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Abstract: Wide softening zones are typical for welded joints of age hardened aluminium alloys.
In this study, the microstructure evolution and distribution of mechanical properties resulting from
welding processes of the aluminium alloy EN AW-6082 (AlSi1MgMn) was analysed by both in-situ
and ex-situ investigations. The in-situ thermal analyses included differential scanning calorimetry
(DSC), which was used to characterise the dissolution and precipitation behaviour in the heat affected
zone (HAZ) of welded joints. Thermo-mechanical analysis (TMA) by means of compression tests
was used to determine the mechanical properties of various states of the microstructure after the
welding heat input. The necessary temperature–time courses in the HAZ for these methods were
measured using thermocouples during welding. Additionally, ex-situ tensile tests were done both on
specimens from the fusion zone and on welded joints, and their in-depth analysis with digital image
correlation (DIC) accompanied by finite element simulations serve for the description of flow curves
in different areas of the weld. The combination of these methods and the discussion of their results
make an essential contribution to understand the influence of welding heat on the material properties,
particularly on the softening behaviour. Furthermore, the distributed strength characteristic of the
welded connections is required for an applicable estimation of the load-bearing capacity of welded
aluminium structures by numerical methods.

Keywords: AlMgSi alloy; EN AW-6082; welding; mechanical properties; microstructure; DSC;
thermo-mechanical analysis; digital image correlation; tensile test; numerical simulation

1. Introduction

Wrought EN AW-6082 (AlSi1MgMn) alloy, as an age hardening aluminium alloy, has excellent
weldability, corrosion resistance and mechanical strength and is widely used in the automobile and
shipbuilding industries. The major alloying elements of this aluminium alloy 6082 are Mg and Si, which
can increase the strength of the alloy through precipitation hardening. The welding of aluminium
alloys can lead to defects such as porosity, incomplete fusion and hot cracking, and thus the welding
work can be challenging. Age hardening aluminium alloys such as 6082, whose strength is increased
by precipitation hardening, always exhibit phase transformation and a softening phenomenon because
of the heat input generated during the welding process [1,2]. A proven method for investigations of
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such softening is the characterisation of microstructure and mechanical properties of welded joints
by metallography as well as by standard load tests. Results (e.g., [3]) show the decreases of base
material strength within the heat affected zone due to the dissolution of strengthening precipitates.
For deeper knowledge and understanding of the softening phenomena, an in-situ characterisation
of the microstructure development would be preferable. Differential scanning calorimetry is a
suitable technique to record the precipitation and dissolution behaviour in situ during the heat
treatment of aluminium alloys [4]. The method was initially developed for analysis of the precipitation
behaviour during cooling after solution annealing and was subsequently expanded to the analysis of
the short-term heat treatment of age-hardening aluminium alloys [5,6]. For a correct understanding of
softening phenomena within the HAZ, knowledge of phase transformations during heating would be
necessary. In this work, DSC was used for the first time to investigate the dissolution and precipitation
behaviour of an age-hardened AlMgSi alloy when heated under typical temperature–time curves
of a welding process. The results of the thermal analysis are discussed alongside the distributed
mechanical properties of the HAZ, which have been determined in two ways. First, welded joints
were investigated with elaborate load tests supported by numerical analysis. Second, the mechanical
properties of a wide variety of microstructures caused by welding heat input were determined through
thermo-mechanical analysis. The results of this work contribute to a better understanding of the
development of mechanical properties in HAZ and make it possible to provide realistic material
models for structure–mechanical investigations using the finite element method. In particular, the aim
of the present project was to use the obtained results for the representation of the material characteristics
of welded aluminium cross joints and to predict their limit load behaviour with numerical simulations.

2. Materials and Methods

2.1. Investigated Aluminium Alloy

The experiments of this study were performed on a wrought aluminium alloy, EN AW-6082
(BIKAR-Aluminium GmbH, Korbußen, Germany), which was supplied as a 10 mm thick plate in the
initial state T651. According to DIN EN 515 the treatment T651 includes solution annealing, quenching,
stretching by 1.5% to 3% and subsequent artificial aging. EN AW-4047 (MTC GmbH, Meerbusch,
Germany) was used as welding filler material for welding specimens. The chemical composition of
EN AW-6082 and fusion zone material of a butt joint determined with optical emissions spectroscopy
(OES) is given in Table 1 in addition to the specifications from DIN EN 573-3 [7].

Table 1. Mass fraction of alloying elements in the investigated EN AW-6082 alloy, fusion zone material
of a butt joint and weld filler material EN AW-4047, in percent.

