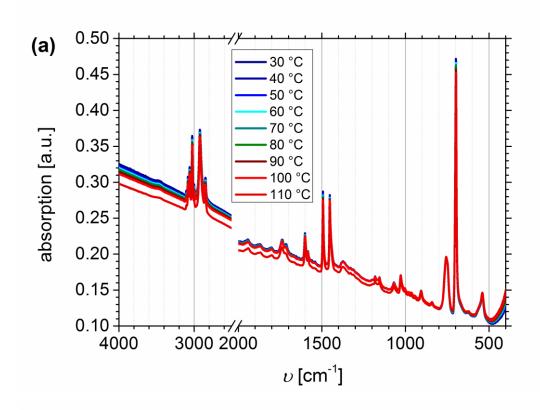
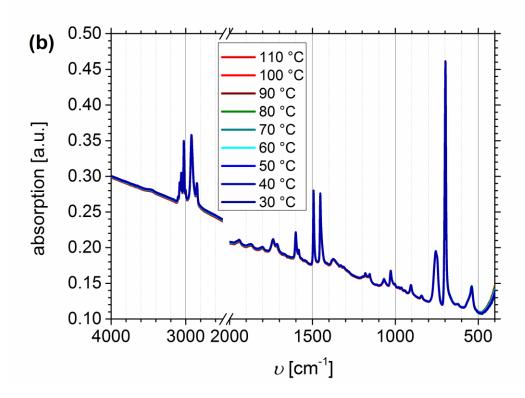
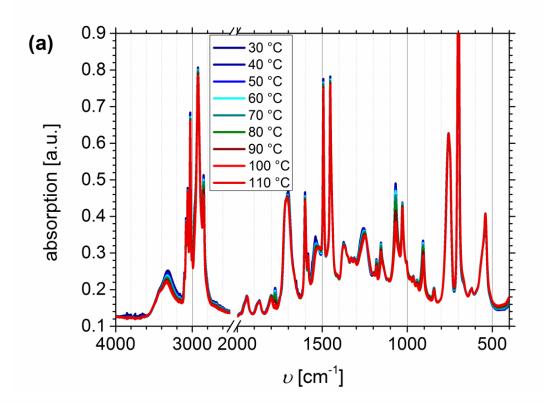

Figure S2: ¹H NMR spectra of S₉₁I₉⁶⁷ (black), and after hydroxylation with different degree of modification (0%, 13%, 18%, 29%, and 35%) in CDCl₃. Hydroxylation of 3,4-PI (signal at 4.45–4.65 ppm) is favoured. Spectra were normalized to aromatic protons of polystyrene (6.2–7.2 ppm, 5H).

Figure S3: ¹H NMR spectra of unfunctionalized (black), hydroxylated (blue) and with succinic anhydride carboxylated (red) I₅S₉₀I₅⁶² in CDCl₃. Spectra were normalized to aromatic protons of PS (6.2–7.2 ppm, 5H).




Figure S4: (a) ¹H NMR spectra of S₈₅I₁₅⁵¹ (black), after hydroxylation (blue), and after reaction with CDI (orange) and DETA (green) in CDCl₃. (b) ¹H NMR spectra of CDI-functionalized S₈₅I₁₅⁵¹ (top), and after addition of DAP with reaction times of 7 h, 3 d and 4 d (from top to the bottom) in CDCl₃. ¹H NMR spectra were normalized to aromatic protons of PS (6.2–7.2 ppm, 5H).



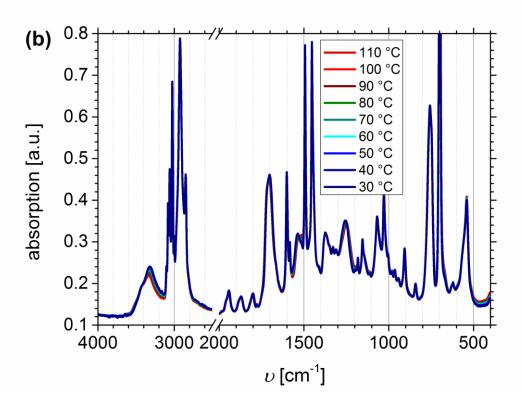

Figure S5: ATR-FTIR spectra of $S_{91}I_{9}^{67}$ before (black) and after (blue) hydroxylation ($D_f = 30\%$). Characteristic decrease of PI related bands can be observed, for example, at 1645 and 890 cm⁻¹. Both bands can be assigned to the main 3,4-addition product of PI. (**a**) Complete spectra and (**b**) enlarged area of (a) at 1800-800 cm⁻¹.

Figure S6: Full range temperature dependent FTIR spectra of $I_{1.5}S_{96.1}I_{2.4}^{82}$ -SA ($D_f = 33\%$). Temperature range was 30 to 110 (**a**) and to 30 °C (**b**) with 10 °C steps, and a 15 min isothermal hold at each temperature.

Figure S7: Full range temperature dependent FTIR spectra of $I_5S_{90}I_5^{62}$ -DETA ($D_f = 32\%$). Temperature range was 30 to 110 (**a**) and to 30 °C (**b**) with 10 °C steps, and a 15 min isothermal hold at each temperature.