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Abstract: In the present article, a version of the lattice or spring network method is proposed
to model the mechanical response of elastic particulate composites with a high volume fraction
of spherical particles and with a much weaker matrix compared to the stiffness of the particles.
The main subject of the article is the determination of the axial stiffnesses of the springs of the cell.
A comparison of the mechanical response of a three-dimensional particulate composite cube obtained
using the finite element method and the proposed methodology showed that the efficiency of the
proposed methodology increases with an increasing volume fraction of the particles.

Keywords: particulate composite; bonded particles; lattice model; spring network model; discrete
element method

1. Introduction

The lattice or spring network method is applied widely in various areas of mechanics: to solve
various problems of continuum mechanics, micromechanics, molecular dynamics, fracture mechanics,
multiscale modelling, soft materials, and so on [1–6]. Apart from that, this method can also be applied
to model different materials: metals, concrete, asphalt, ceramics, various composites, particulate solids,
granular matter, and biomaterials [7–10]. In addition, the lattice method can be applied to elasticity
and viscoelasticity problems [1], or used as an alternative to the finite element method [2].

The geometry of a cell that approximates a continuum, the model of the spring of the cell, and the
determination of the required stiffness parameters of the spring are three of the most important issues in
the lattice model. When springs are used as the connecting elements of the nodes of the cells, only one
parameter of the springs, i.e., the axial stiffness, has to be determined in terms of the material properties.
It is relatively easier to determine the stiffness parameters of the spring for homogeneous materials
than for composites. One approach to model composites using the lattice model is to approximate the
constituent parts of the composites—for example, the matrix and the particles—by distinct springs for
each constituent part of the composite [8,11,12]. In [12], it is assumed that the composite, consisting
of bonded spherical particles, is approximated by a network of one-dimensional springs connecting
the centres of the interacting spherical particles. The total stiffness of the spring is calculated as the
total stiffness of the three distinct springs concatenated in a series. Two springs, the first and third,
correspond to the interacting particles, while the intermediate spring corresponds to the bond between
the particles. A similar approach was proposed in [13]. In this article, the convex spherical surfaces of
the particles and the concave spherical surfaces of the bond element were taken into account in the
evaluation of the axial stiffness of the spring that connects the centres of the two interacting particles.
In this article, the connecting spring was also modelled as three distinct springs concatenated in series.
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In the present paper, the ideas of the evaluation of the stiffness of the spring that connects the
centres of two interacting adjacent particles, presented in article [13], are extended by evaluating the
lower and upper bounds of the stiffness of the spring. Two different approaches were applied to
evaluate the stiffnesses: the conditional connecting element was divided into infinitely small prisms,
and infinitely thin rings. The former provides the lower bound and the latter provides the upper
bound. The obtained closed-form solutions of both bounds of the stiffnesses were verified using the
finite element method by modelling a 3D elastic particulate composite with different particle volume
fractions, different Poisson’s ratios, and different ratios of the modulus of elasticity of the particles to
the matrix.

A particulate composite consisting of particles embedded in the matrix is approximated by
one-dimensional springs that connect the centres of the particles (Figure 1). The springs are
characterized by their length Rp + Lc, where Rp is the particle diameter and Lc is the distance between
the particles, and the axial stiffness is Ks (Figure 1b).

Figure 1. Modeling concept: a particulate composite with the conditional connecting element
(a); a normal interaction of two spheres through a conditional interface member (b); and a spring
representing the interaction of the spheres (c).

The following assumptions are valid for the particulate composite and its approximating
spring network:

• the particles, matrix and the connecting springs obey the linear elastic law,
• the particles interact with the matrix by their entire surface,
• the particles of the composite do not rotate,
• the interface member connecting two adjacent particles is composed of the matrix and is

cylindrical,
• the diameters of the ends of the interface member are the same as of connected particles,
• the interface members interact only with the two adjacent particles and interact with the particles

only by the entire surface of the hemispheres,
• the pin-connected springs connect the centres of the adjacent particles,
• the spring is composed of the interface member and two hemispheres, and only carries an axial

force.



