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Abstract: A heuristic approach to design lightweight metamaterials with novel configurations and
arbitrary Poisson’s ratio is studied by using the functional element topology optimization (FETO)
method. Mathematical model of the optimization problem is established, where the minimization
of the mass is set as the objective, then a series of metamaterials with Poisson’s ratio ranging
from −1.0 to +1.0 are designed by solving this model. The deformation resistance and vibration
reduction performance of the novel metamaterials and conventional honeycomb are compared by
numerical simulations. Specific stiffness analysis shows that the novel metamaterials are 5.6 to
21.0 times more resistant to deformation than that of the honeycomb, and frequency response shows
about 60% improvement in vibration reduction performance. Finally, the lightweight effects of the
novel metamaterials on deformation resistance and vibration reduction performance are analyzed,
and further analysis reflects that the lightweight effects increase with the increase of the absolute
value of the Poisson’s ratio.

Keywords: lightweight; metamaterials; functional element; topology optimization; deformation
resistance; vibration reduction

1. Introduction

The unusual properties of metamaterials have been proven to add significant improvement
compared to some traditional materials, especially regarding their mechanical properties related
to Poisson’s ratio (PR), such as impact resistance [1,2], weight [3], energy absorption [4,5], etc.
Metamaterials with improved properties have demonstrated their efficiency in several practical
fields, such as defense, transportation and aerospace [6,7]. Moreover, the successful manufacturing of
metamaterials in recent years [8,9] has also made these unusual features highly valued by materials
scientists and physicists [10].

Previous studies on lightweight metamaterials have focused more on evaluating their mechanical
properties through simulations and experimental tests, which are not suitable for the application
in specific aspects [11]; however there is a lack of systematic methodology for designing novel
configurations. It is well known that the mechanical properties of metamaterials are determined
by special design and periodic arrangement of the substructure configurations; thus, the internal
configurations of substructures play a decisive role in the extraordinary properties, and many
interesting properties can be obtained by designing novel substructures [12,13].

The adoption of an optimization design method makes it convenient to design metamaterials with
specific properties [14,15]. In two of the common optimization methods, size and shape optimization
are characterized by convenience and practicality [16], where metamaterials are designed by optimizing
cell wall thickness, cell angle, cell height, and cell length [17,18]. To summarize, these optimizations
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are still based on the known configurations of metamaterials; consequently, they cannot improve the
mechanical properties to a greater extent than changing topology configurations [19,20]. For these
reasons, this work introduces a higher-level topology optimization method, which provides a broader
margin for designing novel topological configurations of metamaterials. The advantage of topology
optimization over the former two methods (size and shape optimization) is that the optimization
calculation will automatically find the optimal structure in the design domain instead of locally
optimizing the pre-specified configurations of metamaterials [21].

Topology optimization design methods of metamaterials can be classified from microscopic to
macroscopic scales. On one hand, microscopic topology optimization [22] focuses on the design
of the microscopic materials’ layout, instead of paying attention to the distribution of materials
on a macroscopic path. On the other hand, concurrent topology optimization [23] achieves both
microscopic materials design and macroscopic structural design. Nonetheless, mechanical properties of
metamaterials are mainly determined by the special designs of macroscopic substructure configurations
and the periodic arrangement of them, rather than the properties of the constituent materials [11,12].
Consequently, previous work by Qin et al. [24] proposed a macroscopic design method of functional
element topology optimization (FETO) that only performed topology optimization design for the
macroscopic substructures. The general idea of the FETO method can be depicted as metamaterials
comprised of periodically arranged optimal substructures that are designed by topology optimization.
Obviously, this method can not only improve the mechanical properties effectively, but also promote
the calculation efficiency. Thus, the method of FETO is introduced into this work for designing
metamaterials with novel configurations.

