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Abstract: In this paper, we present a fast fabrication of Al/Si nanopillars for an ultrasensitive SERS
detection of chemical molecules. The fabrication process is only composed of two steps: use of a
native oxide layer as a physical etch mask followed by evaporation of an aluminum layer. A random
arrangement of well-defined Al/Si nanopillars is obtained on a large-area wafer of Si. A good
uniformity of SERS signal is achieved on the whole wafer. Finally, we investigated experimentally
the sensitivity of these Al/Si nanopillars for SERS sensing, and analytical enhancement factors in the
range of 1.5 × 107 − 2.5 × 107 were found for the detection of thiophenol molecules. Additionally,
3D FDTD simulations were used to better understand optical properties of Al/Si nanopillars as well
as the Raman enhancement.
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1. Introduction

During this last decade, Surface Enhanced Raman Scattering (SERS) is mainly employed as
a powerful technique for detection of biological/chemical molecules. The fabrication of SERS
substrates having high enhancement factors (EF) is the key point for the improvement of this
biological/chemical sensing. Several groups investigated a great number of novel SERS substrates,
which demonstrated a large Raman enhancement, such as colloidal metallic nanoparticles [1–3] and
metallic nanostructures on different surfaces fabricated by various lithographic techniques [4–11].
Indeed, this large Raman enhancement is mainly due to the presence of hotspots in these different
SERS substrates. The mechanism of this enhancement due to the hotspots is well-described in
References [12,13], and the development of this type of SERS substrates with high densities of hotspots
is demonstrated in References [8,9,14–17]. However, certain fabrication techniques cited previously
are technologically demanding in terms of time and expensive for a mass production destined to
industrial applications. Besides, Nanoimprint Lithography (NIL) [18–20] and Nanosphere Lithography
(NSL) [21–23] allows fabricating these SERS substrates with a lower cost. Nevertheless, they can
be plagued by poor definition of nanostructures obtained on large surfaces, which are required for
practical/industrial applications. Another way for obtaining higher EFs is to use silicon nanowires
(SiNW) coupled to metallic nanoparticles. This type of nanostructures allows obtaining a better
detection limit [16,24,25]. Moreover, disordered SiNWs can be fabricated by large-surface techniques.
Although all these SERS substrates have great potential for a very sensitive detection of chemical or
biological molecules, most of the applications are hampered by the non-uniformity of the SERS signals.
Several groups have already addressed this non-uniformity issue of the SERS signal, and they have
demonstrated a good uniformity of the latter [26,27].

In this paper, the aim is to present a simple and fast process to produce very sensitive SERS
substrates composed of Al/Si nanopillars at the large-area wafer-scale, which will have a good
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uniformity of the SERS signal. In our case, aluminum was chosen as a plasmonic material for
its attractive properties including low cost, high natural abundance, compatibility with CMOS
technology and optoelectronic devices, and plasmonic resonances in the spectral domains of UV
and visible [28,29]. Moreover, aluminum plasmonics can be applied to a wide range of applications
such as SERS in ultraviolet [30] and visible domains [31–33], SEIRA (Surface-Enhanced Infrared
Absorption Spectroscopy) [31,34], photocatalysis [35], and metal-enhanced fluorescence [36]. Although
several groups have already worked on Al plasmonics nanostructures for SERS sensing [30,31,34],
there was little consideration on the synergy between silicon and aluminum in order to improve the
performance of SERS sensors. Here, the ability of Al/Si nanopillars to be very sensitive SERS sensors
is investigated and evaluated using thiophenol solutions. To further deepen the comprehension of the
SERS signal enhancement, 3D FDTD simulations are made.

