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Abstract: Advanced power plant alloys must endure high temperatures and pressures for durations
at which creep data are often not available, necessitating the extrapolation of creep life. Many methods
have been proposed to extrapolate creep life, and one of recent significance is a set of equations
known as the Wilshire equations. With this method, multiple approaches can be used to determine
creep activation energy, increase the goodness of fit of available experimental data, and improve
the confidence level of calculating long-term creep strength at times well beyond the available
experimental data. In this article, the Wilshire equation is used to extrapolate the creep life of HR6W
and Sanicro 25, and different methods to determine creep activation energy, region splitting, the use
of short-duration test data, and the omission of very-short-term data are investigated to determine
their effect on correlation and calculations. It was found that using a known value of the activation
energy of lattice self-diffusion, rather than calculating Q∗C from each data set, is both the simplest and
most viable method to determine Q∗C. Region-splitting improved rupture time calculations for both
alloys. Extrapolating creep life from short-term data for these alloys was found to be reasonable.

Keywords: Wilshire equation; Larson-Miller parameter; creep strength; HR6W; Sanicro 25;
time to rupture

1. Introduction

Innovations in power generation require materials that are capable of withstanding high
temperatures and stresses for at least 100,000 h of operation time. The high temperatures and pressures
found in advanced power plants can induce creep failure in alloys. Consequently, alloys must be
tested so that creep failures are prevented during service. However, creep data of new and advanced
power plant alloys are often not available at the times relevant to the required design life. Various
methods have been proposed to extrapolate creep life using data collected from short-duration tests.
The Wilshire equations [1] are a recently-developed extrapolation method that have been used to
predict long-term creep behavior of high-temperature, creep-resistant alloys [2]. Different approaches
have been used to fit the Wilshire equation to creep rupture data. In this article, the Wilshire equation
for times taken to rupture and the Larson-Miller parameter (LMP) equation are used to correlate
and extrapolate the creep life of HR6W and Sanicro 25, which are recently commercialized, high-Cr,
austenitic stainless-steel alloys. The Wilshire equation’s goodness of fit and the error of the calculated
rupture times resulting from the use of different creep activation energy (Q∗C) values determined by
various methods are compared. This article also investigates the effect of splitting creep rupture data
into above- and below-yield stress regions and examines the ability of the Wilshire equation to predict
creep life greater than 10,000 h, using data with rupture times less than 10,000 h. The calculations
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of the Wilshire and LMP equations are compared. Finally, the effect of omitting data with rupture
times less than 100 and 1000 h is investigated. The paper is constructed as follows: Section 2 gives a
brief overview of the Wilshire and LMP equations; Section 3 discusses the data sets and methods used
to obtain Q∗C, split stress regions, and how Larson-Miller fitting parameters were obtained; Section 4
outlines the calculations and results of the study; and the final section contains conclusions.

2. Wilshire and Larson-Miller Parameter Equations

The classic power law equation, which is a combination of the Arrhenius [3] and Norton [4]
equations, is the most established description of the creep of materials. The equation is defined as:

.
εm = Aσne−QC/RT (1)

where
.
εm is the minimum creep rate, A is a material parameter, σ is applied stress, n is the stress

exponent, QC is the creep activation energy, R is the universal gas constant, and T is absolute
temperature. The Monkman-Grant equation [5] is defined as:

.
εm

α tr = CM (2)

where tr is the time to rupture, CM is a constant, and α is the slope of log tr vs. log
.
εm. This can be

coupled with Equation (1), with α set equal to 1, to produce the following time-to-rupture-based
version of the classic power law equation.

tr =
CM
A

σne−QC/RT (3)

However, this equation is unreliable for predicting creep life at temperatures, stresses,
and durations at which there are no experimental data available. This is due to the changing
and difficult-to-predict stress exponent [6,7], which is a function of stress and temperature. Also,
creep activation energy is a function of applied stress. Therefore, a creep activation energy that has
been calculated in one stress region cannot be extrapolated to another. Many techniques to reliably
extrapolate creep life from limited data have been proposed [8], including the newly-developed
Wilshire equation and the well-established Larson-Miller parameter equation.

2.1. Wilshire Equation

In 2007, Wilshire and Battenbough [1] developed a physically-based, yet fairly simple method to
represent creep life as a function of applied stress and temperature in uniaxial tests. The proposed
equations are:

σ

σTS
= exp

(
−k1

[
tr exp

(
−Qc

∗

RT

)]u)
(4)

σ

σTS
= exp

(
−k2

[
.
εm exp

(
Qc
∗

RT

)]v)
(5)

