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Abstract: In this study, minimum quantity coolant/lubrication (MQCL) is found to have significant
impact on the surface quality and mechanical properties of the micromilled thin-walled work piece
that is the core component of an aeroaccelerometer. Three kinds of coolants were used in the
micromilling process to analyze their effects on surface quality and mechanical properties of the
component. The experiment results show that an appropriate dynamic viscosity of coolant helps
to improve surface roughness. The high evaporation rate of the coolants can enhance the cooling
performance. Comparing with the dry machining case, MQCL has better performance on improving
tool wear, surface quality, and mechanical properties of the micromilled work piece. It yielded up
to 1.4–10.4% lower surface roughness compared with the dry machining case in this experiment.
The machined work piece with the best mechanical properties and the one with the worst mechanical
properties appeared in the ethyl alcohol and the dry machining case, respectively. The reasons for
deteriorating surface quality and mechanical properties in dry machining cases are also analyzed.
For improving the micromilling process, the penetration and cooling effect of the coolants are more
important. This paper gives references to obtain better service performance of the component by
improving the micromilling process.

Keywords: mechanical properties; tool wear; tensile test; micromilling; MQCL method; cooling effect

1. Introduction

Lubrications/coolants as necessary auxiliary means can effectively enhance tool life and surface
quality in the machining process. They mainly include minimum-quantity coolant/lubrication
(MQCL), high pressure air/coolant (HPA/HPC), flood cooling, nanoparticles, and cryogenic cooling [1].
For different kinds of materials and machining methods, various auxiliary means are analyzed in
precision/ultraprecision machining in recently years [2]. In machining hard-to-machine material,
cryogenic cooling is always used as an effective cooling means. A combination of CO2-snow and MQL
have been used to improve chip breaking in turning titanium alloys. However, CO2 coolant is not
recommended due to its greenhouse pollution [3]. Even though a cryogenic condition has the best
improvement effect on tool wear and cutting force, the best surface roughness is generated under
an MQL condition [4]. For machining heat-resistant titanium aluminides, cryogenic cooling is the
most effective method to improve surface roughness, and MQL the second. It is also promising to
decrease tool flank wear [5]. For micromilling soft polymer material under cryogenic conditions, high
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rotational speed and small machining depth decrease surface marks [6]. However, cryogenic cooling is
not suitable for machining all hard-to-machine materials in improving tool wear and surface quality,
because tool rake face wear increases seriously, such as in micromilling Inconel 718 [7].

Flood cooling and HPA are not appropriate to use in micromilling thin-walled components [8].
Flood cooling is not so obvious at higher cutting speeds because of the bubble barrier or seizure
effect, which hinders thermal transfer. Besides, it is always used in micromilling [9] and has been
proven inferior to MQCL [10] in micromilling, including cost, environmental awareness, and making
diseases [11]. HPA is not suitable with lower cutting speeds because it results in higher values of
surface roughness and tensile residual stresses. Although HPA can decrease the generated heat
between tool and work piece or chip in machining process, the highest tensile residual stress [8] and
higher surface hardness [12] can be generated. Thus, it cannot be used in a micromilling process,
especially when using a tool with only a several-hundred-microns diameter due to the low stiffness of
the tool that can decrease surface accuracy [13].

Among the above cooling methods, MQCL has been accepted as the most effective one considering
its cost, pollution, and performance [14]. It has good performance on decreasing tool wear [1,8,15]
and surface roughness [12,16]. With MQCL, vegetable or mineral oil is used as common lubrication
and bare coolants are discussed in milling, especially on a microscale. In 2010, the effect of MQL
was firstly systematically analyzed in near micromilling [17]. Increasing oil flow rate was found to
be not obvious to improve tool wear but increasing air-flow rate, and the distance from nozzle to
the cutting zone also effects the size and penetration of the droplets [18]. In addition, MQCL was
found to be affected by machining parameters as well. Pervaiz et al. [19] have found that the coolant
effect firstly decreases and then increases as the increase of cutting speed. For analyzing tool wear
under MQCL conditions, Liao et al. have found that MQL can provide extra oxygen to form a stable
oxidation layer, such as SiO2 and Al2O3, between the tool-chip interface, and then decrease tool wear
in turning mold steel [11]. Chetan et al. [20] have analyzed tool wear in turning two kinds of aerospace
alloys. They have found that a smaller contact angle between droplets and work-piece surface makes
more complete protective films and has a better lubrication effect. In conclusion, MQCL improves the
machining process comprehensively. Hence, this paper discusses the performance of different coolants
by MQCL in micromilling thin-walled components to near 10 µm thickness.

