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Abstract: An inspection process using a Spring Contact Probe (SCP) is an essential step in the
semiconductor-manufacturing process. Many plungers, which are the main body of the SCP,
are manufactured by a stamping process. After the stamping process, mechanical cutting is applied
and the plunger body may be damaged. Thus, to improve cut quality and productivity while
minimizing body damage, laser spot cutting can be used. To fully utilize this technology, it is
necessary to investigate interaction characteristics of beryllium copper (BeCu) during laser spot
cutting. Effects of a total irradiated laser-pulse energy (1 mJ~1000 mJ) and pulse duration (100 ns~8 ns)
on the material-removal zone, thermal depth, and crater size are examined. The crater size can be
affected by the localization of heating dominantly. An incubation model is applied to investigate the
correlation between crater size and laser-pulse energy. Surface morphology characteristics such as
edge separation, small particles, spatter motion, and soaring-up motion are observed.

Keywords: laser-material interaction characteristics; laser spot cutting; spring contact probe;
semiconductor package inspection; beryllium copper

1. Introduction

After semiconductor chips are fabricated on wafers, they are divided into individual
semiconductor chips. After packaging these semiconductor chips, to be protected from mechanical
stress, the packaged semiconductor devices have to be electrically tested. The semiconductor devices
with manufacturing defects are classified during the electronic test. Many spring-loaded contact probes
are used to test electrical connectivity between a Printed Circuit Board (PCB) and the semiconductor
devices [1]. These probes are called Spring Contact Probes (SCP) [2]. A typical composition of an SCP
is a plunger, a barrel, and an internal spring [3], as shown in Reference [4].

A major material of plungers is beryllium copper (BeCu). The plungers are typically coated
with gold and this coating improves electrical performance and corrosion resistance. BeCu is a
copper alloy with 0.5~3% beryllium and it has high strength, high conductivity, is nonmagnetic,
nonsparking, etc. Thus, BeCu can be widely used in metalworking and has many specialized
applications, such as musical instruments, precision-measurement devices, electrical connectors,
automotive systems, and aerospace systems. The plunger tip is to make contact with the PCB and
semiconductor package. A stamping process is applied to manufacture plungers [5] so that a number
of plungers are molded together to improve productivity, as shown in Reference [4]. After the stamping
process, plunger connection arms need to be cut into pieces. A current cutting method is mechanical
cutting. Mechanical cutting may damage the body of plunger owing to the mechanical force applied
at the cutting interface [6]. Furthermore, connection arms may be deflected so that fractures can
eventually occur because of mechanical-stress accumulation. Moreover, cutting tools wear over time
and this tool wear results in process instability and poor cut quality. Poor cut quality may affect
electric connectivity between SCP and semiconductor so that electrical performance could be measured
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incorrectly. In that case, inspection performance and a production yield would be decreased. Therefore,
these problems can be solved by applying laser spot cutting. In addition, laser spot cutting may also
improve both cut quality and productivity.

Laser cutting is a popular application among laser-aided manufacturing [4,7,8] since it has various
advantages, such as being contact-free process, having high-energy concentration, fast processing
time, a small Heat-Affected Zone (HAZ), and applicability to almost every material [9]. Thus, laser
cutting has been applied to many different types of materials, such as sandwiched composites [10–23],
reinforced composites [9,24–29], and metals [4,6,8,13,30–36]. Laser spot cutting is using a laser to
separate a workpiece into two or more pieces [4]. Since there is no relative motion, this may make
the cutting process more efficient. To examine optimal laser parameters, interaction characteristics
between BeCu and laser need to be fully understood. However, there is little information about the
interaction characteristics. Therefore, this study examines crater size, thermal depth, and ablation
threshold to evaluate ablation characteristics. The ablation threshold and incubation coefficient are
compared with the literature. In addition, ablation depth, full penetration, and material-removal zone
are evaluated. This paper is composed as follows: First, a sample and experimental setup are described.
Second, interaction characteristics are evaluated and discussed. Finally, conclusions are summarized.