σ

σTS
= exp

(
−k3

[
tε exp

(
−Qc

∗

RT

)]w)
(6)

where σ/σTS is the ratio of applied stress to ultimate tensile strength, tr is time to rupture,
.
εm is

minimum creep rate, tε is time to strain, Q∗C is creep activation energy determined at constant σ/σTS,
R is the universal gas constant, T is absolute temperature, and k1, u, k2, v, k3, and w are fitting constants.
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Applied stress can be normalized by yield strength (σYS), but normalization by ultimate tensile strength
causes the stress ratio to always lie between zero and one. The boundaries of the Wilshire equations are:

tr → 0,
.
εm → ∞, tε → 0 when σ

σTS
→ 1

tr → ∞,
.
εm → 0, tε → ∞ when σ

σTS
→ 0

2.2. Larson-Miller Parameter Equation

A common method used to extrapolate creep life is the Larson-Miller parameter equation [9],
which predates the Wilshire equation by half a century. The LMP equation is:

LMP = T
(
log10(tr) + C

)
(7)

where T is absolute temperature, C is a material constant, and tr is time to rupture. The LMP, a function
of stress, can be described by the following fitting function.

LMP(σ) = B0 + B1 log(σ) + B2 log(σ)2 + B3 log(σ)3 + . . . Bm log(σ)m (8)

3. Methods

3.1. Data

The Wilshire and Larson-Miller parameter equations both require the following data from creep
rupture tests: temperature, applied stress, and time to rupture. Additionally, the Wilshire equation
requires the material’s ultimate tensile strength at each test temperature, and yield strength values can
be used to identify creep regimes. All useful data were extracted from plots in various publications
using Dagra digitization software (version 2.0.12) [10]. Heat-specific tensile strength values should
be used if data were collected from specimens of multiple heats, but these values were not available
from the data sources used in this work. Evans proposed a method to handle data from multiple
batches [11], but this method requires more complicated analysis that is outside the scope of this study,
so it was not utilized.

3.1.1. HR6W

HR6W creep test data that reached failure at various temperatures were extracted from existing
publications [12,13] and the manufacturer’s product bulletin [14]. In the literature, ultimate tensile
strength and yield strength values were found at 700 ◦C [15], but not at any other relevant temperatures.
American Society of Mechanical Engineers (ASME) Code Case 2684 [16] contains ultimate tensile
strength and yield strength values at all temperatures at which creep test data were obtained; however,
these values are not the results of experimental tests, but were established with the intent to be used
in design calculations. The values found in the literature were used to develop conversion factors
to adjust the ASME code case values. The ASME code case ultimate tensile strength values were
multiplied by a factor of 1.021, while the yield strength values were multiplied by a factor of 1.25.
It must be noted that all sources tested HR6W at slightly different compositions, which could affect the
accuracy of the calculations. A total of 184 creep rupture data points were extracted; 165 had a time to
rupture less than 10,000 h, and 167 had an applied stress less than the yield strength.

3.1.2. Sanicro 25

For Sanicro 25, two sources of data were taken into consideration. Creep rupture data were
extracted from a publication by Chai et al. [17], while ultimate tensile strength and yield strength
values were obtained from the manufacturer’s product bulletin [18]. The nominal composition of the
material is different in each source, which could affect the accuracy of the calculations. Because the
creep test data were gathered from a single reference, the scatter of the data is low. A total of 152 creep
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rupture data points were extracted; 104 had a time to rupture less than 10,000 h and 75 had an applied
stress less than the yield strength.

3.2. Wilshire Equation

Although three versions of the Wilshire equation exist, in this study, Equation (4)—the Wilshire
equation for time to rupture—is used. Several methods have been used in the literature to determine
Q∗C. In most publications, the steps required to determine Q∗C are omitted or only generally described.
In this work, Q∗C was determined using multiple methods.

Firstly, Q∗C values were determined using Arrhenius plots. This method is the most well-known,
and it is assumed (and shown to be a plausible assumption later in this work) that Wilshire used this
method in his papers [1,2,19–27]. For this approach, existing creep data is regressed and rupture times
at constant stress ratios are calculated. This work uses least squares regression and stress ratios at
every tenth value (i.e., σ/σTS = 0.1, 0.2, 0.3, etc.) with suitable data at each test temperature. Next,
an Arrhenius plot of the natural log of time to rupture vs. the inverse absolute temperature is generated.
For each stress ratio, a Q∗C value is defined as the slope of a line of best fit multiplied by the universal
gas constant. An average is then taken of all Q∗C values to determine the final Q∗C value.

Secondly, Q∗C values were determined by optimizing the correlation of data on a Wilshire plot (ln[tr

exp(−Q∗C/RT)] vs. ln[−ln(σ/σTS)]), as performed by Whittaker [28–30] and Jeffs [31]. When calculating
Q∗C using an Arrhenius plot, the delta between the stress ratios influences the final average Q∗C value
(e.g., σ/σTS = 0.1, 0.2 and 0.3 compared to σ/σTS = 0.1, 0.15, 0.2, 0.25, and 0.3). This presents a concern
when calculating an average Q∗C, since the stress ratios are not mathematically derived, but chosen
based on the judgement of the user. Determining Q∗C by optimizing the correlation of data on a Wilshire
plot eliminates concern over the variance of Q∗C at arbitrarily-chosen stress ratios. The technique used
to optimize the correlation of data is generally not defined in the literature and may vary between
authors. In this work, Q∗C values ranging from 1 to 500 kJ/mol were iterated with a step size of
1 kJ/mol to find the best correlation, which was quantified by the coefficient of determination (R2).