With the lubrication/coolants method, most research takes only one-step micromilling with
certain machining parameters in their experiments. As the work piece in this paper is very thick (see
Figure 1), a multistep micromilling operation that contains similar machining craft was taken. The main
difference is that each time the micromilling step generates corresponding residual stress on the surface
and subsurface with which the next-step micromilling operation is also influenced. The final surface
textures and mechanical properties of the work piece are the comprehensive consequence that is
generated by the complex multistep machining in the process. Differing from the research mentioned
above, three different kinds of MQCL coolants and dry micromilling operations are compared in
this experiment. It reveals the influence of their different physical properties on surface quality
and mechanical properties of the machined work piece, and is also an aspect to indirectly study
surface/subsurface hardening and residual stress. In this paper, Isopar H, ethyl alcohol, and distilled
water are chosen and the reason is illustrated in Section 2.3. The machining results are also compared
with the dry machining case. The machined surface trait and tool wear are analyzed. These are shown
in Sections 3.1 and 3.2. In Section 3.3, the influence of coolants on mechanical properties is discussed.
In addition, as mechanical properties of the work piece are the most important factors that affect
the service performance of the component, how the physical factors and cooling process affect the
mechanical properties is discussed.
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Figure 1. The thin-walled structure of the component.

2. Materials and Methods

2.1. Hardware System and Milling Tool for Micromilling

A three-axis micromilling machine tool developed independently and an MQCL system, as shown
in Figure 2, were used in this experiment. The employed spindle is manufactured by the British
Loadpoint company. It is a high-speed air float electric spindle with less than 0.125 µm axial and
radial run-out. The gratings for the three linear axes possess a resolution of 5 nm after subdivision.
The precision of feed drives is 150 nm. A CCD camera (DAHENG, Beijing, China) was equipped
onto the machine tool to set the milling tool. The milling tool was two-fluted end mills and its related
information is listed in Table 1.
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Figure 2. Micromilling machine tool.

Table 1. Related information of the employed micromilling tool.

Dia. (µm) Length of Cut (mm) Neck Taper Angle (◦) Edge Radius (µm) Material

≈150 0.2 9 ≈2.5 WC

2.2. Materials

For the core component of military accelerometer, the Elgiloy alloy is an ordinary material. It is
a cobalt-based alloy with excellent physical performance, such as high strength, high ductility and low
thermal conductivity, and chemical performance [21]. The Elgiloy used in this experiment is made in
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America and its original thickness is about 80 µm. The related composition and mechanical properties
are shown in Tables 2 and 3, respectively.

Table 2. Composition of Elgiloy (%).

Beryllium Carbon Chromium Cobalt Molybdenum Iron Manganese Nickel

0.1 max 0.15 max 19–21 39–41 6–8 11.3–20.5 1.5–2.5 14–16

Table 3. Mechanical properties of Elgiloy.

Elasticity Module Yield Strength Tensile Strength Breaking Elongation
(GPa) (MPa) (MPa) (%)

189.6 1598–1667 1724–2413 2.7–3.7

2.3. Experimental Method and Coolant Selection

When spindle rotational speed exceeds 40 krpm, the machined surface roughness under an MQCL
condition is not smaller than that under a dry-machining condition. This is caused by insufficient
lubrication [22]. The adsorption capacity of droplets sprayed from nozzle onto a rotating tool surface
is determined by the relationship between surface tension and centrifugal force of lubricant [23].
A smaller diametrical tool generates a smaller centripetal force when the rest physical quantities stay
constant. In this experiment, 40 krpm spindle rotational speed is used because the tool diameter is
150 µm, one quarter of 600 µm [23], with which the relative centripetal force reduces three times.
Considering a micromilling thin-walled component, the multistep milling method [24] is used to
remove a targeted removal depth 65 µm, which is separated into 10 µm of five times, 5 µm of two
times, and 1 µm of five times. The complete experimental parameters are listed in Table 4.

