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Abstract: In order to more realistically reflect the penetrating and crushing process of a PELE
(Penetration with Enhanced Lateral Efficiency) projectile, the stochastic failure algorithm and
crack-softening algorithm were added to the corresponding material in this paper. According to the
theoretical analysis of the two algorithms, the material failure parameters (stochastic constant γ,
fracture energy Gf, and tensile strength σT) were determined. Then, four sets of simulation conditions
((a) no crack softening, (b) no stochastic failure, (c) no crack softening and no stochastic failure,
and (d) crack softening and stochastic failure) were designed to qualitatively describe the influences
of the failure algorithms, which were simulated by the finite element analysis software AUTODYN.
The qualitative comparison results indicate that the simulation results after adding the two algorithms
were closer to the actual situation. Finally, ten groups of simulation conditions were designed to
quantitatively analyze the coincidence degree between the simulation results and the experimental
results by means of two parameters: the residual velocity of the projectile and the maximum radial
velocity of fragments. The results show that the simulation results coincide well with the experimental
results and the errors were small. Therefore, the ideas proposed in this paper are scientific, and the
conclusions obtained can provide guidance for engineering research.

Keywords: PELE; Penetration with Enhanced Lateral Efficiency; crack softening algorithm; stochastic
failure algorithm; AUTODYN

1. Introduction

The PELE (Penetration with Enhanced Lateral Efficiency) projectile [1,2] is a new type of
armor-piercing warhead that can transform part of the axial kinetic energy into radial kinetic energy by
using the differences in material properties between the projectile casing and the inner core. The PELE
projectile was originally developed jointly by the French–German Research Institute Saint Louis
(ISL), the Diehl Munitionssysteme, and the GEKE Technology [1–5]. This new type of projectile
is mainly composed of the outer casing and an inner core, and its structural diagram is shown in
Figure 1. The outer casing is generally made of a dense metal, such as tungsten alloy and steel,
and the inner core is generally made of a material with a relatively low density such as aluminum
and plastic. Compared with the conventional armor-piercing projectiles, a PELE projectile can form a
larger transverse reaming during penetration and produce fragment effects after perforating the target
plate (as shown in Figure 2), which makes it significantly better than the conventional armor-piercing
projectiles, especially in terms of damage efficiency.
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Figure 1. Longitudinal section of PELE projectile. 
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Figure 2. Different penetration state of a PELE projectile: (a) initial penetration state; (b) completely 
perforating state. 

In order to investigate the damage efficiency and the influencing factors of PELE projectiles, a 
lot of research has been carried out from the following three aspects: experiment, theoretical analysis, 
and numerical simulation. Rheinmetall GmbH [3] conducted a series of tests of large-caliber PELE 
projectiles on reinforced concrete targets, brick walls, and sandbag walls, and the reaming of target 
plates under different conditions were measured. Paulus et al. [5] reported a large number of 
experimental results of the PELE projectile impacting the target plate, which were realized with the 
powder gun and the light gas gun. In the experiments, the axial residual velocity of the projectile and 
the radial velocity of fragments were measured by using flash X-ray photography. Paulus’ test results 
are the most representative at present, and this paper will also take his test results as a reference for 
comparison. Zhu et al. [6,7] used the ø12.7 mm PELE to impact a 2 mm thick armored steel target 
plate, and the post-effect target was a 1 mm thick aluminum plate. The effective dispersion area of 
fragments on the post-effect targets and the number of fragments were measured. Jiang et al. [8] used 
the ø30 mm PELE to impact the spaced target plates, which were composed of three 3 mm thick A3 
steel and a 15 mm thick armored steel. Tu et al. [9] carried out experiments on the impact of a ø30 
mm PELE on different thickness target plates, where the dispersion of fragments and the residual 
velocity of projectiles were measured. To sum up, the theoretical analysis model of a PELE projectile 
usually includes two parts: the axial penetration of the projectile and the fragment radial dispersion. 
The axial penetration process of a projectile is basically described by the plug model, and there is 
little difference between the various theoretical models. Therefore, many scholars mostly focused on 
the fragment dispersion models. Paulus [5], Zhu [6], Du [10], and Fan [11] simplified the crushing 
process of a PELE projectile, and the calculation methods of the maximum radial velocity of 
fragments were put forward. Based on Mott fragmentation theory, Verreault et al. [12] proposed a 
model to describe the axial crushing of a PELE projectile and the fragment dispersion. Although the 
experiment can give the true crushing state of PELE casing material, the test cost and period are 
longer, and the intermediate crushing process of PELE casing material cannot be given. Therefore, 
many scholars have studied the fragment effects of PELE casing material by numerical simulation. 
Paulus et al. [2,5] used LS-DYNA-3D code to simulate the crushing process of PELE casing material 
under different working conditions and compared it with the theoretical model. Wang et al. [13] used 
the three-dimensional SPH (Smoothed Particle Hydrodynamics) dynamics algorithm to simulate the 
fragment effects of PELE casing material at a normal projectile velocity, and the effects of target 
thickness, target material, and projectile velocity on the projectile crushing were compared. Verreault 
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Figure 2. Different penetration state of a PELE projectile: (a) initial penetration state; (b) completely
perforating state.

