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Abstract: SrCeO3 and SrCe0.9Sm0.1O3-α were synthesized using a high-temperature solid-state
reaction method using Sm2O3, SrCO3, CeO2 as precursors, then the SrCe0.9Sm0.1O3-α-NaCl-KCl
composite electrolyte was fabricated by compounding SrCe0.9Sm0.1O3-α with NaCl-KCl and sintering
it at a lower temperature (750 ◦C) than that of a single SrCeO3 material (1540 ◦C). The phase
and microstructure of the samples were characterized by X-ray diffraction (XRD) and scanning
electron microscopy (SEM). The conductivities of the samples were measured in dry nitrogen
atmosphere using electrochemical analyzer. The conductivities of the SrCeO3, SrCe0.9Sm0.1O3-α

and SrCe0.9Sm0.1O3-α-NaCl-KCl at 700 ◦C were 2.09 × 10−5 S·cm−1, 1.82 × 10−3 S·cm−1 and
1.43 × 10−1 S·cm−1 respectively. The conductivities of SrCe0.9Sm0.1O3-α-NaCl-KCl composite
electrolyte are four orders of magnitude higher than those of SrCeO3 and two orders of
magnitude higher than those of SrCe0.9Sm0.1O3-α. The result of logσ ~logpO2 plot indicates that
SrCe0.9Sm0.1O3-α-NaCl-KCl is almost a pure ionic conductor. The electrolyte resistance and the
polarization resistance of the H2/O2 fuel cell based on SrCe0.9Sm0.1O3-α-NaCl-KCl composite
electrolyte under open-circuit condition were 1.0 Ω·cm2 and 0.2 Ω·cm2 respectively. Further, the
obtained maximum power density at 700 ◦C was 182 mW·cm−2.
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1. Introduction

Fuel cells have become one of the hot spots in the fields of new energy and environment protection.
This is mainly because they have many advantages like high energy conversion efficiency, quiet
operation, low cost and low pollution emission [1–11]. Cathode, anode and solid electrolyte are the
vital components of the solid oxide fuel cell (SOFC). The key factor to design a high performance
SOFC is the electrolyte. At high temperature, the perovskite-type solid electrolytes based on SrCeO3

exhibits predominant proton conduction under a hydrogen-containing atmosphere. They also have
various applications in hydrogen sensor, fuel cell and membrane reactors, etc. Furthermore, partial
substitution of the Ce4+ by a trivalent rare earth element, such as Eu3+, Y3+, Yb3+ and Lu3+, plays an
important role in the improvement of the protonic conductivity of SrCeO3 when compared to pure
SrCeO3 which exhibits low electronic conductivity [12–18]. Zhang et al. reported Yb doped SrCeO3

powders that were prepared using a low temperature gel combustion method and later studied the
effect of ratio of citric acid to metals cations, oxidizer and calcination temperature on the properties of
the SrCe0.9Yb0.1O3-ö powders [14]. To investigate the effect of temperature on the total conductivity
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and hydrogen fluxes for europium-doped strontium cerate, Shrivastava et al. presented a numerical
method to the defect chemical equations to model defect population in SrCe0.95Eu0.05O3-α under
hydrogen atmosphere [19]. However, research reveals that there are still challenges because the
conductivity of trivalent cations-doped SrCeO3 is not high enough to meet the commercial application
of solid oxide fuel cells.

In recent years, composite electrolytes based on doped ceria and alkaline carbonates or halides
have been fabricated and exhibited enhanced ionic conductivities, as well as considerable cell power
outputs compared to doped ceria [20–26]. Fu et al. suggested that the enhancement of ionic
conductivity of gadolinium-doped ceria (GDC)-LiCl-SrCl2 composite electrolyte may be related to the
interfaces between GDC and LiCl-SrCl2, which greatly facilitates the increase in the oxygen transfer
routes [24,25].

Doped ceria electrolytes are conventional oxide ion conductors. However, there are only a
few reports by Huang’s group and our group based on composite electrolytes of perovskite-type
protonic conductors, such as BaCeO3 and SrCeO3 using inorganic salt for intermediate temperature
fuel cell [27–30]. In addition, perovskite-type solid oxide-inorganic salts composite electrolytes have
not been developed and investigated thoroughly.