Materials 2018, 11, 1584 3 of 14

All quantities related to the particles are denoted by the subscript p and the quantities related to
the interface members are denoted by the subscript b. The particle is characterised by the radius Rp,
elasticity modulus Ep, and Poisson’s ratio vp. The interface member is characterised by the cylinder
radius Rb and the elasticity constants Em and vb, respectively. Two limits Ks,I and Ks,I I of the axial
stiffness can be obtained by considering two different divisions of the connecting element: as parallel
and sequentially connected springs (Figure 1).

1.1. Governing Equations for the Lower Bound of the Stiffness

Let us consider the half of the connecting element comprised of a half of the particle and a half
of the interface member to obtain the lower bound Ks,I of the stiffness of the connecting element
(Figure 2). The entire hemisphere is denoted hereafter by Ωp and its circular basis by Sp. The entire
half of the interface member is denoted hereafter by Ωb and its circular basis by Sb.

Let the circular bases Sp and Sb of the interface member and the hemisphere (Figure 2a) be
divided into n infinitesimal rectangles Sp,ξ and Sb,ξ so that Si =

⋃n
ξ=1 Si,ξ and

⋂n
ξ=1 Si,ξ = ∅,

where i ∈ {p, b}. Then, the areas ∆Ai,ξ of the rectangles Si,ξ , i ∈ {p, b}, are such that Ai = ∑n
ξ=1 ∆Ai,ξ ,

where Ai, i ∈ {p, b} is the total area of the circular basis Si. Let the hemisphere Ωp and the interface
member Ωb (Figure 1a) be divided into infinitesimal parallel connected prisms ∆Ωi,ξ whose bases are
the rectangles Si,ξ so that Ωi =

⋃n
ξ=1 Ωi,ξ , i ∈ {p, b}; see Figure 2a.

Figure 2. Concepts of the discretisation of a half of the conditional connecting elements: by parallel
connected prisms (a) and by sequentially connected rings (b).

Then, the stiffness of the prisms Ωp,ξ and Ωb,ξ connected sequentially can be expressed as follows
(in Figure 2a only half of the prisms are depicted):

∆kξ =
1
2

(
DpDm

lp
(
xp,ξ , yp,ξ

)
lb
(
xb,ξ , yb,ξ

))∆Ai,ξ

Dp/lp
(
xp,ξ , yp,ξ

)
+ Dm/lb

(
xb,ξ , yb,ξ

) , (1)

where Dp and Dm are the elastic constants of materials of the particle and interface member, respectively.
In case of the uniaxial stress state of the particle and the interface member, i.e., when σxx = σyy = 0
of the conditional connecting element, see Figure 2, the elastic constant Dp = Ep and Dm = Em.
When it is assumed that, for the conditional connecting element εxx = εyy = 0, then Di = Ei(1−
νi)/((1 + νi)(1− 2νi)), where i ∈ {p, m}. Other cases of the elastic constants are also possible. In
Equation (1), lp(xp,ξ , yp,ξ) and lb(xb,ξ , yb,ξ) are the half lengths of the prisms of the hemispheres Ωp,ξ
and Ωb,ξ at the points (xp,ξ , yp,ξ) ∈ Sp and (xb,ξ , yb,ξ) ∈ Sb, respectively. The total stiffness of all prisms
Ωξ = Ωp,ξ

⋃
Ωb,ξ , ξ ∈ {1, ..., n}, or the stiffness of the connecting element Ks = ∑n

ξ=1 ∆kξ . By letting
∆Ai,ξ → 0, we obtain a limit Ks,I = lim

∆Ai,ξ→0
∑ξ ∆kξ , where ∆kξ is given in Equation (1). The obtained

limit can be rewritten as a double integral over Sb, since Sb = Sp
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Ks,I =
∫∫

Sb

T(x, y)dA, (2)

where the integrand T(x, y)

T (x, y) =
1
2

DpDm

lp(x, y)lb(x, y)
Dp

lp(x, y)
+

Dm

lb(x, y)

. (3)