Material/alloy Source Si Fe Cu Mn Mg Cr Zn

EN AW-6082 OES 0.83 0.38 0.06 0.48 0.92 0.03 0.01
EN AW-6082 DIN EN 573-3 0.7–1.3 ≤0.5 ≤0.1 0.4–1.0 0.6–1.2 ≤0.25 ≤0.2

EN AW-4047A DIN EN 573-3 11-13 0.6 0.3 0.15 0.1 - ≤0.2
Fusion zone material OES 7.23 0.29 0.03 0.19 0.39 0.02 <0.01

Table 2 shows the mechanical properties in three different directions (rolling direction 0◦, 45◦

and 90◦, as in [8]) of the base material determined from tensile tests. A comparison with the standard
shows that the properties of the base material fit or exceed the required values in all directions. The
differences between the directions in the present rolled plate material are negligible compared to the
differences in extruded material (e.g., Chen et al. [9]). Thus, isotropic behaviour can be assumed [10].
In this study, the mechanical properties from the 0◦-specimens are used for the base material.
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Table 2. Mechanical Properties of EN AW-6082 T651 depending on the rolling direction.

Rolling Direction E (N/mm2) Rm
(
N/mm2) Rp0.2

(
N/mm2) A5 (%)

0◦ 70800 308 289 12.2
45◦ 70000 303 278 13.0
90◦ 71300 308 284 11.5

Max. Difference 1.8% 1.5% 3.8% 11.8%
DIN EN 485-2 [11] 70000 300 255 9

Furthermore, for different methods investigating the material behaviour several different samples
were used. Table 3 gives an overview of the different specimen geometries and dimensions.

Table 3. Overview on used samples.

Method Previous Treatment Geometry Dimensions in mm

Temperature measurement Initial state T-joint * 240 × 160 × 10 plus 240 × 71 × 10
DSC, heat flow Initial state Cylindrical Ø6 × 21.65

DSC, power compensated Initial state Cylindrical Ø6.4 × 1
TMA Initial state Cylindrical Ø5 × 10

Tensile tests Initial state Cylindrical ** Ø8 × 48
Tensile tests Butt welded Cylindrical ** Ø6 × 36

Tensile tests, DIC Butt welded Flat specimen ** 25 × 6 (B×T), smooth, R40, R10

* see Figure 2, ** see Figure 4.

The high strengths in aluminium alloys are achieved in particular by precipitation hardening [12].
The precipitation sequence of Al-Mg-Si alloys was described by Edward and Dutta et al. [13,14].
An overview of these precipitates with information on dimensions, coherence, shape and further
remarks was given by Polmear [15]. In Al-Mg-Si alloys, the beta phase results in maximum
strengths [13].

The precipitation behaviour of several Al-Mg-Si alloys during cooling was investigated with
DSC and microstructure analysis (optical microscopy (OM), SEM and TEM) [16–19]. Two different
reaction areas, high (HTR) and low temperature reactions (NTR), were detected. In part, there is also a
third middle temperature reaction (MTR). The high temperature reactions were correlated with the
precipitation of Mg2Si and the low temperature reactions of the precipitation of precursor phases.
Precipitation behaviour depend strongly on initial state and chemical composition The critical cooling
rate of 6082 can vary by factor of 10 depending on Mg and Si content [20].

In [21], the precipitation behaviour of the same batch of 6082 in the same initial state as in this
study was analysed depending on different annealing conditions. The precipitation behaviour depends
above all on whether there is a complete or incomplete dissolution of secondary particles at the onset
of cooling.

The dissolutions and precipitations of Al-Mg-Si alloys during heating were also analysed with
DSC and it was linked to the mechanical properties by TMA [5,21,22]. Osten et al. [21] investigated the
dissolution and precipitation behaviour of several Al-Mg-Si alloys, including 6082, in various initial
states during heating and has assigned the measured peaks to specific reactions through extensive
literature research.

2.2. Welding Procedure and Temperature Measurements

Considering the aim of the project, butt welded joints and T-joints were used (see Figures 1 and 2),
which were processed manually with metal inert gas welding (MIG) with three and four beads,
respectively. Plates of EN AW-6082 T651 were welded with EN AW-4047 (wire diameter 1.2 mm) as
weld filler material. Welding was conducted with direct current and positive polarity. A mixture of
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argon and helium (70%/30%) was applied as shielding gas. A ceramic weld pool backing was used for
all joints. Further welding parameters are listed in Table 4.Materials 2018, 11, x FOR PEER REVIEW  4 of 22 
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Table 4. Welding parameters of EN AW-6082 plates.