2. Experiments

47-µm-thick BeCu, which is a copper alloy with 1.8~2% beryllium, was prepared using the
stamping process. On the top and bottom of the BeCu, 4-µm-thick Au was coated by electroplating so
that the total thickness was 55 µm. Rectangular samples shown in Reference [4] were used. Due to the
low investment cost, a nanosecond laser or Ytterbium pulsed-fiber laser (IPG-YLPM, IPG photonics,
Oxford, MA, USA) was chosen. The experimental setup is shown in Figure 1. The laser-pulse durations
were controllable in the range of 4 ns to 200 ns. Pulse durations chosen for the experiments were 8, 20, 50,
and 100 ns. Chosen laser-pulse durations provided enough time for thermal-energy propagation [37].
This created a relatively large melt pool and evaporation could also occur. Wavelength was 1064 nm.
The maximum average output laser power was 20 W and the maximum average power was fixed for
experiments to obtain high productivity. The Gaussian laser beam was focused on the top surface
and spot size was 30 µm at a focal position. A 3D galvoscanner (RAYLASE AS-12Y, Raylase, Wessling,
Germany) was used to deflect the laser beam from the laser source to the workpiece. Assistant or
shielding gas was not used.
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Figure 1. Schematic of experimental setup.

Two variables, which are pulse duration and total irradiated laser energy, were chosen for
independent variables. The repetition rate was modified to maintain the maximum average-output
laser power for all laser-pulse durations (100 ns~8 ns). For example, when the repetition rate was set
to 40 kHz for 100 ns pulse duration, the multiplication of the repetition rate (40 kHz) and pulse energy
(500 µJ) led to the average power of 20W. In addition, when the repetition rate was set to 200 kHz
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for 8 ns pulse duration, the multiplication of the repetition rate (200 kHz) and pulse energy (100 µJ)
also led to the average power of 20 W. Laser parameters used were tabulated in Table 1. Average
output laser power was set to 20 W. A pulse energy (E) and total irradiated laser energy (Etotal) can be
calculated as

Etotal = E·N =
(

Ppeak∆t
)
·N =

(
Pavg

f

)
·N (1)

where E is the pulse energy, Pavg is the average output laser power, ∆t is the pulse duration, Ppeak is the
peak pulse power, N is the number of pulses, and f is the repetition rate. This relationship is shown in
Figure 2. Since Pavg was set to the maximum power, or Pavg = 20 W, the pulse energy was inversely
proportional to f . The pulse energy for each pulse duration is shown in Table 1. To set the same Etotal ,
N was adjusted for each pulse duration. N used for experiments is shown in Table 1. The laser pulses
were applied to the same spot at the constant fluence. A confocal microscope (OLS4000, Olympus,
Tokyo, Japan) was utilized to measure the ablation profile. In addition, a Scanning Electron Microscope
(SEM) (Tescan-Vega3, Zeiss, Oberkochen, Germany) was used to observe the interaction characteristics.
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Table 1. Laser parameters used for experiments.

# ∆t (ns) f (kHz) Pulse E (µJ) Ppeak (W)

Total Energy (mJ)

1000 800 500 200 100 80 50 20 10 8 5 2 1

Number of Pulses (#)

1 100 40 500 5000 2000 1600 1000 400 200 160 100 40 20 16 10 4 2
2 50 60 333.3 6666.7 3000 2400 1500 600 300 240 150 60 30 24 15 6 3
3 20 105 190.5 9523.8 5250 4200 2625 1050 525 420 263 105 53 42 26 11 5
4 8 200 100 125,000 10,000 8000 5000 2000 1000 800 500 200 100 80 50 20 10
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3. Results and Discussions

Ablation characteristics, depending on total irradiated laser energy (Etotal) and pulse duration,
were observed. Crater size, ablation threshold, thermal depth, and incubation coefficient were observed.
The crater size was measured based on the maximum distance of the melting zone. Thermal depth
could determine the localization of the heating,

lth =
√

α∆t (2)

where lth is the thermal depth, and α and ∆t are the thermal diffusivity and pulse duration, respectively.
Material-removal zone and ablation depth were investigated. The interaction characteristics and
surface morphology were discussed in detail. In this paper, crater size and material-removal zones
were measured from the top surface in length scale due to radial symmetricity.

3.1. Crater Size, Thermal Depth, Ablation Threshold, and Incubation Coefficient

Measured craters are shown in Figure 3. The x-axis of Figure 3 is total irradiated laser energy
(Etotal) and plotted in a log scale. As Etotal increased, the crater size increased logarithmically in all
pulse durations. At Etotal = 1 mJ, the total number of pulses was less than 10. Hence, less number of
pulses led to localized heat. In addition, heat conduction rather than evaporation was predominant
since electron temperature was equilibrated with the atoms at the nanosecond laser-pulse duration.
This caused strong heating of the irradiated volume [38]. Because majority part of the sample was Cu,
the material properties of Cu were used. The α of Cu was 1.15 cm2/s. The thermal depth for all pulse
durations was tabulated in Table 2.
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Table 2. Thermal depth (lth), ablation threshold fluence (Fth) and incubation coefficient (s).