In Equation (3), the half lengths of the prisms lp(x, y) and lb(x, y) at the point (x, y) ∈ Sb are

lp (x, y) =
√

Rp − x2 − y2, (4)

lb (x, y) = Lc/2 + Rp −
√

Rp − x2 − y2. (5)

The integral of Equation (2) can be expressed as an iterated double integral in the rectangular
coordinate system

Ks,I =
∫ Rb

−Rb

∫ √R2
b−x2

i

0
T(x, y)dxdy (6)

in the polar coordinates

Ks,I = π

Rp∫
0

DpDm√
R2

p − r2
(

Lc/2 + Rp −
√

R2
p − r2

)
Dp√

R2
p − r2

+
Dm

Lc/2 + Rp −
√

R2
p − r2

r dr, (7)

where r =
√

x2 + y2. After a change of variable z = (R2
p − r2) in Equation (7), we obtain

Ks,I =
1
2

π

R2
p∫

0

DpDm(
Lc/2 + Rp

)
Dp +

(
Dm − Dp

)√
z

dz. (8)

Integration of Equation (8) yields the stiffness of the connecting element as Dp 6= Dm

Ks,I =
1
2

πDpDm

(
2

Rp

b
+

a
b2 ln

(
a2(

a + bRp
)2

))
, (9)

where a = (Lc/2 + Rp)Dp, and b = Dm − Dp. It should be noted that, when Dm = Dp, then Ks,I by
Equation (9) is undefined due to the division by zero, since b = Dm − Dp = 0. In this case, Ks,I can be
obtained from Equation (7) by letting Dm = Dp:

Ks,I =
1
2

πDpR2
p(

Lc/2 + Rp
) as Dp = Dm. (10)

It is easy to notice that the obtained limit of the stiffness Ks,I in Equation (10) corresponds to the
stiffness of the homogeneous cylinder, i.e., Ks,I = AD/l = πR2

pD/(2Rp + Lc), where A is the area of
the cross-section of the cylinder, and D is the elastic constant of the cylinder.
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1.2. Governing Equations for the Upper Bound of the Stiffness

In this subsection, the upper limit Ks,I I of the stiffness of the connecting element is obtained by
dividing the hemisphere Ωp and the interface member Ωb (Figure 1b) into sequentially connected
cylinders of the infinitesimal height ∆h. The stiffness of the sequentially connecting cylinders can be
expressed as follows:

Ks,I I =
1

∑i (1/∆ki)
, (11)

where ∆ki is the stiffness of cylinder i of infinitesimal height ∆h

∆ki =
Ap (z) Dp + Ab (z) Dm

∆hi
, as z ∈

[
0, Rp

]
, (12)

∆ki = πDmR2
p/Lc , as z ∈

[
Rp, Rp +

Lc
2

]
. (13)

In Equations (12) and (13), Ap(z) and Ab(z) are the areas of the cross-sections of the particle and
the interface member, respectively, dependent on coordinate z: Ap(z) = π(R2

p − z2) and Ab(z) = πz2.
Then, Equation (11) can be rewritten as follows:

Ks,I I =
1

Lc

πDpR2
p
+ ∑

i

∆hi
Ap (z) Dp + Ab (z) Dm

. (14)

The limit of the sum lim
max{∆hi}→0

∑
i

∆hi
Ap(z)Dp+Ab(z)Dm

of Equation (14) can be written as an integral

I = 2

Rp∫
0

dz

π
(

R2
p − z2

)
Dp + πDmz2

. (15)

Integration of Equation (15) depends on Dp and Dm

I =
2
π

arctan
(√

Dm/Dp − 1
)√

DpR2
p
(

Dm − Dp
) as Dm > Dp, (16)

I =
2
π

arctanh
(√

1− Dm/Dp
)√

DpR2
p
(

Dp − Dm
) as Dp > Dm, (17)

where the arctan and arctanh are the inverse tangent and inverse hyperbolic tangent, respectively.
When Dp = Dm, then it is not possible to use Equations (16) and (17), since Dm − Dp = 0. In this case,
Ks,I I can be obtained from Equation (15) by letting Dm = Dp

I =
2

πDpRp
as Dp = Dm. (18)

Finally, the stiffness Ks,I I is

Ks,I I =
1

Lc/
(

πDpR2
p

)
+ I

. (19)

It is easy to see that, when Dm = Dp, Equations (10) and (19) are equal, i.e., Ks,I = Ks,I I .
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1.3. Mathematical Analysis of the Stiffnesses

In this subsection, hereafter, an analysis of the obtained Equations (9), (10), and (19) is presented
when Dp, Dm → ∞, Dp, Dm → 0, Lc → ∞, and Lc → 0.