Moreover, metamaterials with lightweight properties are being widely used in the applications for
structural weight reduction, ranging from hexagonal honeycombs to disordered 3D skeletal networks
of foams and sponges [25,26]. In this work, weight minimization is chosen as the goal of an optimization
problem to design a series of lightweight metamaterials with arbitrary PR.

Most materials present positive PR effects and tend to get thinner when stretched,
whereas negative PR materials are laterally expanded, showing an abnormal “swelling” behavior [27].
Previous work by Carta et al. [28] shows that the PR directly affects the mechanical properties
of materials, such as indentation resistance, shear modulus, impact absorption and damage
tolerance [29,30]. Therefore, we design a series of metamaterials with various negative and positive
PRs to study the influence of PR values on mechanical properties.

This work is organized as follows. Section 2 begins with the introduction of the FETO method
and summarizes the measuring method of macroscopic PR effects during the iteration of topology
optimization. In Section 3, a mathematical model of the optimization problem is established and solved
to design lightweight metamaterials. Sections 4 and 5 analyze the deformation resistance and vibration
reduction performance of these metamaterials, respectively. Section 6 analyzes the lightweight effects
on deformation resistance and vibration reduction.

2. Functional Element Topology Optimization Method

This section describes the FETO design method in detail, and the calculation of the macroscopic
PR effect is introduced to evaluate the equivalent PR of the functional element during the iteration
of optimization.

2.1. Definition of Functional Elements and Metamaterials

Figure 1 illustrates the main idea of designing metamaterials via the FETO method.
A metamaterial to be designed is divided into a certain number of macroscopic substructure domains,
and each domain is defined as a Functional Element. Then the single functional element is discretized
into a fine finite element mesh and used for structural topology optimization. That is, the essence of
FETO is to seek optimal material distribution in the domain of a functional element.
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above, the method by Carneiro et al. [37] is also used to describe the macroscopic PR effect during 
the iteration of topology optimization of a functional element. As shown in Figure 2, when the 
element is stretched along the Z-direction, the points P1 and P2 move in the Z-direction and X-
direction, respectively, and the strain of the cell configuration is: 𝜀 = 2 ∆𝑥𝑥 , 𝜀 = 2 ∆𝑧𝑧  (1)

where 𝜀  is the tensile strain in the stretching direction and 𝜀  is the tensile strain perpendicular to 
the applied load. ∆𝑥  and 𝑥  are the displacement and coordinate position of point P2 in the X-
direction, respectively. ∆𝑧  and 𝑧  are the displacement and coordinate position of point P1 in the 
Z-direction, respectively. Then the macroscopic PR value can be described as: 𝜈 = − 𝜀𝜀  (2)

Figure 1. Schematic of metamaterials design method based on functional element topology
optimization (FETO) method.

2.2. Macroscopic Poisson’s Ratio Effect of Functional Elements

Poisson’s ratio (PR) is defined as the negative ratio of the transverse contraction strain to the
longitudinal extension strain with respect to the direction of the stretching force applied, as tensile
deformation is considered positive and compressive deformation negative [31]. As a key parameter of
metamaterials [28], the evaluation of PR values for metamaterials with common cell configurations
follows specific calculation methods [11,32,33], and these accepted PR evaluation methods are based
on deterministic configurations [34]. However, the general calculation method of PR for novel
configurations is still lacking. In addition, structural uncertainty and the existence of large numbers of
irregular holes during the optimization iteration are not conducive to the calculation of PR. For this
reason, we introduce an evaluation of macroscopic PR effects to solve these two problems.