Joint Welding Bead Current (A) Voltage (V) Wire Feed (m/min) Wire Diameter (mm)

Butt joint 1 145 23.5 7.5 1.2
2 & 3 145 23.5 7.5 1.2

T-joint 1 & 2 204 24.4 9.5 1.2
3 & 4 188 23.7 8.5 1.2

A temperature–time course in the heat-affected zone during a real welding process is needed
as input data for differential scanning calorimetry and for thermo-mechanical analysis. Eight
thermocouples (Type K, 0.5 mm, Therma Thermofühler GmbH, Lindlar, Germany) that were
completely inserted in drilled holes simultaneously measured the temperature with a frequency
of 50 Hz. The geometry of the prepared aluminium sheets is displayed in Figure 2 including the
positions of the holes for thermocouples. The diameter of the holes was 0.6 mm, slightly larger than
the diameter of thermocouple wire, to ensure that the thermocouples could be positioned at the end
of drilled holes. The length of this T-joint was 240 mm and the thermocouple holes were drilled
lengthwise at 80 and 160 mm from the edge.
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2.3. Differential Scanning Calorimetry

The heating rate range of 0.01–5 K s−1 was investigated by direct DSC with two types of
calorimeters: CALVET-type heat-flux DSC (DSC 121 and Sensys, Setaram, Caluire-et-Cuire, France)
for slower (0.01–0.1 K s−1) and power-compensated DSC for faster (0.3–5 K s−1) scanning rates (Pyris
Diamond and Pyris DSC 8500, PerkinElmer, Waltham, MA, USA). The samples used for heat-flux
DSC had a cylindrical geometry with 6 mm diameter, 21.65 mm height and a mass of 1600 mg.
Cylindrical samples with 6.4 mm diameter, 1 mm height and a mass of 80 mg were investigated in the
power-compensated DSC devices. All experiments were carried out with an alloyed sample in one
micro furnace and a pure–aluminium reference (99.9995% purity) with the same geometry in the other
micro furnace. The samples and references were packed in pure-aluminium crucibles.

For investigation of very fast heating rates, which are typical for the HAZ during welding,
direct DSC cannot be used, because the heating rate limit of the devices is exceeded. Instead, the
indirect DSC method was used. Zohrabyan et al. [23] developed the differential reheating method to
extend the temperature rate range. The schematic procedure of this method is shown in Chapter 3.2
together with its results. Rapid heating took place in the quenching dilatometer Bähr 805 A/D (BÄHR
Thermoanalyse GmbH, Hüllhorst, Germany). The device is explained in Chapter 2.4. For indirect DSC,
the samples had the same geometry (diameter of 6.4 mm, height of 1 mm, mass of 80 mg) as for direct
DSC in the power-compensated devices. The samples were heated with rates from 20 to 100 K s−1 to
temperatures of 200 ◦C to 450 ◦C, respectively, with an interval of 25 K. To preserve the state of the
material at the maximum temperature, the samples were immediately quenched with maximum gas
flow from He. After heat treatment, the samples were directly frozen at −80 ◦C until being reheated in
the DSC device.

Reheating in the DSC device was performed with a scanning rate of 1 K s−1 to a maximum
temperature of 575 ◦C.

The data processing of raw measured heat flow curves applied in this study was described in
detail by Fröck et al. [24]. To obtain high-quality DSC results, the following sequence of experiments
was conducted: sample measurement–baseline measurement, sample measurement. This is an efficient
method to obtain a baseline for each sample measurement immediately. Baseline measurements were
carried out with two pure aluminium references in the micro furnaces and the same temperature
program as for the sample measurements. Baseline measurements were made to ascertain the current
device specific curvature, which can change significantly within hours. This curvature is removed by
subtracting the baseline determined in a timely manner.

The comparison of DSC curves of different sample masses ms and scanning rates β requires a
normalisation of the measured heat flow signal. For this reason, the specific heat capacity cpexcess

[25] is
calculated according to:

cpexcess
=

.
Qs −

.
QBL

msβ

(
in J·g−1·K−1

)
(1)

with heat flow of baseline
.

QBL and sample measurement
.

Qs.
Remaining artefacts such as overshoots at the start and end of a scanning step were removed.

The residual curvature of cpexcess
-curves can be compensated for with a polynomial fit. This was

applied only for heating curves with scanning rates of 0.01 K s−1 and 0.03 K s−1, because, for this data
processing step, reaction free zones at low and high temperatures are necessary [4,21].