The stiffnesses Ks,I and Ks,I I are nonlinear with respect to Dp, Dm, Lc and Rp, where the
nonlinearity of a function f is defined as f (λx1 + λx2) 6= f (λx1) + f (λx2), where λ is a real number.

When Dp → ∞, then

lim
Dp→∞

Ks,I =
1
2

πDmc ln
(

c2

c2 − 2Rpc + Rp

)
− πDmRp,

where c = Lc/2 + Rp, and limDp→∞ Ks,I I = πDmR2
p/Lc. When Dm → ∞, then limDm→∞ Ks,I =

0.5πDpRp, and limDm→∞ Ks,I I = ∞. It is evident that, when both Dp and Dm tend to ∞, then Ks,I and
Ks,I I tend to ∞ as well. In addition, when Dp or Dm → 0, then Ks,I and Ks,I I → 0.

The limits limLc→0 Ks,I and limLc→0 Ks,I I are as follows:

lim
Lc→0

Ks,I =

1
2

πDpDm

(
2

Rp

b
+

RpDp

b2 ln

(
(RpDp)2(

RpDp + bRp
)2

))
,

where b is given in the explanations of the notations below Equation (9), and limLc→0 Ks,I I = 1/I,
where I is given in Equations (16)–(18). When Lc → ∞, then both Ks,I → 0 and Ks,I I → 0.

It should be noted that Ks,I I tends to Ks,I with increasing Lc (see Figure 3); therefore, at the big
values of Lc, the stiffnesses Ks,I ≈ Ks,I I (Figure 3). In Figure 3, it is also demonstrated that Ks,I and
Ks,I I approach each other when Dp → Dm or Dm → Dp.

Figure 3. Dependences of the stiffnesses Ks,I and Ks,I I on the distance between particles’ surfaces
Lc at different modulus of elasticity of interface member Em as Dp = Ep = 40 GPa, Rp = 5 mm,
Dm = Em ∈ {0.05Ep, 0.2Ep, 0.5Ep}.

2. Numerical Validation of the Proposed Methodology

Two numerical validations of the proposed methodology are presented hereafter in two
subsections. In the first validation, the stiffnesses Ks,I and Ks,I I are compared with the stiffnesses
of the 3D FE models of the connecting elements. In the second one, the mechanical behaviour of
the particulate composite cube approximated by the spring model (SM) and modelled by 3D FE is
compared. The FE analysis was performed by ANSYS 12.
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2.1. Stiffness of the Connecting Element

The obtained Equations (9), (10) and (19) of the stiffnesses Ks,I and Ks,I I were verified by a 3D
FE analysis of the connecting element shown in Figure 4. Two cases were considered. In the first
case, Ep = 40 GPa, νp = 0.0, Em ∈ {40× 109, 30× 109, 20× 109, 10× 109, 5× 109, 2.5× 109, 5× 108, 5×
107, 1.0× 106} Pa, νm = 0.498. In the second case, Em = 40 GPa, νm = 0.0, Ep ∈ {40× 109, 30×
109, 20× 109, 10× 109, 5× 109, 2.5× 109, 5× 108, 5× 107, 1.0× 106} Pa, νp = 0.498. For both cases,
Rp = Rb = 5× 10−3 m, and Lc ∈ {5× 10−6, 5× 10−5, 5× 10−4, 2.5× 10−3} m. These parameters of
the particles and interface member were chosen so that it would be possible to verify the obtained
equations at different moduli of elasticity Ei, Poisson’s ratios νi, i ∈ {p, m}, and at the different
distances between the surfaces of the particles Lc.