Table 4. Micromilling parameters.

Spindle Speed (rpm) Feed Rate (mm/s) Milling Depth (µm × times)

40,000 1.67 10 × 5 + 5 × 2 + 1 × 5

Isopar H, ethyl alcohol, and distilled water were used in this experiment, and dry micromilling
was operated as well. Isopar H is an effective lubricant due to its suitable dynamic viscosity and
surface tension. In Reference [25], the water in OoW can suppress thermal expansion effort during the
machining process. Hence, distilled water is also selected as a comparative coolant.

The amount of coolants is chosen as 15 mL/h, which accords with the requirement of the MQCL
method [26]. They were separated into three stages ranging from level 1 to 3 with respect to milling
length and were accepted as a three-times repeated experiment for next-step comparative analysis.
To avoid the influence from tool wear and different coolants, the experiment is thus designed as seen
in Table 5 due to each short-distance milling of using different coolants. A sharp tool was used for
the cases of using coolants and should be flushed by the corresponding coolant in the interval of each
experiment to avoid the influence from various coolants. The other one is only used for the dry-milling
case and the related stages are selected as shown in Table 5 for the three levels.

Table 5. Micromilling method and the coolants used in MQCL.

Work Piece Surface at Tool Total Cutting Length for

Level Isopar H (µm) Ethyl Alcohol (µm) Distilled Water (µm) Dry (µm)

1 1320–1440 2760–2880 4200–4320 1320–1440
2 8520–8640 5640–5760 7080–7200 7080–7200
3 11,400–11,520 12,840–12,960 9960–10,080 12,840–12,960
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2.4. Hardware System for Testing Mechanical Properties

A two-axis machine tool developed independently was used for testing the mechanical properties
of thin-walled components. A force sensor, deemed as a fixed stage, is used for measuring tensile force
and its force resolution is about 20 mN. The other stage is driven by motor to move at a very slow and
constant speed by which the whole tensile test can be accepted as a quasistatic process. Orienting and
holding the components can be operated by a CCD camera and adhesive, respectively. The adhesive
should generate very little heat during its solidification. As the device can only obtain the relationship
between displacement and force applied on one side of the tested component, the structure of the
tested component should be measured in order to calculate the corresponding stress. The thickness
of the machined component is calculated by analyzing pixels in an SEM image and the width of the
component is obtained with the same method in an LSCM image. The machine tool and its testing
process are shown in Figure 3.
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3. Results and Discussion

3.1. Effect on Surface Quality

Surface integration mainly includes surface texture (mainly surface roughness), a metallurgical
layer, and residual stress (RS) [8,27]. Figure 4 shows surface textures micromilled with the coolants
mentioned above. Tool traces are imprinted on all the machined surfaces, especially on the areas that
approach both sides of the slot base. As tool traces were generated by the adhesion of the work piece
surface to the tool rake and flank faces causing the generation of built-up edge (BUE) and build-up
lines [8], using MQCL cannot completely eliminate BUE, which is also a major factor that affects surface
integrity. In Figure 4, the surface consists of a dark and bright area whose boundary is marked as orange.
The surface morphology is captured by Laser Scanning Confocal Microscopy (LSCM), so the degree of
brightness reflects the height of surface points and can also indirectly reflect surface roughness and
surface accuracy. As a tool with a diameter of nearly 150 µm is employed, the stiffness in feed direction
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of the tool is very low and large deflection appears in the micromilling process [28], especially when
using a large feed rate. Hence, the area that approaches both sides of the slot base is a little higher
than other areas. In the case of using Isopar H, the machined surface shows with a minimum of flaws,
which mainly form as adhered chips [29]. The dark area in the case of using ethyl alcohol is much
larger than that in the case of using Isopar H, but approaches that in the case of using distilled water,
which can be observed in Figure 4. One of the performances of MQCL is owing to the lubrication
effect that changes the tribological properties and contact stress [30]. As the relationship between the
dynamic viscosity of Isopar H (Vp = 1.8 mm2/s), ethyl alcohol (Ve = 1.4 mm2/s), and distilled water
(Vd = 0.9 mm2/s) is Vp > Ve > Vd at 25 ◦C, large dynamic viscosity helps to decrease the friction across
the area of the tool–chip interaction [8] and heat generation. Even though lower friction is good to
reduce cutting force, penetration of coolants is more important [14]. However, much larger dynamic
viscosity of coolants limits its penetration [31], even though the dynamic viscosity will decrease in the
cutting zone due to high temperature [14]. Too higher dynamic viscosity decreases the flow of coolants
and makes coolants activate the affinity to the cutting tool without extraction of the heat generated,
and even has negative impact on cutting tool [7].