In order to investigate the damage efficiency and the influencing factors of PELE projectiles,
a lot of research has been carried out from the following three aspects: experiment, theoretical
analysis, and numerical simulation. Rheinmetall GmbH [3] conducted a series of tests of large-caliber
PELE projectiles on reinforced concrete targets, brick walls, and sandbag walls, and the reaming of
target plates under different conditions were measured. Paulus et al. [5] reported a large number of
experimental results of the PELE projectile impacting the target plate, which were realized with the
powder gun and the light gas gun. In the experiments, the axial residual velocity of the projectile and
the radial velocity of fragments were measured by using flash X-ray photography. Paulus’ test results
are the most representative at present, and this paper will also take his test results as a reference for
comparison. Zhu et al. [6,7] used the ø12.7 mm PELE to impact a 2 mm thick armored steel target
plate, and the post-effect target was a 1 mm thick aluminum plate. The effective dispersion area of
fragments on the post-effect targets and the number of fragments were measured. Jiang et al. [8] used
the ø30 mm PELE to impact the spaced target plates, which were composed of three 3 mm thick A3
steel and a 15 mm thick armored steel. Tu et al. [9] carried out experiments on the impact of a ø30
mm PELE on different thickness target plates, where the dispersion of fragments and the residual
velocity of projectiles were measured. To sum up, the theoretical analysis model of a PELE projectile
usually includes two parts: the axial penetration of the projectile and the fragment radial dispersion.
The axial penetration process of a projectile is basically described by the plug model, and there is
little difference between the various theoretical models. Therefore, many scholars mostly focused on
the fragment dispersion models. Paulus [5], Zhu [6], Du [10], and Fan [11] simplified the crushing
process of a PELE projectile, and the calculation methods of the maximum radial velocity of fragments
were put forward. Based on Mott fragmentation theory, Verreault et al. [12] proposed a model to
describe the axial crushing of a PELE projectile and the fragment dispersion. Although the experiment
can give the true crushing state of PELE casing material, the test cost and period are longer, and the
intermediate crushing process of PELE casing material cannot be given. Therefore, many scholars have
studied the fragment effects of PELE casing material by numerical simulation. Paulus et al. [2,5] used
LS-DYNA-3D code to simulate the crushing process of PELE casing material under different working
conditions and compared it with the theoretical model. Wang et al. [13] used the three-dimensional
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SPH (Smoothed Particle Hydrodynamics) dynamics algorithm to simulate the fragment effects of
PELE casing material at a normal projectile velocity, and the effects of target thickness, target material,
and projectile velocity on the projectile crushing were compared. Verreault [14] carried out numerical
simulations by using the AUTODYN software to verify his proposed model for describing the fragment
effects of PELE casing material.

This paper aims to study the crushing process of PELE casing material from the aspect of numerical
simulations. As seen from the extensive literature research, most existing numerical simulations usually
adopt the relatively simple failure model to characterize the penetration and crushing process of PELE
casing material, which leads to many problems such as it cannot reflect the random failure of materials.
Therefore, this paper hopes to make the numerical simulation results closer to the actual situation by
adding the stochastic failure algorithm and the crack-softening algorithm to the material. The test
results in Reference [5] were used as the reference standard to verify the scientific and rationality
of the numerical simulation method proposed in this paper by means of qualitative analysis and
quantitative analysis.

2. Theoretical Foundations

2.1. Basic Theory of Mott Ring

A Mott ring [15] is a one-dimensional structure with a uniform expansion. The material will break
under the action of the circumferential tensile stress, and the location of generated crack is random,
as shown in Figure 3. Once the cracks are generated, the unloading waves immediately propagate to
both sides, resulting in stress unloading. The unloading wave is commonly known as a Mott wave.
When the fracture is completed, the unloading area formed by the adjacent cracks becomes fragmented.
In the Mott ring, the material is regarded as having rigid-ideal plasticity; that is, the wave front material
is plastic and the post wave material is rigid. The tensile stress is the constant yield stress Y, and the
strain rate

.
ε = V/r is regarded as a constant.
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Figure 3. Schematic diagram of the Mott ring.