Figure 4. Geometry of the sample under investigation: a scheme of the connecting element (a), and its
discretization by the tetrahedron elements “SOLID187” (b).

The sample under investigation and its FE model, a quarter of the sample consisting of 1.087620×
106 nodes and 0.778623× 106 elements, with mesh are depicted in Figure 4a,b, respectively. The
boundary conditions were as follows: Uz = 0 was applied to plane B, and Ux = Uy = 0 was applied
to the centre line M (Figure 4a, dotted line) of the FE model. The FE model was discretised by the
tetrahedron elements “SOLID187” of 10 nodes of six degrees of freedom (Figure 4). The average size of
the finite elements of the particles of the sample was 0.01Rp. The volume of the interface material was
conditionally divided into two regions. The contact region between spheres was meshed by fine mesh
whose average size of the finite elements was 0.015Rp, while the remaining volume was meshed by a
coarser mesh of an average size 0.002Rp (Figure 4b).

The stiffness obtained by the FE method, denoted hereafter as Ks,FEM, was obtained by applying
a displacement ∆l on free plane A (Figure 4a) and was calculated as Ks,FEM = F/∆l, where F is the
total reaction force of plane B at the displacement ∆l.

The calculation results are shown in Figure 5. As we can see from Figure 5, when Em ≤ Ep,
then, in the majority of the examined cases, Ks,FEM is closer to Ks,I than to Ks,I I , i.e., |Ks,I − Ks,FEM| <
|Ks,I I − Ks,FEM|. However, when Lc = 2.5 mm and Em ∈ {20, 30, 40} GPa, then Ks,FEM is closer to
Ks,I I than to Ks,I . In addition, from Figure 5, we can see that in the majority of cases, except from the
case when Lc = 2.5 mm and Em ∈ {20, 30, 40} GPa, the stiffness Ks,FEM ∈ [Ks,I , Ks,I I ]. In Figure 5, it is
clearly depicted that Ks,I , Ks,I I → Ks,FEM when Em → 0.



Materials 2018, 11, 1584 8 of 14

Figure 5. Dependences of the stiffnesses Ks,I and Ks,I I on the modulus of elasticity of the interface
member Em at the different distances between particles Lc ∈ {0.005, 0.05, 0.5, 2.5}mm: Lc = 0.005 mm
(a), Lc = 0.050 mm (b), Lc = 0.500 mm (c), and Lc = 2.500 mm (d).

2.2. Mechanical Behaviour of a Particulate Composite Cube

The developed SM was validated by comparing the mechanical responses of a 3D particulate
composite (see Figure 6) obtained by the 3D FE method and by SM. The stiffness of the springs of SM
was calculated by the developed formulas given in Equations (9) and (10).

Overall, 126 samples, which differ in the modulus of elasticity of matrix Em and the volume
fraction of the particles φp, were calculated. The properties of the 3D FE model and the SM
are the following (see Figure 6): the diameters of the particles dp ∈ {10, 12, 13} mm and the
corresponding volume fractions of the particles φp ∈ {28.46, 51.45, 61.35} %; the dimensions
of the cube are (see Figure 6): height hc = 40.2 mm, width bc = 46.42 mm and depth
dc = 32.82 mm. The moduli of elasticity of the 3D FE model and the springs of the SM are the
following: Em ∈ {40× 109, 30× 109, 20× 109, 10× 109, 1× 109, 1× 108, 1× 107, 1× 106} Pa for the
matrix, and Ep = 40× 109 Pa for the particles. Poisson’s ratio of the particles and matrix for the
3D FE model are νp, νm ∈ {0.0, 0.33}, and the Poisson’s ratios for the particle and matrix are the same,
i.e., νp = νm. The stiffnesses of the springs were calculated by Equations (9) and (10). The elastic
constants of the springs for SM were taken as for the uniaxial stress state, i.e., Di = Ei, i ∈ {p, m}.
Therefore, Poisson’s ratio does not affect the stiffnesses Ks,I of the springs. The length of the connecting
elements Lc + dp and the distance between the particles Lp of the samples depend on the volume
fraction φp: Lc = 3.4 mm for φp = 28.46% (dp = 10 mm), Lc = 1.4 mm for φp = 51.45% (dp = 12 mm)
and Lc = 0.54 mm for φp = 61.35% (dp = 13 mm). It is determined that the stiffness Ks,FEM is closer to
Ks,I than to Ks,I I as Lc is small enough. Therefore, the results calculated only with the stiffness Ks,I are
presented hereafter. The 3D FE model and SM of the composite consist of tetrahedron lattices.
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To validate the proposed methodology, the vertical Uy and horizontal Ux displacements in the
directions y and x were imposed to the top planes of the corresponding samples, see Figure 7, and the
tensile Fy,3D and shear Fx,3D forces of the 3D FE model were compared with the corresponding tensile
Fy,1D and shear Fx,1D forces of the FE model of SM. The boundary conditions for the 3D FE model and
SM were as follows: the displacements of the bottom plane of the 3D FE model and SM were restricted
fully, i.e., Ux = Uy = Uz = 0, see Figure 7.