In general, coolant penetration decreases with increasing tool-chip contact length and higher
surface tension [20]. In this experiment, Isopar H works to improve surface quality, and, thus,
its dynamic viscosity is acceptable to penetrate. Compared with a surface machined with dry milling,
the amount of minor flaws is much more than that of the previous three cases, especially the case of
using Isopar H and ethyl alcohol. It shows that a larger dynamic viscosity of coolants also helps to
decrease minor flaws on the surface during the machining process. In the case of dry milling, there
are smeared chips, classified as major flaws, on the slot base surface, especially on the side surfaces
of the slot base. In terms of the multistep micromilling method employed in the experiments, chips
adhering on the tool in the previous step squeeze between the work piece and tool during the next-step
milling process. Under these newly formed conditions, the adhering chips and the work piece are
interacting due to BUE [29]. The loss of sharpness even increases the tool edge radius and cutting
force during the cutting. Therefore, with the passing of the tool, the surface becomes deformed by
rubbing due to the size effect [32], and surface stresses also occur. Surface integrity is then deteriorated
by machining without using MQCL. Without liquid layer forms, a high amount of temperature and
friction are generated [33]. Hence, coolants with scoped higher dynamic viscosity are recommended
if better surface integrity is required. Among these coolants in this experiment, Isopar H and ethyl
alcohol are the best choice for better surface integrity.
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Figure 4. Surface textures of work piece micromilled under different coolants and methods. (a) Using
Isopar H in MQCL; (b) using ethyl alcohol in MQCL; (c) using distilled water in MQCL; (d) under
a dry-milling condition.
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Figure 5a shows statistical surface roughness in the four cases. They are calculated from data
captured by LSCM (OLS-3000) after filtering. On the same level, the three cases with coolants show
lower surface roughness than that in the dry case. Dry micromilling accelerates tool wear as the cutting
length increases. A BUE on tool forms more easily [23], and considering the material of the tool and
work piece, Ni and Fe diffuse into WC, by which tool wear accelerates [11]. Hence, the machined
surface with the best roughness is generated with Isopar H, and the surface roughness in the case of
ethyl alcohol approaches that in the case of distilled water.

As can be seen from Figure 5b, the statistical surface accuracy PV values also show that dry
machining generates the worst surface accuracy. There is no cooling and lubrication effect to decrease
heat between the interface of the tool rake face and chip, and in the interface of the tool flank face
and machining surface, tool wear appears more dramatically. Besides that, the adhesive chip that is
formed in previous machining step equivalently enlarges the tool edge radius and further generates
the BUE on the surface to deteriorate surface roughness and accuracy. Unlike dry micromilling, surface
accuracy generated with coolants is also decreased along with surface roughness. As the machining
speed, which mainly affects surface roughness [34], is used in this experiment, surface roughness is
then affected by coolants and MQL yields up to 1.4–10.4% lower value of surface roughness, compared
with the dry-machining case. Referring to the lower value of 67% in reference [12], comparatively
high feed per tooth also decreases the cooling and lubrication performance of MQCL. In addition, dry
milling increases the hardness of the work piece surface, thus adversely affecting cutting forces,
and consequently causing higher surface roughness in magnitude as well as in variations [35],
especially using the multistep milling method. From the statistical PV values, the best surface accuracy
appears in the case of using ethyl alcohol.