In this work, SrCeO3 and SrCe0.9Sm0.1O3-α were synthesized by a high-temperature solid-state
reaction method. The SrCe0.9Sm0.1O3-α-NaCl-KCl composite electrolyte was fabricated by
compounding SrCe0.9Sm0.1O3-α with NaCl-KCl and sintering at lower temperature (750 ◦C). The phase
and microstructure of the samples were characterized by X-ray diffraction (XRD) and scanning electron
microscopy (SEM). The H2/O2 fuel cells were also fabricated and conductivities of the samples were
measured using electrochemical analyzer in dry nitrogen atmosphere in an operating temperature
range of 500–700 ◦C. The differences between previous studies are compared and addressed.

2. Experimental Section

SrCeO3(SC) and SrCe0.9Sm0.1O3-α(SCS) were firstly synthesized using solid-state reaction method.
Stoichiometric amounts of raw materials, i.e., Sm2O3, SrCO3 and CeO2 were mixed together and ball
milled thoroughly in the presence of anhydrous ethanol. The powdered mixtures were then calcined
at 1300 ◦C for 5 h in air. After they cooled down to room temperature, the resulting powdered samples
were finely ground and pelleted. Finally, the pellets were sintered at 1540 ◦C for 5 h to obtain SC
and SCS.

Sodium chloride and potassium chloride were mixed together at a molar ratio of 1:1. Then they
were ground thoroughly and placed in a ceramic crucible. After they were heat-treated two times
at 700 ◦C, NaCl-KCl binary molten salt was achieved, which was then mixed with SrCe0.9Sm0.1O3-α

powders. The amount of NaCl-KCl molten salts was 20 wt % in the powdered mixture. The mixture
was finely grounded and pelleted in a disk which was 18 mm in diameter and 2–3 mm in thickness.
The pellet was subsequently calcined at 750 ◦C for 2 h to obtain SrCe0.9Sm0.1O3-α-NaCl-KCl composite
electrolyte which were labeled as SCS-NK.

X-ray diffractometry (XRD, X’pert Pro MPD, Holland’s company, Amsterdam, the Netherlands)
with Cu-kα radiation was carried out to do the structure and phase analysis of SC, SCS and
SCS-NK samples and scanning electron microscopy (SEM, S-4700, Hitachi, Tokyo, Japan) was
performed to obtain the surface and cross-sectional morphologies of the three pellet samples.
The chemical physics changes and phase formation temperature of the SrCe0.9Sm0.1O3-α(SCS),
SrCe0.9Sm0.1O3-α-NaCl-KCl (SCS-NK) and NaCl-KCl powder in the temperature range between room
temperature to 800 ◦C at a heating rate of 15 ◦C·min−1 under nitrogen atmosphere were determined
by thermogravimetry analysis and differential scanning calorimetry (TGA-DSC) (TGA-DSC, Universal
V 3.7A, TA Instruments, New Castle, DE, USA), respectively.

The electrical conductivity of SC, SCS and SCS-NK pellets (thickness = 1.0–1.1 mm) were measured
by means of AC impedance spectroscopy in a three-electrode system over the frequency range from
0.1 Hz to 1 MHz at 500–700 ◦C in dry nitrogen atmosphere using an electrochemical analyzer (CHI660E,
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Chen Hua company, Shanghai, China), the AC amplitude was 20 mV. The conductivity can be
calculated from: σ = L

R·S , where σ is conductivity, L is thickness, R is resistance and S is surface
area of electrolyte pellet. The effect of different operating atmospheres and pressures on the electrical
conductivity of SCS-NK was also examined. Oxygen’s partial pressure was controlled using mixtures
of O2, N2 and H2, the partial pressure was also monitored in situ by an oxygen sensor placed in
the experimental chamber(Melexis company, Brussels, Belgium) [26–30]. An oxygen concentration
cell with platinum electrodes was developed to measure the electromotive force of SCS electrolyte
membrane from 500 to 700 ◦C. A single cell using SCS-NK as an electrolyte membrane was performed
in the presence of pure hydrogen acting as the fuel and oxygen as the oxidant. The fuel cell was
tested using the linear scanning of current and voltage method within the CHI660E electrochemical
analyzer [31–34]. Silver paste (areas = 0.5 cm2) covered on each side of the electrolyte membrane, they
acted as the current collector and porous platinum was used as electrodes. The power density and
open circuit voltage were recorded at 700 ◦C.