2. Experimental Details

2.1. Two-Step Fabrication of Al/Si Nanopillars

The fabrication process of large area of Al/Si nanopillars (NPs) is composed of two steps (see
Figure 1): (i) etching through the mask obtained by the native oxide layer; and (ii) depositing of
titanium and aluminum layers under vacuum by Electron Beam Evaporation (EBE). In this fabrication
process, no pre-patterning of the Si surface is required. Indeed, we only use the native oxide layer of Si
wafer as a physical etch mask. Then, an anisotropic RIE (Reactive Ion Etching) process consisting in
sixty cycles of passivation and etching steps is realized on the Si wafer through the native oxide layer
by using ICP-SPTS (Inductively Coupled Plasma-Sumitomo Precision Products Process Technology
Systems) equipment. Gases involved in this protocol are SF6 (300 sccm), C4F8 (180 sccm) and O2

(200 sccm). This anisotropic RIE process is a switched process in which fluorine from SF6 etches
the Si while C4F8 passivates the surface, and it starts with a cycle of passivation. During this first
and short passivation cycle, only certain nanoscale zones of the native oxide layer are randomly
passivated, which will then serve as etch mask and thus produce Si nanopillars at the end of these
zones. The organization of the obtained nanopillars is completely random. The pressure and power
used in this process are 20 mTorr and 25 W, respectively. By modifying the process parameters such as
cycle times, number of cycles, platen and coil power, and substrate temperature, the size distribution,
depth and density can be controlled. To finish, a 2 nm titanium layer used as adhesion layer, and an
aluminum layer of 50 nm are deposited by EBE under normal incidence. The evaporation rate used in
this process are 0.05 nm/s and 0.3 nm/s for Ti and Al layers, respectively.

(1) Si wafer + native oxide layer (2) RIE (3) Al evap. 

Figure 1. Principle scheme of the Al/Si nanopillar fabrication. The metal evaporation step is made
under normal incidence.

2.2. Thiophenol Deposition on Al/Si Nanopillars

For our SERS investigations, thiophenol molecules were used to test the sensitivity of these
Al/Si nanopillars because they are excellent model molecules. The deposition protocol is as follows:
(i) preparation of a 1 µM solution of thiophenol in ethanol; (ii) dipping the SERS sample in the solution
for 3 h; and (iii) the SERS sample was allowed to nitrogen dry in a specific box. For our reference
experiment, the deposition protocol is: (i) preparation of a 1 M solution of thiophenol in ethanol;
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(ii) dipping the reference sample (Si substrate with nanopillars without metal) in the solution for 3 h;
and (iii) the reference sample was allowed to nitrogen dry in a specific box.

2.3. Raman Characterization

For all the Raman measurements, we employed a Labram spectrophotometer from Horiba
Scientific, which has a spectral resolution of 1 cm−1. The excitation wavelength (λexc = 633 nm)
and an acquisition time of 10 s were used for all the SERS and Raman (reference) experiments.
For these characterizations, the laser was focused on the substrate using a microscope objective (100×,
N.A. = 0.9). The Raman signal from the SERS substrates (or reference experiment) was collected by the
same objective in a backscattering configuration, and the used laser power was 1 mW. The average of
SERS intensities and relative standard deviations (RSD) were calculated on the basis of 25 SERS spectra.

2.4. FDTD Simulations of SERS Substrates

To calculate the extinction spectrum of the SERS substrates, 3D Finite-Difference Time-Domain
(FDTD) method was used. For these FDTD simulations, we considered an isolated Al/Si nanopillar,
which corresponds to the experimental case for Al/Si nanopillars (see Figures 2 and 3). The nanopillar
diameter (D) is 150 nm, its height (hpillar) is 1450 nm, and the Al layer thickness (hAl) is 50 nm on
the top of nanopillar and on Si substrate. The top corners of the Al/Si nanopillar are not rounded.
Both materials used for this study have been modelled by fitting the real and imaginary parts of the
permittivities reported in the reference [37]. The nanopillar on substrate, centred in a computational
cell of 3 × 3 × 5 µm3, is surrounded by Perfectly Matched Layers (PML) in order to absorb radiation
leaving the calculation region. For providing an excellent resolution of the fields, a uniform mesh
of 2 × 2 × 2 nm3 was used for discretising the computational cell. Finally, the extinction spectrum
has been calculated by exciting the structure with a broadband plane wave source (spectral range
from 400 nm to 800 nm) impinging from above the pillar and by collecting the reflected (R) and
transmitted (T) powers. This simulated extinction spectrum does not consider the thiophenol layer.
Thus, these simulations shed light on the optical properties of Al/Si nanopillars.