Materials 2018, 11, x FOR PEER REVIEW  7 of 14 

 

roughness, compared with the dry-machining case. Referring to the lower value of 67% in reference 

[12], comparatively high feed per tooth also decreases the cooling and lubrication performance of 

MQCL. In addition, dry milling increases the hardness of the work piece surface, thus adversely 

affecting cutting forces, and consequently causing higher surface roughness in magnitude as well as 

in variations [35], especially using the multistep milling method. From the statistical PV values, the 

best surface accuracy appears in the case of using ethyl alcohol.  

 

 

Figure 5. Surface quality of work piece micromilled under different coolants and methods. (a) surface 

roughness of the work piece; (b) surface accuracy of the work piece. 

3.2. Observation of Tool Edge 

Figure 6 shows the tool-tip images captured by Scanning Electron Microscope (SEM) (Hitachi S-

4300, Japan) and their length scales are both 10 μm. In Figure 6a, BUE was obviously found on the 

tool surface. But in Figure 6b, there were only some chips and no obvious BUE on the tool surface. 

As can be seen from the status of the chips on the tool surface, the chips do not strongly adhere to the 

tool surface and can drop out from the tool surface comparatively easily. This status will reduce the 

chance of forming smeared chips in the next machining step as well. The result also shows that MQCL 

can effectively reduce the chance of forming BUE by taking away heat generated in the primary 

deformation zone and tool-work piece interaction [8] during the machining process. Comparing 

Figure 6b with 6a, the tool edge radius in the MQCL case is signally smaller than that in the dry-

machining case even though the whole cutting length is not large. The cutting performance will 

decrease due to the BUE and thus increase tool wear [1]. Besides, the high ductility property of this 

work piece also accelerates tool wear [15]. In a word, MQCL has the auxiliary ability to prolong tool 

life.  

(a)

(b)

Figure 5. Surface quality of work piece micromilled under different coolants and methods. (a) surface
roughness of the work piece; (b) surface accuracy of the work piece.



Materials 2018, 11, 1497 8 of 15

3.2. Observation of Tool Edge

Figure 6 shows the tool-tip images captured by Scanning Electron Microscope (SEM) (Hitachi
S-4300, Japan) and their length scales are both 10 µm. In Figure 6a, BUE was obviously found on
the tool surface. But in Figure 6b, there were only some chips and no obvious BUE on the tool
surface. As can be seen from the status of the chips on the tool surface, the chips do not strongly
adhere to the tool surface and can drop out from the tool surface comparatively easily. This status
will reduce the chance of forming smeared chips in the next machining step as well. The result also
shows that MQCL can effectively reduce the chance of forming BUE by taking away heat generated
in the primary deformation zone and tool-work piece interaction [8] during the machining process.
Comparing Figure 6b with 6a, the tool edge radius in the MQCL case is signally smaller than that in
the dry-machining case even though the whole cutting length is not large. The cutting performance
will decrease due to the BUE and thus increase tool wear [1]. Besides, the high ductility property of
this work piece also accelerates tool wear [15]. In a word, MQCL has the auxiliary ability to prolong
tool life.Materials 2018, 11, x FOR PEER REVIEW  8 of 14 
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Figure 6. Scanning Electron Microscope (SEM) image of tool surfaces. (a) In the dry micromilling case;
(b) in the MQCL micromilling case.

3.3. The Effect of the Coolants on the Mechanical Properties

The deformed layer and RS are the main factors that affect tensile strength and fatigue strength.
Compressive residual stress (CRS) enhances fatigue life and tensile strength [27], and the RS can be
measured by high-energy X-ray diffraction [31]. However, this measurement method cannot be used
in a slot with only 150 µm width due to using a large facula [36]. The final service performance is
decided by the mechanical properties. Thus, mechanical properties can reflect service performance
more directly and reflect RS indirectly. As the influence of RS on tensile strength is obvious [27]
and the mechanical properties are the key indexes, the mechanical properties of the machined work
piece are analyzed directly. The main mechanical properties [37], which include Young’s module E,
yield strength σ0.2, tensile strength σb, and breaking elongation δ, are calculated from engineering the
stress-engineering strain curve of the test component. An original component is tested for calibrating
related calculation parameters. They are set as criteria for subsequent tests and the standard mechanical
properties are listed in Table 6.

Table 6. The tested mechanical properties of a standard component.