For the generation of a single crack in the Mott ring, Mott took a simplified approach. It is
assumed that there is no unloading process in the material where the crack is generated, and the tensile
stress is always zero. Therefore, the crack generation process and its energy loss can be ignored. Under
the mechanical assumption of the Mott ring, the circumferential velocity distribution of the material is
shown in Figure 4.
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In Figure 4, the material position is h, the Mott wave position is x, and the circumferential velocity
is u. The crack is generated at t = 0 and h = 0, and then the Mott waves propagate in both positive
and negative directions. Since the material behind the wave is rigid, the circumferential velocity of
the material is equal everywhere after the Mott wave, and the circumferential velocity u(t) can be
expressed as:

u(h, t) =

{ .
εx(t) 0 ≤ h ≤ x(t)
.
εh x(t) ≤ h ≤ h0

(1)

where h0 is the investigation distance. Within this distance, the total momentum can be expressed
as follows:

ρ
.
εx2 +

∫ h0

x
ρ

.
εh dh =

1
2

ρ
.
ε
(

x2 + h2
0

)
(2)

Within the investigation distance, the change rate of total momentum over time is determined by
the load. Since the material at the crack generation (h = 0) is not affected by the load, and the load at h
= h0 is the constant yield stress Y, there is a momentum conservation relationship:

ρ
.
εx

dx
dt

= Y (3)

By integrating Equation (3), the expression of a Mott wave position changing with time x(t) is
obtained as follows:

x(t) =

√
2Yt
ρ

.
ε

(4)

2.2. Grady One-Dimensional Fracture Theory and the Crack-Softening Algorithm

Grady and Kipp [15–17] thought that the energy consumed by the crack generation cannot be
ignored in some cases. Therefore, the following assumptions were proposed: the stress at the crack is
not immediately unloaded, the tensile stress is gradually reduced from the yield stress σ = Y to σ = 0,
and the unloading curve of the material is linear, as shown in Figure 5.
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In Figure 5, y(t) is the crack-opening displacement, σ(0) is the tensile stress of the material
where the crack occurs (h = 0), and Γ is the fracture energy. When y(t) reaches the critical value yc,
the unloading process is considered complete. Since σ(0) is not zero, the momentum conservation
relationship of a Mott ring can be rewritten as:

ρ
.
εx

dx
dt

= Y
y
yc

=
Y2

2Γ
y (5)

In the Grady one-dimensional fracture model, the material still satisfies the rigid-ideal plasticity
assumption, and there is a relationship: dy/dt =

.
εx. Thus, the expression of the unloading length x(t)

can be obtained as follows:

x(t) =
1

12
Y2

ρΓ
t2 (6)

The crack-softening algorithm refers to the Grady one-dimensional fracture model, and its action
process can be described as follows: when the grid reaches the tensile failure condition, it must undergo
an unloading process to achieve complete failure; the grid stress–strain curve is linear, and the stress
cannot exceed a certain critical value during the unloading process; when the grid is no longer subjected
to the tensile stress, the unloading process will terminate. The action process of the crack-softening
algorithm is shown in Figure 6.
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In Figure 6, σfail represents the grid-failure stress; εcr represents the crack strain, which is the
strain generated by the grid during the unloading process; L is the dimension along the grid stretching
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direction; and Gf is the fracture energy, corresponding to the above Γ. The unloading characteristics
of the grids are determined by Gf. When εcr reaches the critical value εU, the unloading process is
completed. Thus, Figure 6 can be expressed as an analytical expression:

Gf =
∫ εcr=εU

εcr=0
σLdεcr (7)

The critical crack strain εU can be expressed as:

εU =
2Gf

σfailL
(8)

During the unloading process, the maximum tensile stress σmax that the grid can withstand is
expressed as:

σmax = σfail(1 − Dam), Dam =
εcr

εU
(9)

where Dam is the damage degree of the grid. Here, the following definitions are made:

Dam = 0: it represents the grid does not reach the failure condition.
Dam = 1: it represents the grid has gone through the unloading process and completely invalid.

In addition, when the grid is completely invalid, it will no longer be subjected to the tensile
shear stress.

The main control parameter Gf of the crack-softening algorithm can be calculated from the value
of Kf (dynamic fracture toughness) [18]. The relationship between the two parameters is:

Kf =
√

EGf (10)

where E is the Young’s modulus of material, and Kf can be determined using the spallation test. For
different materials, such as steels with different chemical compositions or heat treatment processes,
the value of Kf usually differs greatly [16].

2.3. Grady Spallation Theory and Spall Strength of Materials

In the 1980s, Grady [19] conducted extensive research on the spall strength of condensed matter.
He considered that when the condensed matter impacts the target at high speed, fracture will occur
inside the material due to the tensile stress exceeding its tensile strength, and this phenomenon is called
spallation. According to the microscopic mechanism of material fracture, the spallation is usually
divided into brittle spallation and ductile spallation.