Figure 2. Nanopillar morphology used for the FDTD simulations, the diameter (D) is 150 nm, the height
(hpillar) is 1450 nm, and the Al layer thickness (hAl) is 50 nm on the top of nanopillar and on Si substrate.
On the right, the broadband plane wave source and monitors (R and T) for calculating the extinction
spectrum are displayed.
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(b) (a) 

Figure 3. SEM images of Al/Si nanopillars obtained with our fabrication technique: (a) on a large zone
(scale bar = 20 µm); and (b) cross-section view of the nanopillars (scale bar = 1 µm).

3. Results and Discussion

Firstly, Al/Si nanopillars were fabricated with the process in Section 2.1. Figure 3 displays SEM
images of these Al/Si nanopillars. The diameter and the height of the Al/Si NPs were determined to
be 150 ± 40 nm, and 1450 ± 50 nm, respectively. The homogeneity of Al/Si nanopillars is correct in
terms of dimensions.

Next, thiophenol molecules (see molecular scheme in Figure 4) were deposited on Al/Si NPs
directly after their fabrication with the protocol in Section 2.2, and then characterized directly by
Raman measurements. Figure 4 reveals the SERS spectra of thiophenol on Al/Si nanopillars recorded
at the excitation wavelength of 633 nm. On all SERS spectra, we observed Raman shifts, which are
characteristic of thiophenol molecules [38–40] as those at 1000 cm−1 corresponding to the C-C stretching
mode (named: ν(CC), see References [40–42]); at 1025 cm−1 corresponding to the combination of the
following modes: C-C stretching and C-H in-plane bending (named: ν(CC) and δ(CH), respectively,
see References [40–42]); at 1075 cm−1 corresponding to the combination of the following modes: C-C
stretching, C-H in-plane bending and C-S stretching (named: ν(CC), δ(CH) and ν(CS), respectively,
see References [40–42]); and at 1575 cm−1 corresponding to the C-C stretching (named: ν(CC), see
References [40–42]). Besides, some multi-phonon peaks of Si in the range of 900–980 cm−1 are
observed [43,44]. In the inset of Figure 4, a reference Raman spectrum of thiophenol obtained with
only Si nanopillars (without metal) is displayed. No significant Raman shift studied here is visible,
because they are very weak.

To evaluate the sensitivity of Al/Si nanopillars, the analytical enhancement factor (AEF) is
calculated for the 4 characteristic Raman peaks of the thiophenol molecules previously cited. AEF is
given by the following formula:

AEF =
ISERS
IRaman

× CRaman
CSERS

(1)

where ISERS, IRaman represent the SERS and Raman intensities, respectively (see Table 1). CSERS
(1 µm), CRaman (1 M) are the concentrations of thiophenol for SERS and reference Raman experiments,
respectively.
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Figure 4. Five SERS spectra of thiophenol molecules recorded randomly on the whole substrate
composed of Al/Si nanopillars. The inset depicts the Raman spectrum of thiophenol obtained with
only Si nanopillars (without metal). Moreover, the molecular scheme of the thiophenol molecule is
also displayed.

From the results in Table 1, the largest AEF value, which was found for the Al/Si nanopillars,
is 2.4 × 107 the Raman shift of 1575 cm−1. In addition, some groups have obtained excellent AEFs of
∼106 with Ag nanoparticles on Si/ZnO nanotrees [45] and around 2 × 106 with Au nanostructured
electrodes [46]. Furthermore, other groups have demonstrated good EF with similar SERS substrates
such as Ag nanoparticles on Si nanowires (for [17]: EF∼4 × 106; for [16]: EF = 107 − 2.3 × 108;
and for [24]: EF = 108 − 1010), and Si nanopillars covered on the nanopillar top by Ag lumps
(EF ∼5 × 106) [25]. By comparison, our Al/Si nanopillars are faster to fabricate and a better sensitivity
is achieved for all the Raman peaks studied here (1.5 × 107 < AEF < 2.5 × 107) except for Ag
nanoparticles on Si nanowires of References [16,24] concerning to the sensitivity. Besides, the relative
standard deviation (RSD) is calculated for all the four peaks of our investigation in order to quantify
the uniformity. To do that, 25 SERS spectra of thiophenol molecules were recorded from several
randomly chosen zones on the whole wafer under same experimental conditions. In Table 1, a good
uniformity (RSD < 7%) of SERS signal is obtained for each Raman peak on the large-area wafer of the
Al/Si nanopillars.