The work by Schwerdtfeger and Guan et al. [35,36] provides a heuristic idea to study the
macroscopic mechanical properties of materials by applying simple loads, which lays the foundation
for the macroscopic characterization of mechanical properties of materials in complex stress states.
In addition, Carneiro et al. [37] studied the PR by numerical simulation in which the cell of cellular
materials is regarded as a macroscopic material and the PR is defined according to the PR test in
material mechanics, where the PR is expressed as a negative ratio of the strain in the orthogonal load
direction to the strain in the load direction. In view of the validity of the PR evaluation described above,
the method by Carneiro et al. [37] is also used to describe the macroscopic PR effect during the iteration
of topology optimization of a functional element. As shown in Figure 2, when the element is stretched
along the Z-direction, the points P1 and P2 move in the Z-direction and X-direction, respectively,
and the strain of the cell configuration is:

εX = 2
∆x2

x2
, εZ = 2

∆z1

z1
(1)

where εX is the tensile strain in the stretching direction and εZ is the tensile strain perpendicular to the
applied load. ∆x2 and x2 are the displacement and coordinate position of point P2 in the X-direction,
respectively. ∆z1 and z1 are the displacement and coordinate position of point P1 in the Z-direction,
respectively. Then the macroscopic PR value can be described as:

νZX = − εX
εZ

(2)

Figure 2 shows the initial design domain and loading conditions of the optimization design
problem, with domain dimensions of B = 42 mm, H = 30 mm and L = 26 mm. The design domain is
divided into 84 × 84 elements of type PSHELL. The upper and lower boundaries are simultaneously
bearing the vertical tensile loads. Two points are chosen to measure the macroscopic PR effect,
corresponding to points P1 and P2 in Figure 2. The constitutive materials are isotropic and the
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properties of density, Young’s modulus, and material PR are ρ = 1180 kg/m3, E0 = 2636 MPa,
and νs = 0.38, respectively.

According to the definition of PR in Equation (2), the macroscopic PR can be expressed as:

ν = − ε2

ε1
= − ∆u2

∆w1
· L
H

(3)

where the Z-direction displacement of point P1 is denoted by ∆w1, and the X-direction displacement
of point P2 is denoted by ∆u2.Materials 2018, 11, x FOR PEER REVIEW  4 of 19 
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3. Design Method of Lightweight Metamaterials

3.1. Topology Optimization Theory Used in FETO Method

Briefly, topology optimization retains the mesh elements that are favorable to the structural force
path and remove the mesh elements that have little effect on the configuration through iterative
calculations. Topology optimization is now a well-established field. Indeed, numerous topology
optimization methods, such as the homogenization method [38], solid isotropic materials with
penalization (SIMP) [39], evolutionary structural optimization (ESO) [40], the level set method [41],
etc., now exist. In particular, SIMP uses the so-called “power-law approach”, with a wide range
of engineering applications; the general idea is to introduce a fictitious density variables field to
penalize, for each element, some relevant physical quantities like element stiffness tensor, material
density, etc. The value of the pseudo-density at each element centroid is taken as a design variable
and the optimum value is provided at the end of the optimization process. In this way, the topology
optimization problem is transformed into a classical parametric optimization problem.

In this work, topology optimization is performed with commercial software
Hyperworks/OptiStruct (Altair HyperWorks 13.0; Altair Engineering Inc.; Troy, MI, USA),
and the SIMP method is implemented in a finite element formulation in OptiStruct. The mathematical
expression of SIMP is:

E(xe) = Emin + xp
e (E0 − Emin) (4)

K =
N

∑
e=1

(
Emin + xp

e ∆E
)
·k0 (5)

where xe(e = 1, 2, · · · , N) is the material’s relative density of e-th element, and N is the number of
elements. E0 and Emin are the initial elastic modulus of the elements and the elastic modulus of the
hole elements, respectively; ∆E = E0− Emin, Emin = E0/1000. p is the penalization power. E(xe) is the
elastic modulus after interpolation. K is the global stiffness matrix, which can be obtained as the sum
of elemental stiffness over all N elements, and k0 is the initial stiffness matrix of each mesh element.
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Since Emin � E0, Equation (4) can be reduced to:

E(xe) = Emin + xp
e E0 (6)

3.2. Mathematical Model of Metamaterials Lightweight Design

It should be noted that the common optimization objective functions include maximum
compliance, minimum compliance and minimum mass. The mathematical model with minimum
compliance as the objective function is suitable for designing optimization problems with maximum
load bearing performance; that is the greater the bearing stiffness of the structure, the smaller the
compliance value. A mathematical model with minimum compliance as the objective function
can be used to design a structure with optimal characteristics of energy absorption. In addition,
the optimization problem with minimum mass as the objective function enables the design of
lightweight materials or structures. These three types of optimization design problem are studied in
detail in the work by [24].