3. Results and Discussion

The powder XRD patterns of SrCeO3 (SC), SrCe0.9Sm0.1O3-α (SCS) and
SrCe0.9Sm0.1O3-α-NaCl-KCl (SCS-NK) are presented in Figure 1. It can be seen that all of
three samples having the same main diffraction peaks at 20.75◦ (110), 29.48◦ (112), 42.18◦ (220) and
61.13◦ (224), this result is consistent with the standard data (JCPDS 082-2370) for the orthorhombic
perovskite phase of SrCeO3. It was noted that some additional peaks related to NaCl and KCl salt
phase appear in the SCS-NK composite, which reveals that NaCl-KCl salt in the form of crystalline was
coexisting with SrCe0.9Sm0.1O3-α and no reaction occurred between SrCe0.9Sm0.1O3-α and NaCl-KCl
salt during the process of heat treatment [30].
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Figure 1. XRD patterns of SrCeO3(SC), SrCe0.9Sm0.1O3-α(SCS) and SrCe0.9Sm0.1O3-α-NaCl-KCl (SCS-NK) 

powder. 

Figure 2 shows surface (a,c,e) and cross-sectional (b,d,f) SEM images of SC, SCS and SCS-NK 

pellets. From Figure 2a,b, it can be observed that there are some closed pores on the surface and 

cross-sectional of SC, but this does not affect the electrical performance test. From Figure 2c, d, it can 

be seen that the SCS pellet shows more denser powder agglomeration than that of SC, However, a 

few closed pores still exists. From Figure 2e,f, it is obvious that the low-melting NaCl-KCl salt are 

closely connected to the surface of SCS powder and the SCS-NK composite electrolyte pellet was 

fully densified after calcining at 750 °C for 2 h, also there were no pores present [28,29]. This result is 

like the observation of the ceria-carbonates composite electrolytes in the study by Shawuti [20]. The 

SCS and NK have been indicated by arrows in Figure 2e.  

Figure 1. XRD patterns of SrCeO3(SC), SrCe0.9Sm0.1O3-α(SCS) and SrCe0.9Sm0.1O3-α-NaCl-KCl
(SCS-NK) powder.

Figure 2 shows surface (a,c,e) and cross-sectional (b,d,f) SEM images of SC, SCS and SCS-NK
pellets. From Figure 2a,b, it can be observed that there are some closed pores on the surface and
cross-sectional of SC, but this does not affect the electrical performance test. From Figure 2c,d, it can
be seen that the SCS pellet shows more denser powder agglomeration than that of SC, However,
a few closed pores still exists. From Figure 2e,f, it is obvious that the low-melting NaCl-KCl salt are
closely connected to the surface of SCS powder and the SCS-NK composite electrolyte pellet was fully
densified after calcining at 750 ◦C for 2 h, also there were no pores present [28,29]. This result is like
the observation of the ceria-carbonates composite electrolytes in the study by Shawuti [20]. The SCS
and NK have been indicated by arrows in Figure 2e.
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Figure 2. Surface (a,c,e) and cross-sectional (b,d,f) SEM images of SrCeO3(SC), SrCe0.9Sm0.1O3-α(SCS)
and SrCe0.9Sm0.1O3-α-NaCl-KCl (SCS-NK) pellets.

Figure 3 shows the thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC)
curves of the SrCe0.9Sm0.1O3-α(SCS), SrCe0.9Sm0.1O3-α-NaCl-KCl (SCS-NK) and NaCl-KCl powder in
the temperature range between room temperature to 800 ◦C at a heating rate of 15 ◦C·min−1 under
nitrogen atmosphere, respectively. In Figure 3a, it is obvious that SCS has almost no weight loss in
the whole test temperature range, while the TGA curves of the SCS-NK and NaCl-KCl show weight
loss at ca. 720 ◦C and 670 ◦C, correspondingly. It can also be speculated that the stability of SCS-NK
composite will decrease with the rise in temperature. The DSC curve of NaCl-KCl system has a vertical
downward, strong endothermic peak at 655 ◦C from Figure 3b which is attributed to the melting
process of inorganic salt. For the SCS-NK, the endothermic peak at 638 ◦C corresponds to the melting
process changing from crystal to non-crystal in the composite [35,36].