Table 1. For the excitation wavelength of 633 nm and four Raman peaks (RS) studied here, λRaman

associated to RS, the intensities IRaman and ISERS, RSDs associated to ISERS values, analytical
enhancement factors (AEF) and EF values (in arbitrary unit) obtained with the E4 model are presented.

Name RS (cm−1) λRaman (nm) IRaman ISERS RSD (%) AEF EF (a.u.)

1 1000 676 16 271 6.6 1.7 × 107 0.220
2 1025 677 11 209 4.8 1.9 × 107 0.222
3 1075 679 20 409 4.4 2.1 × 107 0.224
4 1575 703 14 334 3.6 2.4 × 107 0.238
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To understand these experimental results, we calculated the extinction spectrum of the SERS
substrate (see Figure 5). From this, we easily observe the positions of different resonances observed for
these Al/Si nanopillars compared to the positions of the excitation wavelength and Raman wavelengths
associated to the Raman shifts measured experimentally. Moreover, λRaman is the Raman scattering
wavelength corresponding the studied Raman shift, which is determined with the following formula:

∆ω = 107
(

1
λexc

− 1
λRaman

)
(2)

where ∆ω is the studied Raman shift (in cm−1), λexc is the excitation wavelength used in the
experiments (in nm), and λRaman is the Raman scattering wavelength to be determined (in nm,
see Table 1).

λexc λRaman4 λRaman2 

Figure 5. Calculated extinction spectrum of Al/Si nanopillars. λexc corresponds to the excitation
wavelength (λexc = 633 nm, continuous red line). λRaman2 and λRaman4 correspond to the Raman
scattering wavelengths for the Raman shifts of 1025 cm−1 and 1575 cm−1 (λRaman2 = 677 nm, dotted
red line, and λRaman4 = 703 nm, dashed red line), respectively. For the sake of readability, only λRaman2

and λRaman4 are displayed, since λRaman1 and λRaman3 are very close to λRaman2.

Finally, we can qualitatively analyze the SERS enhancement, which can be obtained by using the
E4 model, assuming that enhancement factor is proportional to the extinction intensities (Qe) at λexc

and λRaman, i.e., EF ∼ Qe(λexc) × Qe(λRaman) [47]. In Figure 5 and Table 1, we observe that EF4 is the
highest value, and the EF values increased when λRaman also increased, i.e., Qe(λRaman) increased with
λRaman. The different EF values correspond to enhancement factors for the couples (λexc, λRaman1),
(λexc, λRaman2), (λexc, λRaman3) and (λexc, λRaman4), respectively. These FDTD results suggest that the
AEF values observed experimentally (see Table 1) have the same behavior as the EF values obtained
with the E4 model.

4. Conclusions

In this paper, we demonstrate the fast fabrication of very sensitive SERS substrates composed of
Al/Si nanopillars for chemical detection. The key point of this fabrication process is the use of a native
oxide layer as a physical etch mask. This fabrication allowed obtaining well-defined nanopillars at the
large-area wafer-scale. The sensitivity of these Al/Si nanopillars was investigated and compared to the
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results obtained for gold nanostructured electrodes [46], Ag nanoparticles on Si/ZnO nanotrees [45],
Ag nanoparticles on Si nanowires [16,17,24], and Si nanopillars covered on the nanopillar top by
Ag lumps [25]. The AEF values achieved with our Al/Si nanopillars (1.5 × 107 < AEF < 2.5 × 107)
is better than the SERS substrates cited previously, except for Ag nanoparticles on Si nanowires of
References [16,24]. Moreover, an excellent uniformity of SERS signal (RSD < 7%) was achieved on the
whole wafer, which is a key point for industrial applications. Thus, such Al/Si nanopillars could be
integrated on a lab-on-chip for label-free chemical/biological detection processes.
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