∆t (ns) lth (µm) Fth
(
J/cm2) s

100 3.391 40.964 0.750
50 2.298 36.317 0.736
20 1.517 14.751 0.844
8 0.959 9.790 0.825

Even though thermal depth monotonically increased from 0.959 to 3.391 µm as pulse duration
increased, the variation of crater size was insignificant. This may have been related to the direction of
heat transfer. Since thermal depth was the indirect indicator of heat effect in longitudinal direction
and the crater size was highly affected by the heat transfer in transverse direction, correlation between
thermal depth and crater size was insignificant.

Since the 8 ns pulse duration had the minimum thermal depth among the other pulse durations,
a much-localized heat effect could have been expected. Therefore, the minimum crater size was
observed in the low Etotal , which was more sensitive to localized heat. The crater size increased
sharply for the pulse duration of 50 and 100 ns when Etotal was over 100 mJ. For 20 ns pulse durations,
crater size decreased slightly, at which Etotal was 80 mJ. The decreasing crater size proved physically
meaningful due to surface-morphology variation. This morphology change will be discussed in detail
in the next section. When Etotal was high, the differences in crater size between the pulse durations of 50
and 100 ns, as well as between the pulse durations of 8 and 20 ns, were hardly observed. While a small
amount of Etotal led to the localization of heating, three kinds of thermal processes, i.e., vaporization,
normal boiling, and explosive boiling, were influencing the laser–material interaction as increasing
energy [39–43]. Crater sizes less than a laser-spot size, or 30 µm, were observed at the point where
low Etotal was applied. To explain this, an ablation threshold and a Gaussian laser-beam distribution
needed to be introduced first. The ablation threshold can be expressed in terms of peak fluence.
The peak fluence of a Gaussian beam can be calculated by

Fo =
2E

πw2
0

(3)

where E is a pulse energy and w0 is a Gaussian beam radius. According to Equation (4), the calculated
laser fluences are 7.07 J/cm2, 13.5 J/cm2, 23.6 J/cm2, and 35.4 J/cm2 for the pulse duration of 8 ns,
20 ns, 50 ns, and 100 ns, respectively. Since the ablation threshold of Cu with a nanosecond laser pulse
was given in the range of 5.1 J/cm2 to 11 J/cm2 [38,44,45], the fluence used for all cases except the 8 ns
pulse duration was greater than the ablation threshold of Cu. Thus, having a crater size less than 30 µm
was understandable for the 8 ns pulse duration. However, other cases also showed crater size less
than 30 µm. This may be explained by examining laser-beam distribution. When a laser beam has the
Gaussian distribution, the fluence also has the Gaussian distribution. The spatial fluence distribution
for the Gaussian laser beam is given by Reference [39]:

F(r) = F0e
−2r2

w2
o (4)

where F0 is peak fluence in the beam and r is radius. According to the fluence distribution, the fluence
near the edge of the laser-beam spot was less than 10 J/cm2, which is the ablation threshold of Cu.
This is shown in Figure 4. Therefore, crater size less than 30 µm could be observed when Etotal was
less than 10 mJ in all cases.
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The peak fluence (F0) can be calculated with the relationship between an ablation threshold
fluence (Fth) and the diameter (D) [46]:

D2 = 2w2
0 ln
(

F0

Fth

)
(5)

Furthermore, the incubation model explains accumulation behavior [47]. This model explains the
relationship between the singe-shot ablation threshold fluence and the ablation threshold fluence for
the number of laser pulses (N). This relationship can be expressed as follows:

Fth(N) = Fth(1)Ns−1 (6)

where Fth(1) is the ablation threshold fluence using one laser pulse and s is the incubation coefficient.
The crater size and the number of laser pulses are related by combining Equations (6) and (7):

D = w0

√
2 ln (

F0

Fth(1)Ns−1 ) (7)

where F0 is the ablation fluence [39]. Equation (8) can be rearranged as:

− 1
2

(
D
w0

)2
+ ln F0 = ln( Fth(1)) + (s− 1) ln(N) (8)