In this section, the goal of minimizing mass is used to design metamaterials with lightweight
properties. Three components of the topology optimization model are, under the premise of limited
amount of materials: PR value as the constraint, relative density of materials as the design variable, and
minimization of mass as the objective. Then, metamaterials with various Poisson’s ratios are designed
to reveal the effect of PR value on vibration reduction and energy absorption. The mathematical
expression of the topology optimization problem is as follows:

find X = {x1, x2, · · · xN }T

minM(X) = ∑N
e=1 xeρV0

s.t. KU = ∑N
e=1 xp

e k0ue = F
|ν− ν0| ≤ ε

f ′vol ≤ V(X)/V0 ≤ f ′′vol
0 < xmin ≤ xe ≤ xmax ≤ 1

e = 1, · · · , N,

(7)

where X = {x1, x2, · · · xN }T is the vector of relative density. xmax and xmin are the upper and lower
limits of the design variables, respectively (non-zero to avoid singularity). M is the total mass of
functional element. F and U are the vectors of global loading and displacement. ue is the displacement
vector of each mesh element corresponding to the design variables. V(X) = ∑N

e=1 xeVe0 is the total
structural volume in optimization progress, where Ve0 is the initial volume when the relative density
of the e-th finite element mesh is 1. V0 is the initial total volume when the relative density of the design
domain area is 1. f ′vol and f ′′vol are the lower and upper limit volume fractions in the design domain.
|ν− ν0| ≤ ε is the constraint of PR (ε = 0.01), where ν and ν0 represent the PR in optimization iteration
and the specified design requirements, respectively.

3.3. Optimization Solutions of Lightweight Metamaterials

On one hand, metamaterials should have lightweight properties; thus, the upper limit of the
volume fraction is set to 20% to avoid the metamaterials being too heavy after optimization. On the
other hand, the usage of materials should not be lower than the lower limit of 20% to guarantee the
stability of the optimized metamaterials. That is, the upper and lower limits of materials consumption
are set as 0.1 ≤ V(X)/V0 ≤ 0.2.

When the PR values are taken as ν0 = −0.3,−0.6,−1.0,+0.3,+0.6 and + 1.0, the corresponding
optimal topology configurations are shown in Figure 3 (the solutions are derived in commercial
software HyperWorks, and the value of penalization power is 1.5); relative density values are
represented by various colors as shown in Figure 3. It is found that the optimized configurations
possess clear material distribution paths, and the optimized values of PR are close to the specified
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design requirements (Section 3.4 verifies the error rate of PR values between the optimized
configurations and design requirements).
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3.4. Extraction of the Optimal Configurations

At the end of the optimization iteration, the wall thicknesses of the functional elements are not
uniform (as shown in Figure 3), which is not convenient to manufacturing. Gibson [32] verified that
wall thickness has a negligible effect on mechanical properties when the wall thickness is much smaller
than the cell size. Thus, this work ignores the performance changes caused by inconsistent wall
thickness, and the optimal configurations are extracted as the functional elements with equal wall
thickness t = 1 mm.

Considering the irregularity of configurations and the inconvenience of dimensioning, uniformly
spaced grids are drawn to measure the dimensions. As shown in Figure 4, the complete area covered
by the grids is 42 mm × 30 mm, and the size of each grid is 2 mm × 2 mm.