Figure 6. 3D model of the cube particulate composite (a) and its spring model (b).

Figure 7. Tensile and shear displacements applied to the samples: 3D FE model of the cube (a) and a
visualization of the spring model (b).

Two loading cases were applied to the specimens to validate the proposed methodology,
see Table 1.

Table 1. Loading cases for the 3D and spring method models

Loading Case Displacement Ux Displacement Uy

LC1 - 0.5 mm
LC2 0.5 mm -

For the sake of illustration, the shear displacements Ux of the 3D FE model in the direction x
subject to loading case LC2 are shown in Figure 8.
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Figure 8. Shear displacements Ux (in m) of the 3D-FE model of the cube in direction x subject to loading
case LC2.

The dependences of the tensile and shear forces Fy,1D, Fy,3D, Fx,1D, and Fx,3D, of the loading cases
LC1 and LC2 on the ratio Em/Ep calculated by the 3D FE method and by SM, when dp = 10 mm at
different Poisson’s ratios νp, νm ∈ {0.0, 0.33} and different particles diameters dp ∈ {13, 12, 10} mm
in double logarithmic scales, are shown in Figure 9. It should be noticed that the calculated tensile
and shear forces Fy,1D and Fx,1D of SM do not depend on Poisson’s ratios νp, νm ∈ {0.0, 0.33}, since the
calculations were performed as Di = Ei, i ∈ {p, m}, i.e., Di does not depend on Poisson’s ratio.

As we can see from Figure 9, the agreement between the results of Fx,1D and Fx,3D as well
as between Fy,1D and Fy,3D seems very good in double logarithmic scale at various ratios Ep/Eb
and ν ∈ {0.0, 0.33}. However, the relative ratios of the forces (Fy,3D − Fy,1D)/Fy,3D and (Fx,3D −
Fx,1D)/Fx,3D can reveal the agreement between the results better.

Figure 9. Dependences of the tensile forces Fy,3D and Fy,1D for (a); and the shear forces Fx,3D and
Fx,1D for (b) of the loading cases LC1 and LC2 on the ratio Ep/Em at different Poisson’s rations
νp ∈ {0.0, 0.33} when particles’ diameters dp = 10 mm.

The dependences of the relative ratios (Fy,3D − Fy,1D)/Fy,3D and (Fx,3D − Fx,1D)/Fx,3D of the
loading cases LC1 and LC2 on the ratio Ep/Em at different Poisson’s rations νp ∈ {0.0, 0.33, 0.495} and
particle diameters dp ∈ {13, 12, 10} in semi-logarithmic scales are shown in Figure 10. The relative
ratios of loading case LC1 are shown in Figure 10a,c,e while those for the loading case LC1 are shown
in Figure 10b,d,f. The ratios shown in Figure 10a,b correspond to the case when dp = 13 mm, whereas,
in (c) and (d), to the case when dp = 13 mm, and in (e) and (f) to the case when dp = 10 mm.
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Figure 10. Dependences of the relative ratios (Fy,3D − Fy,1D)/Fy,3D and (Fx,3D − Fx,1D)/Fx,3D of the
axial and shear forces of loading cases LC1 and LC2 on the ratio Ep/Em at different Poisson’s rations
νp ∈ {0.0, 0.33, 0.495} and particles diameters dp ∈ {13, 12, 10} mm: (a,b) as dp = 13 mm; (c,d) as
dp = 12 mm; (e,f) as dp = 10 mm.