Thirdly, in some articles [2,20–25,28,32] the reasonableness of the calculated value of Q∗C is assessed
by comparing it to an experimentally-measured or theoretically-calculated activation energy of lattice
self-diffusion. If a value for the activation energy of lattice self-diffusion is known, it may be practical
to use this value as Q∗C rather than calculate a value from the experimental data.

In this work, Q∗C was also determined as a function of σ/σTS. This technique does not appear to
be discussed in the literature.

After Q∗C has been determined, the u and k1 fitting constants are respectively defined as the slope
and exponential of the y-intercept of a best fit line on a Wilshire plot. Multiple linear regions may
be visible on this plot, which would suggest that the data be separated into regions to improve the
goodness of fit of the Wilshire equation. Gray and Whittaker [33] point out that Wilshire split regions
using two different methods. Regions were consistently split where σ was equal to σYS, but in one case,
Q∗C and new fitting constants were recalculated for each region [29], while in another case, the original
Q∗C value was used and only the fitting constants were recalculated for each region [1]. The latter case
is known to under-predict creep life [34], and the former case, which more accurately describes the
underlying physical processes [33,35,36], was used by Whittaker and Wilshire to extrapolate the creep
life of Grade 22, 23 and 24 steels [35]. In this study, both region-splitting techniques are used.

3.3. Larson-Miller Parameter Equation

In the Larson-Miller parameter equation, the material constant C is generally set to 20 [9]. However,
C can be calculated if desired. The method described by Zhu et al. [37] was used to calculate C in
this work. The accuracy of Equation (8), the fitting function, increases with the number of terms that
are used. For this study, four terms were deemed to be sufficient so the parameters B0, B1, B2 and B3

were obtained. With this information, tr can be estimated for any given combination of temperature
and stress.
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Following a method detailed by Zhu et al. [37], a matrix laboratory software (MATLAB, version
2014b) surface fitting tool was used to determine the LMP equation constants. The Larson-Miller
parameter equation was arranged as:

z =
B0 + B1y + B2y2 + B3y3

x
− C (9)

where
z = log(tr), x = T, y = log(σ)

4. Results and Discussion

4.1. Investigation of Multiple Methods to Determine Q∗C, Region-Splitting, and the Use of Short-Term Creep
Rupture Data to Extrapolate Creep Life

Because this work compares different methods to determine Q∗C, it is important that the methods
investigated were commonly used and practical. In Wilshire’s publications [1,2,19–27] there is no
explicit mention of the technique used to determine Q∗C except that it was calculated at constant
σ/σTS. It was thought that a traditional Arrhenius plot was likely to be used. To test this assumption,
creep rupture data were extracted from one of Wilshire’s publications [20] and a Q∗C value was
calculated for comparison with the Q∗C value determined in the publication. Using the Arrhenius
plot approach, Q∗C was calculated to be 230 kJ/mol; however, Wilshire calculated Q∗C as 276 kJ/mol.
One figure in the publication omits all data with a time to rupture of less than 200,000 seconds, so the
calculations were repeated with the same data omitted, as shown in Figure 1 and Table 1. The same
value reported by Wilshire—276 kJ/mol—was calculated, which gives credibility to the assumption
that Wilshire used this method.
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Figure 1. Determination of Q∗C using the traditional Arrhenius plot approach: (a) time to rupture as a
function of the ratio of test stress to ultimate tensile strength; (b) Arrhenius plot of the natural log of
time to rupture vs. the inverse absolute temperature.

Table 1. Calculated Q∗C values (kJ/mol) at each stress ratio.

Average Q*
C

σ/σTS

0.3 0.4 0.5 0.6

276 205 260 315 323

Creep rupture data for HR6W and Sanicro 25 were split into two data sets for each alloy;
one consisted of all data, while the other was limited to data with rupture times less than 10,000 h.
The purpose of the limited data set is to show the efficacy of extrapolating short-term test data, as it
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has been claimed that the Wilshire equation is well-suited to do so [1,2,21,23,24,29]. For each data set,
values of Q∗C were determined using Arrhenius plots (shown in Table 2), by optimizing the correlation
of data on Wilshire plots (shown in Table 3), and using the activation energy of self-diffusion of
austenitic stainless steels, 293 kJ/mol [38]. Wilshire plots for each case were generated to show the
goodness of fit of the data. The plots for both alloys contain two clearly-defined regions that do not
correlate well to the least squares regression trendlines. The Wilshire plots were split into two regions:
σ < σYS and σ ≥ σYS. Representative plots are shown in Figure 2. Plots of all cases are provided as
Figures A1–A6 in Appendix A.