The variation in conductivities of SC, SCS and SCS-NK as a function of temperature in dry
nitrogen atmosphere at 500–700 ◦C is depicted in Figure 4. It is evident that the conductivities were
increased with the rise in temperature. SCS showed higher conductivity in comparison to SC and
the highest conductivity was shown by SCS-NK composite electrolyte. The conductivities were
5.13 × 10−7 S·cm−1, 1.75 × 10−4 S·cm−1 and 1.39 × 10−3 S·cm−1 at 500 ◦C and 2.09 × 10−5 S·cm−1,
1.82 × 10−3 S·cm−1 and 1.43 × 10−1 S·cm−1 at 700 ◦C for SC, SCS and SCS-NK, respectively.
The conductivities of SCS obtained in this work were compared with the literature data of some SrCeO3

based electrolytes sintered at high temperatures [37,38]. As shown in Figure 4, the conductivities of
SCS were comparable to values of Sr0.95K0.05Ce0.95Y0.05O3 [37] and SrCe0.9Eu0.1O3-α [38] under the
same condition. It can be attributed to the high temperature solid state reaction method which could
result in a dense electrolyte after calcination at 1300 ◦C and 1540 ◦C for 5 h, this can be confirmed by
the SEM images of Figure 2c,d.
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and NaCl-KCl powder in nitrogen up to 800 ◦C.
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Figure 4. Temperature dependence of the conductivities of SrCeO3(SC), SrCe0.9Sm0.1O3-α(SCS) and
SrCe0.9Sm0.1O3-α-NaCl-KCl (SCS-NK) in dry nitrogen atmosphere at 500–700 ◦C.
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In our previous reports [26,30], SrCeO3-based electrolytes were mixed conductors of oxygen
ion and electron hole under dry nitrogen atmosphere, whereas here they were mixed conductors of
proton, oxygen ion and electron hole under wet nitrogen atmosphere. As we know, protons and oxide
ion vacancies are the predominated defects under wet and dry conditions, respectively. In addition,
the oxygen-ion diffusion in the conductors need high temperature, whereas protons are the smallest
ions and the mobility of protons is much greater compared to that of other ions. Therefore, the
conductivity of SrCeO3-based electrolytes is found to be higher in the wet nitrogen atmosphere when
compared to dry nitrogen atmosphere.

It is clear that the ionic conductivities in SCS-NK composite electrolyte are four and two orders of
magnitude higher than those of SC and SCS at 700 ◦C, respectively [13,15,16,28,29]. It can be concluded
that the NaCl-KCl molten salt that was coated on the surface of SrCe0.9Sm0.1O3-α and distributed
along the grain boundaries, greatly increased the fast ion transfer routes and is beneficial for long
distance transport of ions [23,29].

An oxygen concentration cell using SCS as electrolyte membrane was investigated at operating
temperatures between 500 and 700 ◦C. As shown in Figure 5, the observed electromotive force (EMFobs)
values of the oxygen concentration cell were largely lower than the calculated electromotive force
(EMFcal) values. The formula to calculate the electromotive force is the same as that described
previously [30]. The results show that SCS electrolyte is not a pure ionic conductor, but a mixed
conductor of oxide-ion and hole [12,39]. Transport numbers of oxygen ions in SCS electrolytes were
0.34–0.35 which were calculated from the EMFobs/EMFcal.
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Figure 5. The electromotive force values of the oxygen concentration cell using SrCe0.9Sm0.1O3-α(SCS)
as electrolyte in the temperature range from 500 to 700 ◦C.

Figure 6 shows the conductivity of the SCS-NK composite measured at 700 ◦C as a function
of oxygen partial pressure (pO2). As seen in Figure 6, the logσ values do not show any changes
over oxygen’s partial pressure range of 10−17~10−3 atm, which suggests that SCS-NK composite
electrolyte is virtually a pure ionic conductor. However, there were some minor deviations from
linearity in conductivity in oxygen’s partial pressure ranging from 10−19 to 10−17 atm and from 10−3

to 100 atm, which reveals that SCS-NK composite electrolyte exhibits mixed conductivity and mainly
ionic conducting properties over the oxygen partial pressure range [26].
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Figure 6. Plot of the conductivity of SrCe0.9Sm0.1O3-α-NaCl-KCl (SCS-NK) as a function of pO2 at
700 ◦C.