As we can see from Figure 10, there is not any unique tendency for the ratios |(Fx,3D −
Fx,1D)/Fx,3D| and |(Fy,3D − Fy,1D)/Fy,3D| dependent on Ep/Em except for the fact that the variation
of the relative ratios is smaller when Ep/Em > 102 Pa. From Figure 10, we can also see that for the
tension loading case LC1, when dp ∈ {12, 13} mm, the relative difference |(Fy,3D − Fy,1D)/Fy,3D|
is the biggest as νp = νm = 0.495. However, a similar conclusion is not valid for the shear
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loading case LC2. Only when dp = 13 mm and Ep/Em ≥ 40, the ratio |(Fy,3D − Fy,1D)/Fy,3D| is
the biggest for νm = νp = 0.495. The value of the Poisson ratio 0.495 is an extreme case. It real life,
for common materials, the Poisson ratio can be assumed as ν ∈ [0.15, 0.40]. The analysis showed
that, for the calculated cases, the following limits are valid as dp ∈ {10, 12, 13} mm: for the loading
case LC1 (Fy,3D − Fy,1D)/Fy,3D ∈ [−0.16, 0.39] as ν = 0.0 and (Fy,3D − Fy,1D)/Fy,3D ∈ [−0.11, 0.42]
as ν = 0.33; while for the loading case LC2 (Fx,3D − Fx,1D)/Fx,3D ∈ [−0.08, 0.27] as ν = 0.0,
and (Fx,3D − Fx,1D)/Fx,3D ∈ [−0.18, 0.12] as ν = 0.33. Since the width of the intervals of the relative
ratios of the loading case LC2 are less than for the loading case LC1, then the proposed methodology
is more accurate for LC2 than for LC1.

The dependencies of the relative ratios (Fy,3D − Fy,1D)/Fy,3D of the axial forces of the loading case
LC1 on the Poisson ratios νp = νm ∈ {0.0, 0.18, 0.22, 0.26, 0.3, 0.33, 0.35, 0.38, 0.495} at different ratios
Ep/Em ∈ {1, 2, 4, 40, 400, 4× 103, 4× 104} when the particles’ diameter dp = 13 mm are shown in
Figure 11.

0

Figure 11. Dependences of the relative ratios (Fy,3D − Fy,1D)/Fy,3D of the axial forces of the loading
case LC1 on the Poisson ratio νp = νm at different ratios Ep/Em when particles’ diameter dp = 13 mm.

The figure clearly shows that, when DP = 13 mm, the relative ratio (Fy,3D − Fy,1D)/Fy,3D increases
with increasing the ratio Ep/Em. In addition, the relative ratio increases with increasing the Poisson
ratios νp and νm of the particles and matrix, respectively. The relative ratio increases relatively slowly
within the interval νm, νp ∈ [0.0, 0.2] and sharply when νm, νp ≤ 0.38.

The obtained relative ratios may be treated as too big; however, the effective mechanical properties
have to know to approximate a particulate composite as a homogeneous solid by the springs.
This prognosis is always inaccurate due to many factors affecting the properties of a composite that
cannot be taken into account in the calculations. For example, the well known Hashin–Shtrikman
lower and upper bounds [14] may also vary within wide intervals.