Table 2. Q∗C values (kJ/mol) determined using Arrhenius plots.

Alloy Data Set Region Average Q*
C

σ/σTS

0.2 0.3 0.4 0.5 0.6 0.7

HR6W

All Data
All σ 311 148 235 361 501 - -

σ < σYS 246 165 252 320 - - -
σ ≥ σYS 296 - - 100 491 - -

tr < 10,000 h
All σ 279 121 221 330 444 - -

σ < σYS 222 122 228 317 - - -
σ ≥ σYS 296 - - 100 491 - -

Sanicro 25

All Data
All σ 338 293 319 344 373 367 332

σ < σYS 303 293 324 292 - - -
σ ≥ σYS 337 - - 294 366 361 329

tr < 10,000 h
All σ 384 270 475 357 432 - -

σ < σYS 294 297 322 262 - - -
σ ≥ σYS 363 - - - 335 358 397

Table 3. Q∗C values (kJ/mol) determined by optimizing the correlation of data on Wilshire plots.

Alloy Data Set Region Q*
C

HR6W

All Data
All σ 264

σ < σYS 238
σ ≥ σYS 340

tr < 10,000 h
All σ 254

σ < σYS 225
σ ≥ σYS 340

Sanicro 25

All Data
All σ 323

σ < σYS 320
σ ≥ σYS 331

tr < 10,000 h
All σ 343

σ < σYS 306
σ ≥ σYS 328
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Figure 2. Goodness of fit of creep rupture data on Wilshire plots for: (a) HR6W data treated as a single
region; (b) HR6W data split into above- and below-yield stress regions; (c) Sanicro 25 data treated as a
single region; and (d) Sanicro 25 data split into above- and below-yield stress regions.

Additionally, for the Sanicro 25 data set with all data, Q∗C was determined as a function of σ/σTS.
Q∗C values that were previously determined using Arrhenius plots at each constant stress ratio were
graphed, and Q∗C was assumed to be 180 kJ/mol at a stress ratio of 0, and 260 kJ/mol at a stress ratio of
1. A 4th-order polynomial was generated that spanned the entire domain from σ/σTS = 0 to σ/σTS = 1.
A Wilshire plot was generated and is presented with the 4th-order polynomial in Figure 3.
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Figure 3. The effect of determining Q∗C as a function of the stress ratio: (a) 4th-order polynomial
function; (b) Wilshire plot.

The 4th-order polynomial is not a function of Q∗C, so the resulting Wilshire plot bent on itself due
to the rise, peak, and decline in Q∗C values as σ/σTS increased. Therefore, the method to determine Q∗C
as a function of σ/σTS was not used in further analyses.

For all cases analyzed, time to rupture was calculated at the stress and temperature of each
experimental data point. The error of the calculated rupture times in hours was measured using mean
squared error (MSE), defined as:

MSE =
∑n

i=1

(
tr,calculated,i − tr,experimental,i

)2

n
(10)



Materials 2018, 11, 1585 8 of 29

The Wilshire equation’s goodness of fit (quantified by R2) for each data set and error obtained
by applying the calculated Q∗C values and fitting constants to all creep rupture data are presented in
Table 4.

Table 4. Quality of fit and error.