The Grady spallation model considers that the material undergoes elastic volume deformation
under linear tensile stress, and the strain rate is constant. The tensile stress of a material P can be
expressed as:

P = ρc2
0

.
εt (11)

where ρ is the material density, c0 is the material bulk velocity,
.
ε is the volumetric strain rate, and t is

the material tensile time. The above situation is illustrated in Figure 7.
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Under the action of tensile stress, the elastic volume and kinetic energy of a material gradually
increases, and the material will crack when the total energy is greater than the energy required for
crushing. The relationship between energy and time in the brittle spallation model is shown in Figure 8,
and the energy condition for brittle spallation is as follows:

1
2

P2

ρc2
0
+

1
120

ρ
.
ε

2s2 ≥ 3K2
c

ρc2
0s

(12)

where P is the tensile stress, ρ is the material density, c0 is the material bulk velocity,
.
ε is the volumetric

strain rate, and s is the fragment size. Kc is the static fracture toughness of material, which is close to
the value of Kf (dynamic fracture toughness) mentioned above and can be interchanged [15,20].

The first term on the left side of Inequality (12) is the elastic volume energy U, the second term
is the kinetic energy T, and the right side of Inequality (12) represents the energy required for brittle
spallation Γ. Since there is the following relationship: T ≤ U/15, T can be ignored. In addition,
the fragment size s must satisfy the following inequality:

s ≤ 2c0t (13)

Obviously, when the two Inequalities (12) and (13) take the equal sign at the same time, the energy
required for spallation is the smallest, as shown in Figure 8. The spall strength Ps can be solved using
the above two equations:

Ps =
(

3ρc0K2
c

.
ε
)1/3

(14)
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In the numerical simulation, the material has various tensile failure models, such as the hydrostatic
pressure and principal stress failure models, taking a given hydrostatic pressure and principal stress as
the material tensile failure criterion, respectively. Reference [21] shows that when the principal stress
failure model is used, the tensile strength of a material can be estimated by the Grady spallation theory.
In other words, when the actual tensile strength of a material is unknown, the principal tensile failure
stress σT in the numerical simulation can be replaced by the theoretical spall strength Ps. Therefore,
in the following numerical simulation, the principal stress failure model will be added to the metal
core material of a PELE projectile.

2.4. Mott Fracture Probability Density Function and Stochastic Failure Algorithm

In order to solve the problem of multiple cracks, Mott proposed to use the fracture probability
density function λ(ε) to control the occurrence probability of cracks, and these functions are called the
risk function and the conditional failure function. The expression λ(ε)dεdl is the probability that a
crack will occur in the element with a length dl and strain ε when the strain increases by dε. In 1943,
Mott [15] proposed three kinds of fracture probability functions λ(ε), which are:

λ(ε) = λ0, (constant) (15)

λ(ε) =
n
σ

( ε

σ

)n−1
, n ≥ 1 (16)

λ(ε) = Ceγε (17)

where n and σ are the Weibull distribution constants, and C and γ are the Gumbel distribution constants.
In the above three forms of functions, the exponential expression is the most commonly used.

It is assumed that the sample is composed of N0 unit length segments, each segment is stretched
independently at the same strain rate, and the number of surviving segments is N. As a result, there is
the following relationship:

dN
N

= −λ(ε)dε (18)

The above formula can also be rewritten as an expression in the integral form:

N = N0e−
∫

λ(ε) dε (19)

Hence, the cumulative probability distribution of the whole sample before or at the strain ε can be
obtained:

F(ε) = 1 − N
N0

= 1 − e−
∫

λ(ε)dε (20)

By differentiating the above formula, the complementary cumulative probability density can also
be obtained:

f (ε) =
dF(ε)

dε
= λ(ε)e−

∫
λ(ε)dε (21)

The fracture frequency function λ(ε) is different for different materials, resulting in different
expressions for the cumulative probability distribution function F(ε) and the cumulative probability
density function f (ε).

The stochastic failure algorithm refers to the Mott stochastic failure theory, which discretizes
the Mott theory. Each grid is automatically assigned a stochastic coefficient, and the size of the
coefficient is the ratio of the true failure strain of grid to the rupture strain of the material given by the
user. The relationship between the grid number and the stochastic factor is determined by the given
stochastic constant γ.
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In the AUTODYN simulation software, the stochastic failure algorithm is embedded in order to
more realistically describe the fracture and failure of a material [18]. The expression of cumulative
failure probability is:

P(εN) = 1 − exp
[
−C

γ
(exp(γεN)− 1)

]
(22)

where εN is the normalized strain, i.e., εN = ε/εc; εc is the fracture strain; and γ and C are the material
constants. For Equation (22), there is a very important premise condition: when the material strain
reaches the specified fracture strain, the failure probability of the grid is 50%. That is, there exists the
following relationship:

P(εN = 1) = 0.5 (23)

Thus, the relationship between γ and C can be obtained:

C =
γ ln 2
eγ − 1

(24)