The impedance spectra of SCS and SCS-NK under open-circuit condition at 700 ◦C are illustrated
in Figure 7. The electrolyte resistance values were calculated by the difference in the semicircle diameter
between high frequency (HF) and medium frequency (MF), and the polarization resistances values
were obtained by the difference in the semicircle diameter between medium frequency (MF) and low
frequency (LF). It can be seen that the electrolyte resistance and the polarization resistance for SCS
were 3.2 Ω·cm2 and 1.8 Ω·cm2, respectively. The electrolyte resistance and the polarization resistance
for SCS-NK composite electrolyte were 1.0 Ω·cm2 and 0.2 Ω·cm2, respectively [20,21,28,40]. The results
indicated that NaCl-KCl molten salt in SCS-NK composite electrolyte, not only provides additional
transport routes, but also increases the mobility of the carrier ions, which in turn leads to the decrease
in activation energy, thus resulting in a higher electrical performance [40,41].
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The I-V-P curves of the single cells using SCS and SCS-NK as electrolyte membrane at 700 ◦C by
using pure hydrogen as fuel and oxygen as oxidant is shown in Figure 8. The open circuit voltages
of the single cells using SCS and SCS-NK as electrolyte were close to the theoretical values, which
illustrated that the SCS electrolyte membrane was dense enough after sintered at 1540 ◦C for 5 h and
was the same as the results of Figure 2c,d, on the other hand, it also revealed that SrCe0.9Sm0.1O3-α is
fully covered by and closely connected to NaCl-KCl salt to make the SCS-NK composite electrolyte
pellet fully dense and facilitate charge carrier transportation. The maximum power density for
the single cell using SCS-NK as electrolyte membrane was 182 mW·cm−2, which is more than 47



Materials 2018, 11, 1583 8 of 11

times higher than that of SCS (3.8 mW·cm−2). Fu et al. reported that the gadolinium-doped ceria
(GDC)-LiCl-SrCl2 composite electrolyte shows a maximum power density as high as 260 mW·cm−2

at 550 ◦C which is much higher than that of GDC [24,25].In previous studies by our group, we
have demonstrated that the hydrogen–oxygen fuel cells using SrCe0.9Gd0.1O3-α-NaCl-KCl and
SrCe0.85Er0.15O3-α-NaCl-KCl composite as electrolytes generates the maximum power densities of
215 mW·cm−2 and 304 mW·cm−2 at 700 ◦C, respectively [28,29]. From the results of Figures 4 and 8,
we found that the ionic conductivity of SrCe0.9Sm0.1O3-α was significantly improved when doped
with Sm ions and the discharge performance of the SCS-NK composite electrolyte were superior to
that of SrCe0.9Sm0.1O3-α under the same test condition when further combined with NaCl-KCl salt.
Such performance may be attributed to the higher ionic conduction of the composite electrolyte, which
has been discussed above. However, the durability of the electrolytes have not been tested and will be
done as future work.
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4. Conclusions

In summary, the SrCe0.9Sm0.1O3-α-NaCl-KCl composite electrolyte was fabricated by
compounding SrCe0.9Sm0.1O3-α with NaCl-KCl and sintering at much lower temperature (750 ◦C)
than that of single SrCeO3 materials (1540 ◦C). The conductivity of SrCe0.9Sm0.1O3-α-NaCl-KCl
composite electrolyte was 1.43 × 10−1 S·cm−1 which is four orders of magnitude higher than
that of SrCeO3 and two orders of magnitude higher than that of SrCe0.9Sm0.1O3-α in dry nitrogen
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boundaries of SrCe0.9Sm0.1O3-α which greatly increased the fast ion transfer routes and is beneficial
for long distance transport of ions. The electrolyte resistance and the polarization resistance for
SrCe0.9Sm0.1O3-α-NaCl-KCl composite electrolyte were 1.0 Ω·cm2 and 0.2 Ω·cm2 under open-circuit
condition, respectively, and the obtained maximum power density was 182 mW·cm−2 at 700 ◦C, which
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