Alloy Data Set Split
Regions

Q*
C Determination

Method
Q*

C
All σ

Q*
C

σ < σYS

Q*
C

σ ≥ σYS

R2

All σ
R2

σ < σYS

R2

σ ≥ σYS
MSE

HR6W

All Data

No
Arrhenius Plot 311 - - 0.887 - - 6.49× 107

Correlation Optimization 264 - - 0.894 - - 2.43× 107

Self-Diffusion Activation 293 - - 0.891 - - 4.08× 107

Yes

Arrhenius Plot 311 - - - 0.877 0.835 1.44× 108

Arrhenius Plot - 246 296 - 0.901 0.815 2.49× 107

Correlation Optimization 264 - - - 0.898 0.748 3.68× 107

Correlation Optimization - 238 340 - 0.902 0.851 2.20× 107

Self-Diffusion Activation 293 - - - 0.887 0.810 8.37× 107

tr < 10,000 h

No
Arrhenius Plot 279 - - 0.887 - - 2.73× 107

Correlation Optimization 254 - - 0.889 - - 2.34× 107

Self-Diffusion Activation 293 - - 0.885 - - 3.61× 107

Yes

Arrhenius Plot 279 - - - 0.883 0.783 5.13× 107

Arrhenius Plot - 222 296 - 0.897 0.815 1.99× 107

Correlation Optimization 254 - - - 0.892 0.722 2.49× 107

Correlation Optimization - 225 340 - 0.897 0.851 1.97× 107

Self-Diffusion Activation 293 - - - 0.876 0.810 8.43× 107

Sanicro 25

All Data

No
Arrhenius Plot 338 - - 0.929 - - 2.43× 108

Correlation Optimization 323 - - 0.930 - - 1.47× 108

Self-Diffusion Activation 293 - - 0.928 - - 5.84× 107

Yes

Arrhenius Plot 338 - - - 0.975 0.948 4.26× 107

Arrhenius Plot - 303 337 - 0.975 0.948 4.42× 107

Correlation Optimization 323 - - - 0.976 0.948 3.50× 107

Correlation Optimization - 320 331 - 0.976 0.949 3.84× 107

Self-Diffusion Activation 293 - - - 0.973 0.939 3.96× 107

tr < 10,000 h

No
Arrhenius Plot 384 - - 0.934 - - 1.26× 109

Correlation Optimization 343 - - 0.935 - - 2.94× 108

Self-Diffusion Activation 293 - - 0.932 - - 5.18× 107

Yes

Arrhenius Plot 384 - - - 0.949 0.945 1.33× 108

Arrhenius Plot - 294 363 - 0.966 0.948 1.61× 108

Correlation Optimization 343 - - - 0.962 0.951 1.31× 108

Correlation Optimization - 306 328 - 0.966 0.951 1.52× 108

Self-Diffusion Activation 293 - - - 0.965 0.947 1.61× 108

Splitting the data into above- and below-yield stress regions reduced the error in all cases for
HR6W where Q∗C was recalculated for each region and increased the error when it was not recalculated.
Region-splitting improved the error in all cases except one for Sanicro 25. When using data with
rupture times less than 10,000 h to calculate Q∗C, the error was reduced in all but one case for HR6W
and increased in all but one case for Sanicro 25. This inconsistency may have been caused by the
disproportionate quantity of creep data that ruptured at less than 10,000 h—90 percent of HR6W
specimens, compared to 68 percent of Sanicro 25 specimens.

For HR6W, splitting the data and calculating Q∗C in each region using the correlation optimization
method consistently resulted in the lowest error. The lowest error for Sanicro 25 was achieved by
splitting the data and using the correlation optimization method to calculate a single Q∗C for the entire
data set. The Arrhenius plot method never provided the lowest error—although it was close for Sanicro
25 data with rupture times less than 10,000 h split into above- and below-yield stress regions—and
provided the highest error in more than half of the cases.

Figure 4 shows the correlation of the Wilshire equation and error at each potential value of Q∗C,
which were obtained when using the correlation optimization method to determine Q∗C, for each alloy.
The lowest error does not occur at the highest correlation, but it is close.
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The calculations of the Wilshire equation were plotted as stress vs. time to rupture. Plots for the
method that provided the lowest error for each case are shown in Figures 5 and 6, while the remaining
are shown in Figures A7–A14 in Appendix A. When splitting the data into above- and below-yield
stress regions, the time to rupture at the transition from one region to the other is not calculated to be
the same value in each region. Because of this, the split-region calculations of the Wilshire equation can
yield zero or two stress values at some rupture times. The plots show the tendency of the single-region
rupture stress calculations to become more conservative than the split-region calculations as time
increases. Additionally, the use of data with rupture times less than 10,000 h yields visually-similar
curves to those obtained using all data, which agrees with the notion that the Wilshire equation can
reasonably predict creep life based on short-duration test data.

The tendency of the Wilshire equation to over- or under-predict creep life can be quantified as the
average percentage difference between the calculated and experimentally-obtained rupture times at
each Q∗C value and test temperature, defined as:

Average Percentage Difference =
∑n

i=1

( tr,calculated,i−tr,experimental,i
tr,experimental,i

)
n

× 100 (11)

For all cases, the average percentage difference was calculated at each temperature, and the results
are shown in Table 5.

For both alloys, the calculated rupture times when treating all data as a single region are generally
conservative at the lowest and highest temperatures; however, at all intermediate temperatures the
calculations are not conservative. This trend occurs in a less definitive manner for most, but not all
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cases. For Sanicro 25, the percentage differences at 700 ◦C, 725 ◦C, 750 ◦C and 800 ◦C were drastically
improved by splitting the data into stress regions.Materials 2018, 11, x FOR PEER REVIEW  10 of 30 
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Table 5. Average percentage difference of calculated and experimental rupture times.

Alloy Data Set Split
Regions

Q*
C Determination

Method
Q*

C
All σ

Q*
C

σ < σYS

Q*
C

σ ≥ σYS

600
(◦C)

650
(◦C)

700
(◦C)

725
(◦C)

750
(◦C)

800
(◦C)

HR6W

All Data

No
Arrhenius Plot 311 - - - 7% 83% - 26% −29%

Correlation Optimization 264 - - - −24% 56% - 29% −11%
Self-Diffusion Activation 293 - - - -6% 72% - 26% −23%

Yes

Arrhenius Plot 311 - - - 17% 62% - 28% −21%
Arrhenius Plot - 246 296 - −10% 27% - 27% 4%