Substituting Equation (24) into Equation (22), we can get:

P(εN) = 1 − exp[K(exp(γεN)− 1)], K =
ln 2

1 − eγ
(25)

Similarly, by differentiating the above formula, the cumulative failure probability density
expression can be obtained:

f (εN) = −Kγ exp[(γεN) + K(exp(γεN)− 1)] (26)

Since the γ–C relationship is certain, it is only necessary to give a specific γ value to determine
the stochastic dispersion of grids in actual operation. However, for materials with unknown fracture
properties, the γ value can only be selected empirically. Under the condition that the given fracture
strain is εc = 0.035, the cumulative failure probability density f (ε) and the cumulative fracture
probability P(ε) under different γ values are shown in Figures 9 and 10, respectively.
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As can be seen from Figure 9, the material fracture probability density curve f (ε) becomes steeper
as the γ value increases. The failure strain error is defined as the error between the strain at the center
of the fracture probability density distribution f (ε) and the given fracture strain εc, and the failure
strain error decreases as the γ value increases. From this point of view, it is desirable that the γ value
should be as large as possible. However, it can also be seen from Figure 10 that if the γ value is too
large, the failure strain of the grid will become more concentrated, that is to say, the material crushing
performance will tend to be uniform. In this respect, it is not desirable that the γ value is too large.
Therefore, for a specific material, there is an optimal range of the γ value. In the following numerical
simulation, the optimal γ value will be determined by trial calculation.

3. Numerical Simulation

In this paper, the nonlinear dynamics software AUTODYN (Century Dynamics, Fort Worth, TX,
USA) [22] was used to simulate the crushing process of PELE casing material. AUTODYN is an explicit
finite element analysis program, which is used to solve the highly nonlinear dynamic problems of
solids, fluids, gases, and their interactions. More importantly, the software has a unique stochastic
failure model, which can reflect the randomness and non-uniformity exhibited by the material.

3.1. Finite Element Model

The entire model was divided into three parts: the outer casing of the PELE projectile, the inner
core of the PELE projectile, and the target plate. The PELE projectile length was 50 mm, the outer
and inner diameters of the projectile were 10 mm and 6 mm, respectively, and the thickness of the
projectile rear was 5 mm. The inner core was a ø6 mm× 45 mm cylinder. The length and width of
the target plate were both 120 mm, and the thickness was selected according to different working
conditions. The unstructured hexahedral mesh was used in both the projectile and target plate, and the
average size of the grid was 0.25 mm. The whole model was established using HyperMesh software
(Altair Engineering, Detroit, MI, USA), then the finite element model was imported into AUTODYN
for the solution and the Lagrange algorithm was adopted. In order to reduce the number of grids and
improve the computational efficiency, the meshing method of the target plate adopted the variable-step
size method. The grids were denser in the center area, which was about two times the diameter of
projectile, and the minimum grid size was 0.25 mm. The transmissive boundary condition was applied
to the edge of the target plate. In the case of considering the vertical impact, the model adopted a
1/4 simplification; when considering the oblique penetration, the model adopted a 1/2 simplification;
when considering the projectile rotation, the model was not simplified. The schematic diagram of the
finite element model is shown in Figure 11.
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3.2. Determination of Key Parameters in the Material Failure Model

In this paper, the experiments carried out by Paulus [5] were used as the reference for comparison.
In the reference experiments, the projectile casing was made of tungsten alloy (D-180 K), the inner
core was made of aluminum (A-G3) and polyethylene (PE), and the target plate material was made
of steel (XC48) and aluminum (A-U4G), but several experimental materials were not identical in the
material library of AUTODYN. In order to solve this key problem, the materials were of the same
type as the experimental materials, but different parameters were found in the material library of
AUTODYN, which have the same equation of state and constitutive equation as the experimental
materials. Then, all material parameters in the substitute material selected in AUTODYN were replaced
with the parameters of the experimental material, which could ensure the consistency of the materials
in the experiment and numerical simulation.

(1) Determination of the key parameter Gf of the crack-softening algorithm of the outer casing
tungsten: The fracture energy Gf was determined based on the dynamic fracture toughness Kf and
the Young’s modulus E. Reference [23] provided the range of the dynamic fracture toughness of the
fragile tungsten alloy Kf = 3–5 MPa·m1/2, and this paper takes the intermediate value Kf = 4 MPa·m1/2.
Then, according to Gf = Kf/E (see Equation (10)) and E = 360 GPa, Gf = 45 J/m2 was obtained.