From Equation (6), Fth(1) and s can be obtained by linear interpolation and substitution.
The single-shot ablation threshold fluence and incubation coefficient are tabulated in Table 2. Figure 5
shows the crater diameters versus the number of laser pulses applied to the same spot at a constant
fluence. The solid line shows a curve fitting according to Equation (8). The single-shot ablation
threshold fluences are 40.9 J/cm2, 36.3 J/cm2, 14.8 J/cm2, and 9.79 J/cm2 for the 100 ns, 50 ns, 20 ns,
and 8 ns pulse duration, respectively. The incubation coefficients were 0.75, 0.74, 0.84, and 0.82 for
the 100 ns, 50 ns, 20 ns, and 8 ns pulse duration, respectively. Attained ablation threshold for the
8 ns pulse duration is very similar to the literature, where the ablation threshold is observed in the
range of 5.1 J/cm2 and 11 J/cm2 [38,44,45]. However, ablation thresholds for the other pulse durations
are hardly found from the literature. The coefficient of determination (R2) is shown for each pulse
duration in Figure 5. The short pulse duration (8 and 20 ns) resulted in a relatively good fitting and
high R2 values. However, the long pulse duration (50 and 100 ns) showed low R2 values. Furthermore,
R2 value decreased as the pulse duration increased. This may have been due to heat accumulation
effect. Since longer pulse duration leads to deeper thermal depth and longer exposure time to laser
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energy, heat accumulation may have been more pronounced. Thus, wider and deeper melting-zone
formation may result in the deviation.

Materials 2018, 11, x FOR PEER REVIEW  7 of 13 

 

The peak fluence (𝐹଴ሻ can be calculated with the relationship between an ablation threshold 
fluence ሺ𝐹௧௛ሻ and the diameter (D) [46]: 𝐷ଶ ൌ 2𝑤଴ଶ ln ൬ 𝐹଴𝐹௧௛൰ (5) 

Furthermore, the incubation model explains accumulation behavior [47]. This model explains 
the relationship between the singe-shot ablation threshold fluence and the ablation threshold fluence 
for the number of laser pulses (N). This relationship can be expressed as follows: 𝐹௧௛ሺ𝑁ሻ ൌ 𝐹௧௛ሺ1ሻ𝑁௦ିଵ (6) 

where 𝐹௧௛ሺ1ሻ is the ablation threshold fluence using one laser pulse and s is the incubation coefficient. 
The crater size and the number of laser pulses are related by combining Equations (6) and (7): 

𝐷 ൌ 𝑤଴ඨ2 lnሺ 𝐹଴𝐹௧௛ሺ1ሻ𝑁௦ିଵሻ (7) 

where 𝐹଴ is the ablation fluence [39]. Equation (8) can be rearranged as: െ 12 ൬ 𝐷𝑤଴൰ଶ ൅ ln 𝐹଴ ൌ ln൫ 𝐹௧௛ሺ1ሻ൯ ൅ ሺ𝑠 െ 1ሻ lnሺ𝑁ሻ (8) 

From Equation (6), 𝐹௧௛ሺ1ሻ and 𝑠 can be obtained by linear interpolation and substitution. The 
single-shot ablation threshold fluence and incubation coefficient are tabulated in Table 2. Figure 5 
shows the crater diameters versus the number of laser pulses applied to the same spot at a constant 
fluence. The solid line shows a curve fitting according to Equation (8). The single-shot ablation 
threshold fluences are 40.9 J/cmଶ, 36.3 J/cmଶ, 14.8 J/cmଶ, and 9.79 J/cmଶ for the 100 ns, 50 ns, 20 ns, and 8 ns pulse duration, respectively. The incubation coefficients were 0.75, 0.74, 0.84, and 0.82 
for the 100 ns, 50 ns, 20 ns, and 8 ns pulse duration, respectively. Attained ablation threshold for 
the 8 ns pulse duration is very similar to the literature, where the ablation threshold is observed in 
the range of 5.1 J/cmଶ and 11 J/cmଶ [38,44,45]. However, ablation thresholds for the other pulse 
durations are hardly found from the literature. The coefficient of determination (𝑅ଶ) is shown for 
each pulse duration in Figure 5. The short pulse duration (8 and 20 ns) resulted in a relatively good 
fitting and high 𝑅ଶ  values. However, the long pulse duration (50 and 100 ns) showed low 𝑅ଶ 
values. Furthermore, 𝑅ଶ value decreased as the pulse duration increased. This may have been due 
to heat accumulation effect. Since longer pulse duration leads to deeper thermal depth and longer 
exposure time to laser energy, heat accumulation may have been more pronounced. Thus, wider and 
deeper melting-zone formation may result in the deviation. 