Due to the inevitable errors in the extraction process of the optimized configurations, we need to
reanalyze the extracted configurations of functional elements. Table 1 summarizes the relative errors
of Poisson’s ratio between the extracted configurations and design requirements. It can be seen that
the PRs of the extracted functional elements are in good agreement with the design requirements.

It should be noted that the metamaterials designed in this work are anisotropic materials because
the PR in each direction is different. The major and minor Poisson’s ratios are represented by
ν = νZX = PRZX and νXZ = NUZX, respectively; the Poisson’s ratio, ν, in this work refers to the
major Poisson’s ratio, νZX = PRZX.
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Ideally, Poisson’s ratio is an inherent property of materials, and does not change with changes
in the form, size, etc. of the structure. In this work, we studied the relationship between the PR of a
single functional element and the PR effects of periodically arranged metamaterials.

Table 1. Relative errors of Poisson’s ratio between the extracted configurations and design requirements
(ν = νZX = PRZX).

Design Requirements ν = −0.3 ν = −0.6 ν = −1.0 ν = +0.3 ν = +0.6 ν = +1.0

After Extraction ν′ = −0.316 ν′ = −0.583 ν′ = −1.027 ν′ = +0.303 ν′ = +0.578 ν′ = +1.08

Relative Error Ratio +5.3% −2.8% +2.7% +1.0% −3.7% +8.0%Materials 2018, 11, x FOR PEER REVIEW  7 of 19 
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Figure 5 shows the dimensions and measuring points of the metamaterials with ν = +1.0,
and Figure 6 shows the static analysis of the metamaterials of Figure 5. The measuring points 1–8 are
used to describe the displacement in the X-direction; the average displacement of the eight measuring
points is 0.180 mm, which means that the expansion in the X-direction is 0.360 mm, and the strain
corresponding to the expansion is 2.40 × 10−3. In addition, the measuring points 9–11 are used to
describe the displacement in the Z-direction, and the average displacements of these three points
is 0.470 mm. Thus, the tensile in the Z-direction is 0.470 mm, and the strain corresponding to the
expansion is 2.24 × 10−3. Finally, the macroscopic PR effect of the metamaterials is +1.07, and the error
rate between this value and the PR value of the single functional element (ν = +1.0) is 7.0%. Therefore,
we conclude that the macroscopic PR effects of the metamaterials structure agrees with the PR of the
single functional element.
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3.5. Metamaterials Formation Based on Periodic Arrangement of Functional Elements

Each optimal configuration in Figure 4 is periodically arranged to form the five-layer and
five-column metamaterials prototypes (as shown in Figure 7). A concentrated load is applied at
the center of the upper faceplate and the lower faceplate is fixed, and the thickness of both faceplates
is 10 mm. The outline dimensions are 150 mm × 230 mm, and the depth perpendicular to the page is
20 mm. The prototypes of metamaterials in Figure 7 are fabricated by additive manufacturing, and the
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materials’ properties are consistent with the parameters in Section 2.2. Figure 8 shows the functional
element, metamaterials and prototypes with ν = +1.0.
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In this work, analysis is of thin plates with equal thickness, which only receive surface force
parallel to the plate surface and do not vary along the thickness at the edge of the plate. The physical
force is also parallel to the plate surface and does not vary along the thickness. Therefore, the prototypes
shown in Figure 7 can be classified into 2D prototypes.

4. Evaluation Method of Static Properties of Metamaterials

Applications of materials require not only high strength and high stiffness, but also light weight.
For low-density materials, strength and stiffness are not prominent, but the ratios of strength and
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stiffness to density are high, as in magnesium alloys, composites, and honeycombs [42]. To facilitate
the comparison of deformation resistance of various metamaterials, the concept of specific stiffness is
introduced, which is defined as the ratio of tensile stiffness to the density of materials. The expression
of the specific stiffness, κ is as follows:

κ = ES/λ
(

N·m2/kg
)

(8)

where ES = P/µ is the equivalent stiffness of metamaterials, P is the tensile load acting on
metamaterials, and µ is the corresponding deformation. λ = W/Vs is the equivalent density of
metamaterials, W and Vs are the mass and outline volume (overall dimensions), respectively.