Young’s Module Yield Strength Tensile Strength Breaking Elongation
(GPa) (MPa) (MPa) (%)

189.59 1617.93 2065.21 3.39
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3.3.1. The Effect of the Coolants on Young’s Module

Young’s module E of this component decides the sensitivity and measurement range of the
accelerometer. In Figure 7, Young’s modules under different coolant methods are all smaller than
the standard Young’s module. Dry milling always produces the highest microhardness [38] caused
by strong strain hardening and deformed layer that impacts on the elastic module [39]. This is
the combination of a high strain gradient and thermal gradient. Besides, the increase of surface
microhardness [35] in the previous milling step enhances milling force and thermal concentrate in the
current milling step while using the multistep milling method. It is a process of repeated influences.
In reference [40], the microhardness (HV) and nanohardness (HN) of Al-Al2O3 nanocomposite increase
with the increase of ball-milling time, and its Young’s module has positive correlation with its HV
and HN. However, in this experiment, there is no obvious relationship between surface hardness
and Young’s module. The thickness of the deformed layer is decreased by the multistep method but
increased by comparatively high machining speed [31]. It is always at a microscale [8] and the whole
thickness of the machined component is only near 15 µm, so the differences between Young’s module
E under different cases are not small.Materials 2018, 11, x FOR PEER REVIEW  9 of 14 
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3.3.2. The Effect of the Coolants on Yield Strength

Yield strength σ0.2 of the component indirectly reflects the service performance of the
accelerometer. Figure 8 shows that σ0.2 of the all components are smaller than the standard one.
The group that possesses the largest yield strength is machined with ethyl alcohol. As the temperature
of the machined surface is higher than that of deeper layer in the micromilling process, the machined
surface then stands tensile residual stress. When it is effectively decreased by using ethyl alcohol as
coolant, the tensile residual stress of the machined surface is decreased as well and the yield strength
is thus comparatively increased. However, it is still smaller than the standard yield strength because of
the deformed layer. The machined thin-walled work piece with better surface quality possesses larger
yield stress.
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3.3.3. The Effect of the Coolants on Tensile Strength

Tensile strength σb of the machined work piece directly decides the service performance of
accelerometer, so it is a very important index. Figure 9 shows the tensile strength under different
coolant methods. The σb of all the machined work piece is smaller than that of the original material.
The largest tensile strength appears at the work piece micromilled with ethyl alcohol. Tensile strength
is mainly affected by two factors: deformed layer and RS. CRS is generated by mechanical load [31],
especially when micromilling with a large negative rake angle [41]. However, tensile residual stress
(TRS) is generated by high temperature [42]. As TRS is mainly affected by heat in the milling process,
the cooling effect of MQCL is the main factor by which TRS is reduced [43] compared with the
dry-milling case. In the dry-milling case, tool wear accelerates and tool edge radius increases, by which
rubbing and ploughing [44] happens more easily. It is an abusive machining condition leading to
bad surface integrity [45]. Compressive stress and heat are generated very fast. This will also cause
an increase in the RS under the surface [46]. Obviously, according to the experimental results, heat
generation is more concentrated. This is another factor of MQCL works, which alters heat-transfer
characteristics [30]. Compared with the Isopar H case and the distilled water case, the result shows that
RS distribution is significantly affected by different coolants. Because of the better cooling effects of
using ethyl alcohol, the TRS on the machined surface decreases the ability of crack initiation, and thus
increases the tensile strength even though it is also affected by surface quality [8]. The tensile strength
has positive correlation with the related yield strength, namely σb ∝ σ0.2. It also indicates that ethyl
alcohol can be used to obtain comparatively lager tensile strength in micromilling thin-walled Elgiloy.
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As the material of the work piece has low thermal conductivity, the ability to take away heat of
the coolants thus becomes more important. The evaporation process of coolants is an endothermic
process and the evaporation rate of coolants has great impact on cooling performance. Considering
the relative evaporation rate (n-BuAc = 100) of coolants, that of ethyl alcohol (202) is much larger than
that of Isopar H (9) and distilled water (42). After the evaporation of ethyl alcohol droplets, heat is
taken away and new ethyl alcohol droplets penetrate into the machining zone more easily.