 Materials 2018, 11, x FOR PEER REVIEW  8 of 13 

 

 

Figure 1. Crater diameter VS the number of laser pulses applied to the same spot at the constant 
fluence for the (a) 100 ns; (b) 50 ns; (c) 20 ns; and (d) 8 ns laser-pulse duration. 

3.2. Material-Removal Zone, Ablation Depth, and Full Penetration 

The material-removal zone is plotted in Figure 6. The x-axis of Figure 6 is plotted on a log scale. 
At the 100 ns and 50 ns pulse duration, material-removal zones were detected when 𝐸௧௢௧௔௟  was 
greater than 500 mJ and 800 mJ, respectively. All the material-removal zones were less than 10 μm. 
No material = removal zone was found when the pulse duration was less than or equal to 20 ns. From 
the figure, the given 𝐸௧௢௧௔௟ is the proper range to investigate the ablation regime since the given 𝐸௧௢௧௔௟ was not enough to remove the material. 

 
Figure 6. Comparison of material-removal zones. 

Ablation depth was measured by a confocal microscope. Comparison of ablation depth is shown 
in Figure 7. The x-axis of Figure 7 is total irradiated laser energy (𝐸௧௢௧௔௟) and plotted in a log scale. 
Higher peak power caused more ablation if we consider only one laser-pulse duration. However, this 
understanding was not applicable in this study. This is because the independent variable was not the 
number of laser pulses using one type of laser-pulse duration, but the total irradiated laser energy. 
Furthermore, one laser pulse was not enough to clearly ablate the material for the given material. In 
addition, the minimum 𝐸௧௢௧௔௟, or 1 mJ, required a different number of laser pulses, depending on the 
pulse duration. Therefore, the common understanding that higher peak power leads to more ablation 
is hardly applicable to explain the phenomena. 

Ablation depth barely increased when 𝐸௧௢௧௔௟ was less than 80 mJ. When 𝐸௧௢௧௔௟ was 80 mJ, the 
ablation depth suddenly increased. No full penetration was observed in the 100 ns, 50 ns, 20 ns, and 
8 ns pulse durations. However, full penetration may be expected as 𝐸௧௢௧௔௟ increases. Although the 
same 𝐸௧௢௧௔௟  was applied for all pulse durations, the ablation depth was different. Apparent 
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3.2. Material-Removal Zone, Ablation Depth, and Full Penetration

The material-removal zone is plotted in Figure 6. The x-axis of Figure 6 is plotted on a log scale.
At the 100 ns and 50 ns pulse duration, material-removal zones were detected when Etotal was greater
than 500 mJ and 800 mJ, respectively. All the material-removal zones were less than 10 µm. No material
= removal zone was found when the pulse duration was less than or equal to 20 ns. From the figure,
the given Etotal is the proper range to investigate the ablation regime since the given Etotal was not
enough to remove the material.
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Ablation depth was measured by a confocal microscope. Comparison of ablation depth is shown
in Figure 7. The x-axis of Figure 7 is total irradiated laser energy (Etotal) and plotted in a log scale.
Higher peak power caused more ablation if we consider only one laser-pulse duration. However,
this understanding was not applicable in this study. This is because the independent variable was not
the number of laser pulses using one type of laser-pulse duration, but the total irradiated laser energy.
Furthermore, one laser pulse was not enough to clearly ablate the material for the given material.
In addition, the minimum Etotal , or 1 mJ, required a different number of laser pulses, depending on the
pulse duration. Therefore, the common understanding that higher peak power leads to more ablation
is hardly applicable to explain the phenomena.

Ablation depth barely increased when Etotal was less than 80 mJ. When Etotal was 80 mJ,
the ablation depth suddenly increased. No full penetration was observed in the 100 ns, 50 ns, 20 ns,
and 8 ns pulse durations. However, full penetration may be expected as Etotal increases. Although the
same Etotal was applied for all pulse durations, the ablation depth was different. Apparent differences
can be observed at Etotal = 1000 mJ. According to the laser parameters used in this study, when a longer
pulse duration was used, weaker peak power formed, as shown in Table 1. However, a longer pulse
duration had higher pulse energy. Thus, ablation depth was highly dependent on Etotal when Etotal
was greater than 500 mJ.
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3.3. Effect of Laser Parameters on Ablation Characteristics and Surface Morphology