Although the load, structure outline dimensions, material properties, and structural form of
each metamaterial are not uniform, it is convenient to compare the deformation resistance among
various metamaterials by calculating the specific stiffness. In Figure 6, a load of 1 N is applied to each
node on the upper faceplate, and the corresponding total load, P is shown in Table 2. (For example,
if there are 100 nodes in the upper faceplate, the total load, P will be 100 N). In Figures 9 and 10,
the displacement contours of six metamaterials prototypes and honeycomb are obtained by static
analysis, and the displacements at the upper faceplates are extracted and averaged to represent the
Z-direction deformation, µ. The values of µ, W and Vs are summarized in Table 2.

It should be noted that although the magnitude of the load applied to each metamaterial in
Figure 7 is not uniform, the effect of load magnitude on the deformation resistance performance of
the metamaterials can be avoided by the specific stiffness method. This is due to the fact that the
equivalent stiffness, ES represents the inherent property of deformation resistance, and the value of
ES is not affected by external loads during the elastic deformation state of the metamaterials.

By comparing with honeycomb metamaterials by Zhang et al. [43], the stiffness properties of the
novel metamaterials are demonstrated. Comparison in Table 2 shows that the novel metamaterials
exhibit higher specific stiffness values than honeycomb. Specifically, the ratios of the specific
stiffness of the novel metamaterials to that of the honeycomb are 5.7, 6.6, 13.1, 4.8, 6.9 and 22.0,
respectively, which means that the optimized metamaterials have advantages in terms of deformation
resistance. In addition, further analysis in Figure 11 shows that the deformation resistance of the novel
metamaterials increases with increasing absolute values of Poisson’s ratio.
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Table 2. In-plane specific stiffness of metamaterials.

Metamaterials P/N µ/mm ES/(N·mm−1) W/kg Vs/mm3 κ/(N·m2/kg)

Honeycomb with ν = −0.5 33 15.07 2.2 1.092 × 10−1 294 × 230 × 20 27.2
ν = −0.3 31 1.39 22.3 9.13 × 10−2 210 × 150 × 20 153.9
ν = −0.6 19 0.68 27.9 9.81 × 10−2 210 × 150 × 20 179.4
ν = −1.0 25 0.41 60.4 1.071 × 10−1 210 × 150 × 20 355.3
ν = +0.3 36 2.12 17.0 8.18 × 10−2 210 × 150 × 20 130.9
ν = +0.6 50 2.17 23.0 7.77 × 10−2 210 × 150 × 20 186.7
ν = +1.0 36 0.47 76.7 8.06 × 10−2 210 × 150 × 20 599.5

5. Evaluation Method of Vibration Reduction of Metamaterials

Vibration performance of continuous systems is of great practical importance, as vibration with
constraints implies cyclic stresses and inevitable fatigue damage. Compared with traditional systems,
metamaterials decrease the propagation of vibrations more efficiently and exhibit higher dynamic
stiffness [44]. Numerical analyses for the vibration performance of the metamaterials are carried out in
this section.

5.1. Frequency Response Analysis

The commercial software of HyperWorks is used to build the finite element model of
metamaterials and applied to calculate the modal and frequency responses. The lower faceplates are
fixed while an axial excitation load, P = 10 N is applied at the center of the upper faceplates with sweep
bandwidth of 5–200 Hz, and critical damping coefficient of 1%. It should be noted that the frequency
range of the honeycomb vibration damping performance by Zhang et al. [43] is 10–100 Hz. In order to
compare with the honeycomb research, the frequency range of this work is chosen to be 5–200 Hz.