The slow heating experiments (0.01–0.1 K s−1) consist of 4–6 sample measurements and 2–3
baselines. In the heating rate range of 0.3–5 K s−1, eight sample measurements and four baselines were
performed for each scanning rate. For indirect DSC, four sample measurements and two baselines
for each maximum temperature and each heating rate were conducted. The average curves of these
experiments are plotted in the diagrams. In total, more than 220 DSC experiments were performed.
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2.4. Thermo-Mechanical Analysis and Hardness Testing

Thermo-mechanical analysis measures the deformation of a material under compression or
tension as a function of temperature. To analyse the mechanical properties of the aluminium alloy
6082 T651 depending on the parameters of a thermal welding cycle, a thermo-mechanical analysis
has been performed in the quenching and deformation dilatometer type Bähr 805 A/D. A schematic
of the cylindrical compression sample inside the testing machine is shown in Figure 3. During the
investigation, the specimens with geometrical dimensions of Ø 5 mm × 10 mm are heated inductively
by the surrounding induction coil. An additional perforated inner coil was used for inert gas cooling.
The temperature of the specimen was controlled with thermocouples spot-welded onto the specimen
surface. The samples retrace the temperature–time profiles, which were measured in the HAZ during
welding. The compression tests were carried out after seven days natural aging at about 20 ◦C with a
deformation rate of 1 mm/s. Thereby, force–displacement curves were recorded. Every combination
of heating rate and temperature was repeated three or four times and revealed a good reproducibility.
The determined load-displacement diagrams were evaluated to flow curves representing true stresses
and true strains.
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type Bähr 805 A/D.

During the evaluation of the compression tests, the absolute values of forces and displacements
are calculated so that only positive strains and stresses are shown in the diagrams. These data can be
compared directly with the results of the tensile tests.

For the hardness curve over the cross-section of weld seams, hardness values (HV1) were
ascertained with the micro hardness tester HMV-2 from Shimadzu, Kyoto, Japan.

2.5. Tensile Tests on Welded Joints

To obtain the mechanical properties of the fusion zone (FZ), tensile tests on round specimens were
conducted. The specimens had a diameter of 6 mm and were machined out of a V-shaped butt weld.
Due to manufacturing limitations this specimen contained not only the weld material, but also small
parts of the heat affected zone. Therefore, the results of these tests must be seen as integral values
of the fusion zone and adjacent heat affected zone material. The displacements were measured by
an extensometer.

To determine the mechanical behaviour of the heat affected zone, tensile tests on whole welded
joints were conducted. Two plates of the base material were joined with an X-shaped butt weld, as
described in Chapter 2.2. To obtain flat specimens the 10 mm thick welded plates were milled to 6 mm
thickness (Figure 4a). Smooth and notched specimens (notch radius of 10 mm and 40 mm, Figure 4b)
with a width of 25 mm in the smallest cross section were manufactured. Displacements and strains on
the surface of the flat specimens were measured with a 2D digital image correlation system. Therefore,
the surface of the specimens was prepared with a speckle pattern. The camera resolved the surface
with a pixel size of 0.03 mm. The majority of the speckles had a size of 2 × 2 to 4 × 4 pixels. The data
was processed with the software VIC 2D 6 (Correlated Solutions, Irmo, SC, USA).
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the HAZ, lengths in mm.

The DIC offers the possibility to place several virtual extensometers on the specimen surface with
a freely chosen length. Therewith, force–displacement curves of several zones of the specimen can
be obtained. The dimensions of the zones were first derived from hardness measurements and then
compared with the DSC and TMA experiments.

For this investigation, the specimen was divided into four areas of interest: fusion zone and
three areas in the heat affected zone (Z1, Z2 and Z3). Z3 was chosen such that differences with the
base material (BM) are small and therefore the properties of the BM can be assumed (see hardness
measurements in Chapter 3.3). Necking and fracture of the specimen was expected in Z1. Z2 filled the
area between Z1 and Z3.

With the virtual extensometers, the force–displacement curves of each individual material zone
were measured along with a global force–displacement curve including all zones. For the global
curve, the virtual extensometer had a base length of 65 mm, whereas the extensometers of Z1 and
Z2 were applied over the whole zone length of 12 mm and 9 mm, respectively. Accurate strain
measurements can be achieved with the virtual extensometers due to their undeformed length of
at least 300 pixels. Material properties from Z1 and Z2 can be obtained with this method without
manufacturing separate specimens.