Correlation Optimization 264 - - - −7% 38% - 26% −4%
Correlation Optimization - 238 340 - −8% 22% - 27% 8%
Self-Diffusion Activation 293 - - - 7% 52% - 26% −15%

tr < 10,000 h

No
Arrhenius Plot 279 - - - −14% 61% - 22% −22%

Correlation Optimization 254 - - - −28% 47% - 22% −14%
Self-Diffusion Activation 293 - - - −4% 70% - 23% −26%

Yes

Arrhenius Plot 279 - - - −45% 35% - 24% −12%
Arrhenius Plot - 222 296 - −64% 6% - 19% 7%

Correlation Optimization 254 - - - −54% 21% - 21% −5%
Correlation Optimization - 225 340 - −63% 7% - 19% 6%
Self-Diffusion Activation 293 - - - −39% 45% - 27% −15%

Sanicro 25

All Data

No
Arrhenius Plot 338 - - −13% 67% 77% 91% 26% −48%

Correlation Optimization 323 - - −19% 59% 74% 99% 32% −45%
Self-Diffusion Activation 293 - - −30% 44% 70% 116% 46% −36%

Yes

Arrhenius Plot 338 - - 14% 8% 6% 18% −9% 2%
Arrhenius Plot - 303 337 14% 6% −1% 18% −3% 9%

Correlation Optimization 323 - - 8% 7% 5% 24% −6% 5%
Correlation Optimization - 320 331 11% 7% 3% 20% −6% 5%
Self-Diffusion Activation 293 - - −3% 6% 5% 39% −1% 11%

tr < 10,000 h

No
Arrhenius Plot 384 - - 48% 120% 82% 69% 0% −66%

Correlation Optimization 343 - - 10% 76% 62% 74% 6% −62%
Self-Diffusion Activation 293 - - −21% 37% 43% 85% 16% −55%

Yes

Arrhenius Plot 384 - - −94% -58% 5% −11% −7% 7%
Arrhenius Plot - 294 363 −96% -73% −24% −12% −6% 2%

Correlation Optimization 343 - - −95% -65% −10% −12% −7% 2%
Correlation Optimization - 306 328 −96% −71% −21% −12% −6% 2%
Self-Diffusion Activation 293 - - −96% −73% −24% −13% −6% 2%

Overall, the method used to determine Q∗C has a minor effect on the goodness of fit of the Wilshire
equation to the experimental data when regions are not split. This is indicated by relatively small
changes to the R2 value when Q∗C is varied; the largest variance between R2 values is less than a
percent. When region splitting is utilized, there is a similar trend of small changes to the R2 value when
Q∗C is varied, except for HR6W data with applied stress greater than yield strength. In this region,
the largest variance is about 15 percent. However, only nine percent of HR6W data points are in this
region, which could explain the large variances. Conversely, the mean squared error of the calculated
rupture times can change drastically depending on the Q∗C value, which suggests that the method used
to determine Q∗C significantly impacts the calculations of the Wilshire equation. No method used to
determine Q∗C consistently provided the lowest error regardless of the region-splitting technique or
data set. However, the single lowest error for each alloy was calculated by splitting regions and by
using a Q∗C value determined with the correlation optimization method. Additionally, the correlation
optimization method provided the lowest error in all cases with split regions and half of the single
region cases. Although using a self-diffusion activation energy value obtained from literature only
provided the lowest error in two of the eight cases, it is the simplest method to determine Q∗C and
likely accurate enough for use in many applications.

If the goal of fitting the experimental data is to minimize the mean squared error—or any other
measure of error—of the calculated rupture times, it is possible to do this using a technique similar
to the correlation optimization approach described and used in this work. However, a Q∗C value
determined using this method may not be consistent with the scientific theory of creep.

4.2. Comparison of Calculations of the Wilshire and Larson-Miller Parameter Equations

The Larson-Miller parameter equation was used to provide calculations for comparison with the
calculations of the Wilshire equation. Equation (9) and the MATLAB surface fitting tool were used to
correlate the experimental data to the LMP equation, and the resulting coefficients and goodness of fit
are shown in Table 6. The MATLAB plots are shown as Figures A15 and A16 in the Appendix A.
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Table 6. MATLAB calculations of the LMP coefficients and goodness of fit.

Alloy B0 B1 B2 B3 C R2

HR6W −3.89× 104 1.06× 105 −5.68× 104 9390 17.6 0.904
Sanicro 25 4.37× 104 −2.40× 104 1.02× 104 −1800 17.8 0.940

Time to rupture was calculated at the stress and temperature of each experimental data point
using the LMP equation. The mean squared error of the calculated rupture times is compared to the
lowest error obtained using the Wilshire equation with all data in Table 7. The goodness of fit and
error of the Wilshire calculations are very close to those of the LMP equation.

Table 7. Goodness of fit and error of Wilshire and LMP calculations.