When Poisson’s ratio νp = νm = 0, then the obtained axial forces Fy,3D of the 3D FE model
of the loading case LC1 can be compared with the axial forces Fy,HS,low = UyEe f f ,low A/hc and
Fy,HS,up = UyEe f f ,up A/hc of the homogeneous cube whose effective elastic moduli Ee f f ,low and Ee f f ,up
are calculated by Hashin–Shtrikman’s bounds, where A = bcdc is the cross-section area of the cube.
The dimensions of the homogeneous cube are the same as for the 3D FE model shown in Figure 6.
The moduli Ee f f ,low and Ee f f ,up are calculated by taking into account the volume fractions of the
particles φp of the 3DFE model: φp = 28.46% as dp = 10 mm, φp = 51.45% as dp = 12 mm,
and φp = 61.35% as dp = 13 mm. The analysis has shown that Fy,HS,low is closer to Fy,3D than Fy,HS,up
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to Fy,3D. It is also determined that the relative ratios |1− Fy,HS,low/Fy,3D| < |1− Fy,1D/Fy,3D| when
φp ∈ {28.46, 51.45}% or when dp ∈ {10, 12}mm; however, when φp = 61.35% or dp = 13 mm, then
|1− Fy,HS,low/Fy,3D| > |1− Fy,1D/Fy,3D|. Therefore, when the distance between the particles’ surfaces
decrease, the efficiency of the proposed methodology increases in comparison to the Hashin–Shtrikman
bounds. It should be noted that the already existing methodologies for predicting the effective
mechanical properties of composites cannot be applied directly to the lattice model, since the stiffnesses
of the connecting element are to be determined. The extra methodology has to be involved in the
calculations. These considerations show that the proposed methodology can be useful for predicting
the stiffness constants of the connecting element. Moreover, as the analysis showed, the greater
the ratio Ep/Em is, the more accurate is the proposed methodology in comparison to well-known
methodologies of the prediction of the effective mechanical properties of the composites due to the fact
that the relative ratios Fi,3D and Fi,1D, i ∈ {x, y} do not increase very much with increasing the ratio
Ep/Em.

3. Conclusions

The evaluation of the axial stiffness of the springs for elastic particulate composites of spherical
particles is the main subject of the present article. The methodology takes into account spherical
surfaces of the particles and the bond. The closed-form solutions of two upper and lower bounds of
stiffness have been obtained.

The obtained formulas have been verified by the three-dimensional FE model of the connecting
element. In the majority of cases, the stiffness of the connecting element obtained by the
three-dimensional FE model is between the lower and upper bounds. In the analysis, it has also been
shown that the lower limit of the stiffness is closer to the results obtained by the three-dimensional FE
method than the upper limit when the distance between the particle surfaces is small.

The spring model has been verified by a three-dimensional FE model of the elastic particulate
composite cube subject to the tension and the shear force when the lower bound of the axial stiffness of
the springs was taken into the calculations. It has been shown in the analysis that the absolute values
of the relative ratios of the tensile and shear forces of the spring model and the three-dimensional FE
models may reach even up to 42%. However, the prognosis of the effective mechanical properties of
the composites using the existing methodologies is almost always inaccurate.. Therefore, the proposed
methodology of the evaluation of stiffness of the springs has acceptably high accuracy and can be
applied to the spring method of particulate composites. The proposed methodology can also be
suitable to evaluate the stiffness of the springs of particulate composites of bonded particles when the
diameter of the bond is the same as the diameter of the particles.
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Abbreviations

The following abbreviations and main notations are used in this manuscript:

Dp and Dm are elastic constants of the particle and interface member (matrix), respectively
Ep and Em are moduli of elasticity of the particle and interface member (matrix), respectively
Fx,1D and Fy,1D are shear (in direction x) and normal (in direction y) forces of the the spring model of the

particulate composite cube
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Fx,3D and Fy,3D are shear (in direction x) and normal (in direction y) forces of the the 3D FE model of the
particulate composite cube

Ks is stiffness of a spring or a connecting element
Ks,I and Ks,I I are limit axial stiffnesses of the spring
Ks,FEM is stiffness of the connecting element obtained by the FE model
LC1, LC2 are loading cases
Lc is distance between particles’ surfaces
SM is a spring model consisting of pin-connected springs
Ux and Uy are displacements in directions x and y, respectively
Rp and dp are radius and diameter of a particle
Rb is radius of the interface member
νp and νm are Poisson’s ratios of the particle and interface member (matrix), respectively
φp is particle volume fraction of a composite
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