(2) Determination of the key parameter γ of the stochastic failure algorithm of the outer casing
tungsten: The stochastic constant γ was determined by the failure strain error analysis and numerical
trial calculations. The test condition (the inner core material was polyethylene, the target plate was
3 mm thick steel, and the projectile velocity was 936 m/s) in Reference [5] was used as the reference
standards. A series of γ values were substituted into the numerical simulation, and it was found that
the length of the residual projectile varied greatly when the γ value was different, and the trial result
is shown in Figure 12.
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As shown in Figure 12, with the increase of the γ value, the changing law of the residual projectile
length was rather complicated, and the simulation results at γ = 36.5 were in good agreement with the
experimental results. Therefore, the stochastic constant in this paper was identified as γ = 36.5.

(3) Determination of the key parameter of principal stress failure model of the inner core material
Al-6061: The tensile strength σT, corresponding to Ps above, could be calculated by the Grady spallation
theory, where its specific expression is: σT =

(
3ρc0K2

f
.
ε
)1/3. According to Reference [15], the dynamic

fracture toughness was taken as Kf = 27.5 MPa·m1/2, and the strain rate was taken as
.
ε ≈ 103−104 s−1.

Then, when the material density ρ0 = 2.65 g/cm3 and the volumetric sound velocity c0 = 5176 m/s
were substituted into the expression, we obtained σT ≈ 0.31–0.68 GPa. Here, we take the intermediate
value σT = 0.5 GPa.

3.3. Material Model and Parameters

In this paper, the selection method of the equation of state and constitutive equations for
all materials are referred to References [24,25]. The equation of state for all materials adopted
Mie-Grüneisen, which is denoted as the “shock” equation of state [22] in AUTODYN, and its basic
theoretical relationship is as follows:

Us = c0 + s · u (27)

where Us is the shock wave velocity, u is the post-wave particle velocity, and c0 and s are the material
Hugoniot parameters.

The constitutive equation of the material is elastic-ideal plastic. The constitutive law is based
on the von Mises yield criterion and the steady yield stress assumption, and the shear modulus of
the material is regarded as a constant. This constitutive equation is described as the “von Mises”
strength model in AUTODYN, which requires a given material shear modulus G and the flow stress Y.
In addition, the dynamic yield strength is typically approximately 2–3 times the static value.

The projectile casing adopted the principal stress/strain failure model. It was considered that
the material would fail when the tensile principal strain reached εT or the tensile principal stress
reached σT. According to Reference [5], εT = 0.035 and σT = 2.8 GPa. In addition, the stochastic failure
algorithm and crack-softening algorithm were added to the projectile casing material. According to the
analysis above, the stochastic coefficients were γ = 36.5 and Gf = 45 J/m2. The aluminum core material
adopted the principal stress failure model, and the tensile strength was σT = 0.5 GPa, the polyethylene
core material was not added with failure. The material of the target plate adopted the plastic strain
failure model, and it was considered that the material would fail when the plastic strain reached a
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certain value. All materials were added with an artificial erosion algorithm (Erosion) to ensure a
normal calculation. The target plate material adopted the failure erosion algorithm (Failure), which
was used to delete the invalid grid. The rest of the materials use the geometric strain erosion algorithm,
which removed the grid whose instantaneous geometric strain (Geometric Strain) was greater than the
given value. In summary, the material parameters used in this paper are summarized in Table 1.

Table 1. Material parameters in the numerical simulation.

Variable
Material

Tungsten Al-6061 PE Al-7075 Steel-4340

ρ0 (g/cm3) 18 2.65 0.92 2.8 7.823
c0 (km/s) 4.03 5.24 2.9 5.2 4.57

s 1.237 1.4 1.48 1.36 1.49
Grüneisen Coefficient - 1.97 1.6 - -

Cp (J/kg·K) - 885 2300 - -
Shear Modulus G (GPa) 139.02 27.5 0.13 26.7 77

Yield Stress Y (GPa) 1.5 0.3 0.02 0.4 0.8
Principle Tensile Stress σT (GPa) 2.8 0.5 - - -

Principle Tensile Strain εT 0.035 - - - -
Fracture Energy Gf (J/m2) 45 - - - -

Stochastic Variance γ 36.5 - - - -
Inst. Geometric Strain 0.6 0.8 1.8 Failure Failure

4. Analysis and Discussion of the Simulation Results

4.1. Influence of the Crack-Softening Algorithm and Stochastic Failure Algorithm on the Simulation Results

In order to more intuitively give the influence of the crack-softening algorithm and
stochastic-failure algorithm on the simulation results, four groups of simulation conditions ((a) no
crack softening, (b) no stochastic failure, (c) no crack softening and no stochastic failure, and (d) crack
softening and stochastic failure) were designed in this paper. Moreover, the test conditions (the inner
core material was polyethylene, the target plate was 8 mm thick aluminum, and the projectile velocity
was 939 m/s) in Reference [5] were taken as the reference. The simulation results corresponding to
each group of conditions were compared with the experimental results. The effects of adding the
crack-softening algorithm and stochastic-failure algorithm before and after are shown in Figure 13.