Alloy Equation R2 MSE

HR6W
LMP eq. 0.904 2.54× 107

Wilshire eq. 1 0.902 3, 0.851 4 2.20× 107

Sanicro 25
LMP eq. 0.940 3.42× 107

Wilshire eq. 2 0.976 3, 0.948 4 3.50× 107

1 Split regions with Q∗C calculated for each region by optimizing the correlation of data on a Wilshire plot;
2 Split regions with Q∗C calculated for the entire data set by optimizing the correlation of data on a Wilshire
plot; 3 Correlation of data with σ < σYS; 4 Correlation of data with σ ≥ σYS.

Similar to the Wilshire equation, the tendency of the LMP equation to over- or under-predict
creep life can be quantified as the average percentage difference between the calculated and
experimentally-obtained rupture times, which is shown in Table 8. For both equations, the calculated
rupture times at each temperature are rarely conservative.

Table 8. Average percentage difference of calculated and experimental rupture times.

Alloy Calculation Method 600 ◦C 650 ◦C 700 ◦C 725 ◦C 750 ◦C 800 ◦C

HR6W
LMP eq. - 46.5% 48.5% - 40.1% 59.4%

Wilshire eq. 1 - −7.7% 21.7% - 27.0% 8.3%

Sanicro
25

LMP eq. 13.6% 3.7% 7.1% 27.6% 3.7% −0.2%
Wilshire eq. 2 8.2% 6.9% 5.1% 23.8% −6.2% 4.5%

1 Split regions with Q∗C calculated for each region by optimizing the correlation of data on a Wilshire plot;
2 Split regions with Q∗C calculated for the entire data set by optimizing the correlation of data on a Wilshire plot.

The percentage differences of the calculated rupture time for the longest test duration of each
alloy, defined as:

Percentage Difference =
tr,calculated − tr,experimental

tr,experimental
× 100 (12)

are shown in Table 9. For the data point with the longest rupture time, the Wilshire equation provides
a more conservative calculation than the LMP equation.

Table 9. Percentage errors of the calculated rupture times for the longest test durations for the Wilshire
and LMP equations.

Alloy Calculation Method Percentage Difference

HR6W
LMP eq. 34.2%

Wilshire eq. 1 23.2%

Sanicro 25
LMP eq. 37.2%

Wilshire eq. 2 23.7%
1 Split regions with Q∗C calculated for each region by optimizing the correlation of data on a Wilshire plot;
2 Split regions with Q∗C calculated for the entire data set by optimizing the correlation of data on a Wilshire plot.
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Calculated creep strengths for rupture at 100,000 h using the LMP and Wilshire equations are
presented in Table 10. Figures 7 and 8 show experimental creep data, calculations of the LMP equation,
and calculations of the Wilshire equation with the Q∗C value that yielded the lowest error. The form
of the LMP equation allows for multiple values of stress to be calculated at a single rupture time.
Consequently, an inflection point exists in the LMP calculations for HR6W and calculated rupture
times at stresses beyond the local minimum and maximum are unreasonable. The calculations of
the Wilshire equation tend to be more conservative than those of the LMP equation at failure times
approaching and beyond 100,000 h.

Table 10. Calculated creep strength for rupture at 100,000 h (MPa).

Alloy Calculation
Method 600 ◦C 650 ◦C 700 ◦C 725 ◦C 750 ◦C 800 ◦C

HR6W

LMP eq. solution #1 - 836 977 - 1110 1240
LMP eq. solution #2 - 120 87.5 - 62.2 37.2
LMP eq. solution #3 - 11.1 13.0 - 16.1 24.1

Wilshire eq. 1 - 113 86.0 - 60.6 40.6

Sanicro 25
LMP eq. 254 160 94.7 71.8 54.6 32.8

Wilshire eq. 2 252 152 96.9 72.7 53.3 26.6
1 Split regions with Q∗C calculated for each region by optimizing the correlation of data on a Wilshire plot;
2 Split regions with Q∗C calculated for the entire data set by optimizing the correlation of data on a Wilshire plot.Materials 2018, 11, x FOR PEER REVIEW  14 of 30 
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4.3. The Effect of Omitting Data with Rupture Times Less than 100 and 1000 h

The effect of removing data with very short rupture times (less than 1000 h) on long-term
predictions of the Wilshire equation was investigated. HR6W creep rupture data were split into three
data sets for comparison: all data, data with a rupture time greater than 100 h, and data with a rupture
time greater than 1000 h. Sanicro 25 creep rupture data were split into two data sets: all data, and data
with a rupture time greater than 1000 h (Sanicro 25 had no data with a rupture time less than 100 h).
This analysis used Q∗C values determined by splitting all data into above- and below-yield stress
regions and by using the correlation optimization method to calculate Q∗C for each region.

The goodness of fit of the Wilshire equation, quantified by R2, and the mean squared error of the
calculated rupture times, obtained by applying the Q∗C and the fitting constants to all creep rupture
data, are presented in Table 11.
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Table 11. The effect of removing very-short-term test data on goodness of fit and error.