The Lanczos method [45] is used to calculate the first 50 order modes of metamaterials; Table 3
shows the vertical first-order natural frequency. The dynamic vibration behaviors of the metamaterials
are evaluated by the frequency response of measuring points A–D in Figure 7.

Table 3. Vertical first-order natural frequency of metamaterials corresponding to various PR.

Metamaterials with Various PR ν = −0.3 ν = −0.6 ν = −1.0 ν = +0.3 ν = +0.6 ν = +1.0

Natural Frequency 89.5 Hz 97.5 Hz 136.2 Hz 78.1 Hz 90.9 Hz 163.1 Hz

5.2. Vibration Reduction Performance

The vibration evaluation indicators include vibration level difference, power flow, insertion loss,
etc. Among these, the vibration level difference is more convenient and reasonable than other indicators
in terms of measurement or evaluation effectiveness, and is more commonly used in applications.

The concept of the vibration level difference (VLD) [46] is used to measure the attenuation or
suppression efficiency of the vibration isolation device against the vibration of the vibration source.
The larger the vibration level difference, the better the vibration reduction effect of the vibration
isolation device. Therefore, the acceleration vibration level difference is used to evaluate the vibration
reduction performance of metamaterials.

In this work, the acceleration vibration level difference of the functional elements in the central
area is used to evaluate the vibration behavior of the metamaterials. The three functional elements to
be measured correspond to the measuring points A–B, B–C, and C–D. For example, VLDA–B means the
VLD between measuring points A and B. Similarly, VLDB–C and VLDC–D mean the VLD between the
points B–C and C–D, respectively. The VLD values between measuring points i-j can be expressed as:

VLDi–j = 20 log10

(
ai
aj

)
(dB) (9)
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where ai and aj are the acceleration amplitudes of the measuring points i and j, respectively.
Figure 12 plots the VLD curves between each two measuring points with a given Poisson’s ratio,

which depicts that for a metamaterial with a certain PR value, the closer the location of measuring
points to the fixed lower faceplates, the higher the VLD values. Part of the explanation is that the
presence of boundary effects results in a larger VLD value between two points closer to the fixed
constrained position.Materials 2018, 11, x FOR PEER REVIEW  13 of 19 
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An in-depth analysis is performed to show the influence of Poisson’s ratio and vibration reduction
performance (as shown in Figure 13). Under the premise of selecting similar measuring points,
the vibration reduction performance of the six metamaterials is compared and summarized. It can be
found that the vibration reduction of positive PR metamaterials is better than that of the negative ones.

The VLDs between A–B, B–C, and C–D measuring points are averaged to comprehensively
describe the vibration reduction characteristics of the six metamaterials, which can be expressed as

VLD = (VLDA–B + VLDB–C + VLDC–D)/3 (10)
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As shown in Figure 14, averaging the three VLD curves of each graph in Figure 12 yields the
VLD of the metamaterials with various PR. It shows that all VLD except for the metamaterials with
ν = −0.3 are close to 5 dB, which means the amplitude of the vibration is reduced by 43% after the
vibration passes through the metamaterials. From the data in Figures 12 and 13, it can be concluded
that the metamaterials designed in this work can effectively reduce structural vibration.Materials 2018, 11, x FOR PEER REVIEW  14 of 19 
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5.3. Relationship between PR and Vibration Reduction Performance

In order to express the vibration reduction performance more intuitively in the entire frequency
band (5–200 Hz), the data in Figure 14 are further analyzed, and the curves of VLD are calculated as
synthesized value VLDall by:

VLDall
=

1
S

S

∑
i=1

VLD f i (11)

where, fi = 5 + 5i Hz, i = 1, 2, · · · , S, and S equals 39 when the sweep frequency ranges from 5 to
200 Hz. VLD fi

represents the amplitude of VLD at the specified frequency fi.
Figure 15 summarizes the synthesized values in three frequency bands of 5–100 Hz, 105–200 Hz

and 5–200 Hz. In the range of 5–100 Hz, the vibration reduction is 0.5 dB higher than that of other
frequency bands, which means the novel designed metamaterials exhibit better vibration reduction
at low-frequency. In addition, as the absolute value of the PR increases, the vibration reduction
performance is also improved.
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Furthermore, this work compares the vibration reduction performance of the novel designed
metamaterials and honeycomb by Grima et al. [44]. The external dimensions are shown in Figure 8
and the wall thickness is 1 mm. The same analytical strategy Grima et al. [44] was introduced into
this work to study the influence of PR and wall thickness on the vibration reduction performance of
honeycomb. Figure 16 shows the vibration reduction performance of honeycomb, which is below
2.8 dB; however, the vibration reduction of the novel lightweight designed metamaterials is at least
4.5 dB, indicating a 60% improvement in vibration reduction performance. Moreover, for the novel
metamaterials and honeycomb with ν = −1.0, the vibration reduction performance is 2.7 dB and
4.6 dB, respectively, which indicates the performance of the novel metamaterials is an improvement of
70% compared to honeycomb.
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6. Lightweight Effects on Deformation Resistance and Vibration Reduction

In this section, the concepts of specific stiffness and specific vibration reduction are defined to
evaluate the lightweight effects on the deformation resistance and vibration reduction, respectively.

Section 4 analyzed the specific stiffness (κ) to describe the anti-deformation ability under the
premise of a lightweight material, and the influence of each Poisson’s ratio on the deformation
resistance of lightweight metamaterials is summarized. The analysis (in Figure 11 and Table 2) shows
that compared with honeycomb materials, the novel designed lightweight metamaterials exhibit
excellent lightweight and deformation resistance.

Next, we define a concept of specific vibration reduction (ς) to describe the vibration reduction
performance under the premise of a lightweight material, which can be expressed as follows:

ς = VLDall/W (dB/kg) (12)

where mass W is shown in Table 4 (excluding the mass of upper and lower faceplates of the prototypes),
and the frequency band of the synthesized vibration level difference VLDall is 5–200 Hz (as shown in
Figure 15). The values of specific vibration reduction, ς, are calculated (in Table 4) and normalized to
observe the influence of each PR on the vibration reduction performance with equal mass.

Table 4. Lightweight effect on vibration reduction performance.

Poisson’s Ratio ν = −0.3 ν = −0.6 ν = −1.0 ν = +0.3 ν = +0.6 ν = +1.0

Mass (g) 91.3 98.1 107.1 81.8 77.7 80.6

V LDall (dB) 1.56 3.95 4.78 4.40 4.99 4.63

Specific Vibration
Reduction ς (dB/kg) 17 40 45 54 64 57

Normalized ς 0.27 0.63 0.70 0.84 1.00 0.90

From Table 4, under the condition of equal materials consumption, the lightweight metamaterial
with ν = +0.6 exhibits significant vibration reduction performance. Figure 17 shows that
the performance of metamaterials with positive PR are superior to that of the negative PR
metamaterials, which means that the positive PR metamaterials exhibit better lightweight properties
in vibration reduction.
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7. Conclusions

Based on the FETO method by Qin et al. [24], this work systematically studies the design method of
lightweight metamaterials. In addition, mechanical properties for the optimal designed metamaterials
are analyzed by numerical simulations. The detailed conclusions are as follows:

• This work not only provides several new configurations of metamaterials, but the core
innovation is to propose a design method of lightweight metamaterials by establishing a
mathematical optimization model. Moreover, the design method enables the design of lightweight
metamaterials with a specified Poisson’s ratio value.

• Comparison with honeycomb materials shows that the designed novel metamaterials exhibits
outstanding deformation resistance and vibration reduction performance.

• The concepts of specific stiffness, κ, and specific vibration reduction, ς, are defined to
evaluate the lightweight effects of novel metamaterials on deformation resistance and vibration
reduction, respectively.
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