As shown in Figure 13, when the crack-softening algorithm (a, c) was not added, the material
failure was not in accordance with the actual situation. Moreover, the failure grids were usually
distorted so that more grids were eroded, and the remaining failure area of material was usually
smaller. When the stochastic failure algorithm was not added (b, c), the fragment length of projectile
was larger and the shape of fragments was not ideal. After adding the stochastic-failure algorithm and
crack-softening algorithm (d), the simulation results were more consistent with the actual conditions (e).
The length and shape of fragments were ideal, and the projectile failure region was relatively uniform.

In summary, adding the crack-softening algorithm was beneficial to control the distortion of the
failure grids, and adding the stochastic failure algorithm was beneficial to control the length and
shape of fragments. Therefore, the crack-softening algorithm and stochastic-failure algorithm were
conducive to simulating the real damage situation, and they were added in the subsequent simulation.
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4.2. Quantitative Comparison of the Simulation Results and Experimental Results

Based on the analysis in Section 4.1, it can be qualitatively seen that the simulation results
after adding the two failure algorithms were in good agreement with the experimental results.
However, this chapter hopes to quantitatively analyze the coincidence degree between the simulation
results and the experimental results by designing several sets of simulation conditions. The entire
qualitative comparison process was based on two parameters: the residual velocity of the projectile
and the maximum radial velocity of fragments. Referring to the experimental results in Reference [5],
the specific setting of the simulation conditions in this paper were designed as shown in Table 2.

Table 2. Simulation conditions for quantitative analysis.

Condition
Number

Inner Core
Material

Target Plate
Material

Target Plate
Thickness (mm)

Projectile Impact
Velocity (m/s)

#1 Al Al 3 929
#2 Al Al 3 1275
#3 Al Al 8 937
#4 Al Al 8 1254
#5 Al Steel 3 925
#6 Al Steel 3 1261
#7 PE Steel 3 936
#8 PE Steel 3 1262
#9 PE Al 8 939
#10 PE Al 8 1258

The numerical simulation results were compared with the flash X-ray pictures [5] as shown
in Figure 14. The maximum radial velocity of fragments and the residual velocity of the projectile
obtained by the simulation are shown in Table 3.
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Figure 14. Comparison of test results and simulation results under different conditions: (a1) #1
experiment result; (a2) #1 simulation result; (b1) #8 experiment result; (b2) #8 simulation result; (c1) #2
experiment result; (c2) #2 simulation result; (d1) #3 experiment result; (d2) #3 simulation result; (e1) #4
experiment result; (e2) #4 simulation result; (f1) #5 experiment result; (f2) #5 simulation result; (g1) #6
experiment result; (g2) #6 simulation result; (h1) #7 experiment result; (h2) #7 simulation result; (i1) #9
experiment result; (i2) #9 simulation result; (j1) #10 experiment result; (j2) #10 simulation result.
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Table 3. Comparison of the maximum radial velocity of fragments and the axial residual velocity of
the projectile between the simulation results and experimental results.

Condition
Number

Maximum Radial Velocity
of Fragments (m/s) Error

Axial Residual Velocity of
Projectile (m/s) Error

Experiment Simulation Experiment Simulation

#1 112 114 1.8% 914 921 0.7%
#2 158 149 −5.7% 1261 1259 −0.2%
#3 143 139 −2.7% 900 907 0.8%
#4 221 207 −6.3% 1208 1219 0.9%
#5 184 192 4.3% 895 904 1.0%
#6 243 229 −5.8% 1231 1246 1.2%
#7 94 102 8.5% 889 907 2.0%
#8 145 134 −7.5% 1206 1221 1.2%
#9 112 116 3.6% 887 904 1.9%
#10 184 171 −7.1% 1203 1224 1.7%

It can be seen intuitively from Figure 14 and Table 3 that the simulation results were basically
consistent with the experimental results and the errors were smaller. In addition, it was also found
that the PELE projectile crushing performance was also greatly different due to the inner core material,
and target plate material and thickness, which was embodied in the following aspects:

(1) Comparing the following four sets of working conditions (#3–#9; #4–#10; #5–#7; #6–#8),
the following conclusions can be obtained intuitively from Figure 14 and Table 3. When the core
material was aluminum, the residual length of the projectile was larger, the size of fragments
was smaller, and the radial velocity of fragments was higher than when the core material
was polyethylene.

(2) Comparing the following two sets of working conditions (#1–#5; #2–#6) from Table 3, for the same
core material and the target plate thickness, when the target material changed from aluminum to
steel, the residual velocity of projectile decreases and the radial velocity of fragments increased.
Comparing the following two sets of working conditions (#1–#3; #2–#4) from Table 3, for the same
core material and the target plate material, when the target plate thickness increased, the residual
velocity of the projectile decreased and the radial velocity of the fragments increased.