Alloy Data set # of Data
Points

Q*
C

σ < σYS

Q*
C

σ ≥ σYS

R2

σ < σYS

R2

σ ≥ σYS
MSE

HR6W
All Data 184 238 340 0.902 0.851 2.20× 107

tr > 100 h 177 234 326 0.905 0.886 2.15× 107

tr > 1000 h 106 252 177 0.867 0.084 7.04× 107

Sanicro 25
All Data 152 320 331 0.976 0.949 3.84× 107

tr > 1000 h 129 334 331 0.978 0.943 4.85× 107

Upon removal of data with rupture times less than 100 h, the correlation improved considerably
for HR6W data that had applied stress greater than yield strength. When data with rupture times
less than 1000 h were removed, only six HR6W data points with applied stress greater than yield
strength were available, and a very low correlation was calculated. Small changes to the goodness of
fit occurred for Sanicro 25.

The percentage differences of the calculated rupture time for the longest test duration of each
alloy are shown in Table 12. The longest rupture time was 59,939 h at 700 ◦C for HR6W and 84,868 h at
600 ◦C for Sanicro 25. The percentage difference improved for HR6W data with rupture times greater
than 100 h, but worsened for the other cases.

Table 12. Calculated rupture time for the longest test duration percentage differences.

Alloy Data set Percentage Difference

HR6W
All Data 23.2%
tr > 100 h 17.9%
tr > 1000 h 37.9%

Sanicro 25
All Data 32.8%

tr > 1000 h 43.7%

Creep strength predictions of 100,000-hour rupture times are presented in Table 13. With an
exception of the HR6W data set with times to rupture greater than 1000 h, only small changes can
be noticed.
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Table 13. Calculated creep strength for rupture at 100,000 h (MPa).

Alloy Data set 600 ◦C 650 ◦C 700 ◦C 725 ◦C 750 ◦C 800 ◦C

HR6W
All Data - 113 86.0 - 60.6 40.6
tr > 100 h - 113 85.4 - 60.2 40.3

tr > 1000 h - 116 89.5 - 64.3 44.1

Sanicro 25
All Data 255 151 96.4 72.3 53.0 26.5

tr > 1000 h 259 153 98.5 74.3 54.8 27.7

Data points at very short rupture times are sometimes removed to make calculated longer-term
rupture life more conservative, but an improvement was only noticed when removing HR6W data
with times to rupture less than 100 h. An insufficient amount of HR6W data with times to rupture
greater than 1000 h caused poor results. No substantial improvement was observed for Sanicro 25.
Figures 9 and 10 provide additional insight into the effect of removing data with rupture times less
than 100 and 1000 h on the predictions of the Wilshire equation.Materials 2018, 11, x FOR PEER REVIEW  16 of 30 
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5. Conclusions

This study investigated multiple methods to determine Q∗C, the effect of region-splitting, the use
of short-term creep rupture data to extrapolate creep life, and the omission of very-short-term creep
rupture data, all of which are techniques that have been used or proposed to increase the accuracy
of the Wilshire equation. Determining Q∗C by optimizing the correlation of creep rupture data on a
Wilshire plot resulted in the lowest error for most cases, but using an activation energy of self-diffusion
found in the literature also gave acceptable results. Splitting the data into above- and below-yield
stress regions provided the lowest error for both alloys. The use of data with rupture times less than
10,000 h to extrapolate creep life was reasonable for Sanicro 25, and yielded lower mean squared errors
than the use of all data for HR6W. Omitting very-short-term data improved the goodness of fit and
error in one case for HR6W, but not for Sanicro 25. The Wilshire and LMP equations had a similar
goodness of fit to the data and error of their calculations.

One limitation of this study was the lack of hot tensile strength data for each of the heats that
comprised the data sets analyzed. Reasonable correlations of the data were obtained in some cases,
but it is not known how much the data fits would have improved if tensile strength data for each heat
of HR6W and Sanicro 25 had been available.

In its basic form, the Wilshire equation is a simple method to quickly estimate long-term creep
life using only three fitting constants—yet if an extensive analysis with a high level of precision is
required, its complexity can be increased to improve the statistical fit of the Wilshire equation to
available data. Evans [11,39–44] has proposed more sophisticated methods of fitting the Wilshire
equation to complex data sets, including the handling of data collected from specimens of multiple
batches [11], determining Q∗C as a function of temperature [11], statistically determining the number
of stress regions [39], and utilizing additional batch characteristics [40]. The Wilshire equation is
modular in that many combinations of these methods can be used, which gives it flexibility for a wide
variety of applications. If only a preliminary estimate of long-term creep strength (e.g., at 100,000 h or
longer design life) is needed, such as in the early stages of new alloy development, use of the Wilshire
equation in its original form with Q∗C equal to the activation energy of self-diffusion would probably
be sufficient. More complex analyses (which, in essence, increase the number of fitting constants)
would be needed if the intent is to use the Wilshire equation for component design or for establishing
long-term creep strength values for design codes, instead of the equations now used in various design
codes, and which contain more than three fitting constants.
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