3.3.4. The Effect of the Coolants on Breaking Elongation

Figure 10 shows the braking elongation δ of the machined work pieces under the four cases.
All the δ are smaller than the minimum value of the standard breaking elongation, but δ under
the ethyl alcohol case is the biggest one and that under the dry-machining case is the smallest one.
Although the thickness of the machined work piece affects the breaking elongation, the machining
process has great impact on the breaking elongation, as can be seen from Figure 10. It indicates that
using ethyl alcohol obtains better surface integrity, such as a deformed layer and RS, and has the
slightest impact on the breaking elongation. In this experiment, the breaking elongation δ under
the Isopar H case is slightly larger than that under the distilled water case. It also indicates that the
penetration and cooling effect of the coolants are more important to improve the machining process.
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3.3.5. Analysis on the Performance of the Coolants

In the case of spraying coolants into the interface between the chip and tool rake face
(see Figure 11), the distance between the nozzle and the cutting zone, size, and moving direction
of coolant droplets determine the penetration [18]. v denotes the velocity vector of coolant droplets
and β denotes the angle between v and tool rake face. A smaller β has better penetration when the
nozzle approaches tool rake face. However, it is complex in micromilling due to the complex geometry
shape and rotational movement of the tool, so more than one nozzle should be adopted in the milling
process. In addition, surface tension also affects coolant penetration. The contact angle θ always
denotes wettability and smaller θ means better penetration [20].

In the lubrication and cooling process, dynamic viscosity denotes the frication coefficient between
chip and tool surface. Coolant droplets with polar molecules adsorb the chip and tool surface,
and friction in droplets happens when relative movement appears. The friction coefficient is then
deduced. In this experiment, Isopar H belongs to chemisorption and the other coolants belong to
physical absorption, so the adsorptivity of Isopar H is better. Isopar H possesses better performance
on lubrication due to its high adsorptivity and low friction coefficient. In general, cooling effect
is the main function to be the auxiliary method used in the macromachining process due to the
large amount of heat generation during machining, and the lubrication effect is mainly used in the
micromachining process. However, for a micromilling low thermal conductive work piece, especially
in a very short reaction time, cooling effect is more important and that is also why a negative effect
appears in machining Inconel 718 while using vegetable oil as lubrication [7]. The effect of convective
heat transfer is larger than that of thermal radiation but smaller than the heat of evaporation in this
micromilling process. As the saturated vapor pressure of ethyl alcohol is much larger than that of the
other coolants, its relative volatility is the largest. The cooling effect of Isopar H is the worst in the
experiment, but Isopar H has a good lubrication effect by which heat generation by friction is reduced,
in terms of tensile experimental results. The relative volatility of ethyl alcohol is much larger than
that of distilled water due to high good extreme pressure (EP) properties, even though the heat of
evaporation (J/g) of distilled water is larger than that of ethyl alcohol. The generated heat is taken
away by ethyl alcohol faster.
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Figure 11. Schematic diagram of cooling and lubrication effect in a micromachining process.

4. Conclusions

In the micromilling process, auxiliary method MQCL has obvious impact on the machining results
and mechanical properties of the component. Based on the experimental results, the conclusions that
can be determined are as follows:

(1) In the dry-machining case, minor and major flaws on the surface are much more than those
in MQCL cases. Even though MQCL has good performance on decreasing probability of
BUE formation and improving surface quality, it cannot totally eliminate tool traces on the
machined surface.

(2) Surface roughness in MQCL cases is decreased by a maximum of 10.4%, compared with that in
dry-machining cases. The best surface roughness is generated in the Isopar H case, but the best
surface accuracy appears in the ethyl alcohol case.

(3) The mechanical properties of the work piece after being micromilled are all smaller than
the standard mechanical properties. The yield strength has positive correlation with the
tensile strength of the machined work piece; however, the changing law of Young’s module is
not obvious.

(4) Penetration of the coolants is important and is mainly affected by the physical characteristics of
the coolant droplets. Combining the lubrication, penetration, and cooling effects of these coolants,
in the selected coolants, ethyl alcohol is the most suitable one for micromilling thin-walled Elgiloy.
Hence, to obtain good mechanical properties of a machined thin-walled work piece, cooling
effect and penetration are more important, especially for machining materials with low thermal
conductivity and high ductility.
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