Taking the #6 simulation condition as an example, the fragmentation process of the PELE projectile
impacting the target plate is shown in Figure 15. In order to facilitate the observation of the crushing
process of the outer casing, the core material is not shown. The core material was aluminum, the target
plate was 3 mm steel, and the projectile impact velocity was 1262 m/s.

As shown in Figure 15, at the moment of impacting the target plate, two shock waves propagating
respectively toward the rear of the projectile and the back of the target plate were generated at the
interface, and the plastic deformation of the projectile head caused the failure of the grids (a, e). While
the plastic deformation region propagated toward the rear of projectile, the failure region of casing
gradually expanded backward (b, f) under the combined action of the resistance of the target plate
and the radial force of the inner core, and these failure regions were considered to be cracks. After the
projectile perforated the target plate, the plug and the inner core continued to interact, and the casing
cracks expanded further along the axial direction (c, g). When the projectile moved further forward,
the fragments generated by the crack propagation gradually scattered under the radial velocity (d, h).
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Figure 15. Fragmentation process of a PELE projectile impacting the target plate: (a) t = 2 µs side view,
(b) t = 7 µs side view, (c) t = 16 µs side view, (d) t = 2 µs side view, (e) t = 2 µs over view, (f) t = 7 µs
over view, (g) t = 16 µs over view, and (h) t = 24 µs over view.

In the numerical simulation, a series of Gauss observation points were set up on the outer casing
and the target plug to record the velocity changes. The radial velocity–time history curve of the material
at the Gauss point of projectile casing is shown in Figure 16a. The axial velocity–time history curves of
the material at the Gauss point of the projectile casing and target plug are shown in Figure 16b.
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Figure 16. (a) Radial velocity time history curve of the material at the Gauss point of projectile casing,
and (b) axial velocity time history curves of the material at the Gauss point of projectile casing and the
target plug.

It can be seen from Figure 16a that the radial velocity of the fragments increased rapidly at
≈0–0.01 ms, because there existed a radial compression during this period. Then, some fluctuations
occurred and it reached stability at about 0.05 ms, which indicates that the projectile had perforated
the target plate. According to Figure 16b, the axial velocity of the projectile was gradually reduced
under the resistance of the target plate. However, the axial velocity of the target plug was gradually
increased under the interaction of the projectile and inner core. Finally, the two curves tend to be
consistent around 0.115 ms, at which point the projectile and the target plug were no longer interacting.
In addition, it was also found that the aluminum core projectile and the target plug have a shorter
action time than the polyethylene core projectile.
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5. Conclusions

The crushing mechanism of the outer casing of the PELE projectile during the penetration process
was similar to the crushing theory of the Mott ring. This paper first introduced the theoretical work
of Mott and Grady on the Mott ring problem and the Grady spallation theory briefly. According to
the theoretical analysis, the material failure model parameters (stochastic constant γ, fracture energy
Gf, and tensile strength σT) of the stochastic failure algorithm and the crack softening algorithm that
were used in the numerical simulation were determined. Based on the obtained numerical simulation
results, the following conclusions could be drawn:

(1) Based on the qualitative analysis designed in this paper, the crack-softening algorithm was
beneficial for controlling the distortion of failure grids, and the stochastic-failure algorithm
was beneficial to control the length and shape of fragments. After adding the two algorithms,
the simulation results were more consistent with the actual situation.

(2) Several sets of simulation conditions were designed to quantitatively analyze the coincidence
degree between the simulation and experiment by means of the residual velocity of the projectile
and the maximum radial velocity of fragments. The results indicated that the simulation results
were in good agreement with the experimental results and the errors were small. Specifically,
the radial velocity error of fragments was within 8.5%, and the axial residual velocity error of the
projectile was within 2%.

(3) According to the four sets of working conditions (#3–#9; #4–#10; #5–#7; #6–#8) shown in Figure 14
and Table 3, the following conclusion could be obtained intuitively: when the inner core material
was aluminum, the residual length of projectile was larger, the size of fragments was smaller,
and the radial velocity of fragments was higher than the situation where the inner core material
was polyethylene.

(4) For the same core material and target plate thickness, when the target material changed from
aluminum to steel, the residual velocity of the projectile decreased and the radial velocity of
the fragments increased, which could be explained intuitively by the two groups of working
conditions (#1–#5; #2–#6) in Table 3. Similarly, for the same core material and target plate material,
when the target plate thickness increased, the residual velocity of the projectile decreased and the
radial velocity of the fragments increased, which could also be explained intuitively by the two
groups of working conditions (#1–#3; #2–#4) in Table 3.

In summary, the research ideas and conclusions are feasible and scientific. The numerical
simulation method in this paper can provide reference for rapidly and accurately analyzing the
influencing factors of PELE projectiles, which has important engineering application value.
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