Figure 8 shows SEM images for the 100 ns pulse duration. Crater size was clearly observed if
Etotal was less than 80 mJ. These craters were formed by a molten workpiece when there was enough
time for the thermal wave to propagate into the target. Thus, this thermal wave created a molten
layer and the resolidified molten layer formed the crater [37]. When Etotal was 100 mJ, the groove
was discovered at the edge of the crater. This groove became separated when Etotal increased into
200 mJ. This edge separation was readily observable if Etotal was greater than 200 mJ. After the edge
separation was detected, the crater size converged into the value of 60 µm. After the edge-separation
and crater-size convergence, a material-removal zone was observed. Thus, evaporation was introduced
as a material-removal mechanism in addition to the melting and resolidification.

SEM images for the 50 ns pulse duration are shown in Figure 9. In this pulse duration, crater
size changed considerably in the range of 18.9 µm to 58.2 µm. The crater existed where Etotal was
less than 10 mJ. When Etotal was 20 mJ, an initial stage of edge separation was observed around the
edge of the crater. Not only edge separation, but also small particles could be observed around the
crater edge as increasing Etotal . The particle size was in the range of 300 nm to 1.5 µm. Due to the
repeated laser pulses, a molten workpiece was spattered from the laser–material interaction zone to
the edge. After the laser–material interaction, this spattered molten workpiece was solidified and it
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formed particles. Furthermore, these particles may have been formed by condensation of plasma [48].
However, further investigation is required to clearly justify and quantify the causation of these particles.
Further increase of Etotal led to create the material-removal zone when Etotal was 1000 mJ.

SEM images of the 20 ns pulse duration are shown in Figure 10. Similar phenomena observed
from the case of 50 ns pulse duration were observed. Smooth crater surface could be found in the
Etotal range of 1 mJ to 10 mJ. At the Etotal of 20 mJ, a heat-affected zone was observed around the
crater. Both the edge separation and small particles were observed in the Etotal range of 50 mJ to
100 mJ. When Etotal increases, the crater showed a soaring-up motion. This soaring-up motion may
have been due to the intense evaporation, which gives rise to recoil pressure during the laser–material
interaction. Thus, there existed three interaction characteristics, i.e., edge separation, small particles,
and soaring-up motion, when Etotal was greater than 200 mJ.

SEM images for the 8 ns pulse duration are shown in Figure 11. Interaction characteristics observed
are almost similar to the case for the 20 ns pulse duration. However, the edge separation was rarely
observable. The interesting thing was that the soaring-up motion was detected even though Etotal was
less than 10 mJ due to high peak power.Materials 2018, 11, x FOR PEER REVIEW  10 of 13 
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4. Conclusions 

To fully utilize laser cutting on BeCu, interaction characteristics during laser spot cutting were 
observed with variation of an ns pulse duration (100 ns~8 nsሻ and 𝐸௧௢௧௔௟ (1 mJ~1000 mJ). Crater size, 
material-removal zone, and thermal depth were examined. Furthermore, ablation depth, ablation 
threshold, incubation coefficient, and surface morphology were observed. Crater size can be affected 
dominantly by the localization of heating when a small amount of 𝐸௧௢௧௔௟ is applied. The relationship 
between crater size and the number of laser pulses was examined with the incubation model. A single-
shot ablation threshold and incubation coefficient obtained from the model were compared. The values 
are in a good agreement with the literature for the 8 ns laser pulse. Edge separation, small particles, 
spatter motion, and soaring-up motion were detected on the surface and discussed. The results can be 
used for BeCu laser cutting in many applications as a fundamental reference. 
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4. Conclusions

To fully utilize laser cutting on BeCu, interaction characteristics during laser spot cutting were
observed with variation of an ns pulse duration (100 ns~8 ns) and Etotal (1 mJ~1000 mJ). Crater size,
material-removal zone, and thermal depth were examined. Furthermore, ablation depth, ablation
threshold, incubation coefficient, and surface morphology were observed. Crater size can be affected
dominantly by the localization of heating when a small amount of Etotal is applied. The relationship
between crater size and the number of laser pulses was examined with the incubation model.
A single-shot ablation threshold and incubation coefficient obtained from the model were compared.
The values are in a good agreement with the literature for the 8 ns laser pulse. Edge separation,
small particles, spatter motion, and soaring-up motion were detected on the surface and discussed.
The results can be used for BeCu laser cutting in many applications as a fundamental reference.
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