2.6. Determination of True Stress–Strain Curves

Tensile tests can be evaluated to determine the flow curve of a material. As long as uniform
elongation occurs in the tests, the flow curve (equivalent von Mises strain σvM over total equivalent
plastic strain εpl) can be calculated analytically as follows. First, the true strain ε

ε = ln(1 + εe ) (2)

and true stress σ

ε = σe(1 + εe) (3)

can be calculated from the engineering stresses σe and engineering strains εe. In this case, the true
stress equals the von Mises equivalent stress σvM. The plastic strain εpl can be calculated by

εpl = ε − σ

E
(4)
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After onset of necking of the specimen, the stress state is not uniaxial anymore. To obtain the flow
curves beyond the onset of necking, there are several analytical approaches. One often used method is
to fit the values obtained by Equations (3) and (4) with a simple power law of the form

σvM = Kεpl
n (5)

Another possibility is to calculate the parameters K and n of Equation (5) with the true stresses σm

and plastic strains εm at the beginning of necking. The power law becomes

σvM = σm

(
εpl

εm

)εm

for εpl ≥ εm (6)

and allows an extrapolation of the experimental data beyond the onset of necking.
However, neither method considers experimental results after the start of necking. Therefore,

numerical simulations were conducted with the finite element program MarcMentat2013 to obtain
flow curves with an iterative procedure. On the one hand, round specimens were simulated with
rotational symmetric half models. On the other hand, 3D volume models were used to simulate flat
specimens. In contrast to the geometry of the specimens, the deformation of the welded specimens is
not symmetric in the tension direction due to strain localisation in the HAZ at one side of the fusion
zone. Therefore, a quarter model with symmetry in width and thickness directions was used.

In this iterative procedure, the flow curve of the material is changed in a way that the resultant
force–displacement curve in the simulation equals the force–displacement curve of the experiment.
The detailed procedure was described by Gannon [25].

This method can be used for the base material and fusion zone material, since specimens with
homogenous behaviour are assumed. For the HAZ, this method is not useable without modification,
because the flat specimens do not consist of a homogeneous material (see Figure 4a). Furthermore, no
necking or failure occurs in the Z2. Accordingly, the experimental stress–strain curve of the Z2 does
not reach the tensile strength for this zone and σm and εm are unknown. Thus, the experimental result
for the flow curve of the Z2 is extrapolated with a fitted power law given in Equation (5).

The flow curve of the Z1 can be obtained by iteration, but instead of using one single material
the whole specimen with FZ, Z1, Z2 and Z3 (assumed properties of the BM) and their respective flow
curves was modelled. The simulation of a complete specimen ensures that the edges of the Z1 behave
correctly, because the different strengths of the adjacent Z2 and fusion zone hinder the deformation in
width direction.

3. Results and Discussion

3.1. Temperature–Time Course in Heat Affected Zone

The cross section of the welded joint, which was used for temperature measurements, is shown
in Figure 5 including thermocouple bores. The thermocouple wires were located at the end of the
blind holes, so the distance between each weld bead and the points of temperature measurement was
determined with these cross-section images.
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Figure 5. (a) Cross-section of welded T-joint; and (b) macro image of bores for thermocouples.

A typical temperature–time course in HAZ during welding and its three analysed parameters
(heating rate, Tmax, and cooling rate) are shown in Figure 6a. The heating in all recorded courses
was nearly linear over a wide temperature range. The maximum temperature (Tmax) was reached
without a holding time and the cooling started immediately with a Newtonian course. Below 200 ◦C,
the temperature decreases very slowly due to the relative small dimensions of joined plates, which
heated up significantly. Therefore, only the cooling between Tmax and 200 ◦C was used to calculate the
mean cooling rate.
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Figure 7. Parameters of temperature–time course dependent on distance to the weld seam. 
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Figure 6. (a) Typical measured temperature–time course in HAZ; and (b) heating and cooling rates
in the HAZ during MIG welding of EN AW-6082 depending on the maximum temperature and the
resulting parameter of TMA heat treatment as well as the heating rates for indirect DSC.

The analysed heating and cooling rates in the HAZ during welding are plotted against Tmax

in Figure 6b. In principle, the heating and cooling rate increase as the maximum temperature rises,
although a scattering of measured values occurs.

The three analysed parameters of temperature measurement revealed:
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• Linear heating rates: 25–118 K s−1

• Maximum temperatures (Tmax): 229–516 ◦C
• Averaged cooling rates between Tmax and 200 ◦C: 3.5–15 K s−1.

Because the maximum temperature correlates with distance from the fusion zone, these results
are also plotted against the distance to weld bead in Figure 7.
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Figure 7. Parameters of temperature–time course dependent on distance to the weld seam.

These results, temperature rates and corresponding maximum temperatures, retrace different
positions in the HAZ and were selected as parameters for TMA in this study. They are marked with
black symbols in Figure 6b and given in Table 5. The chosen heating rates of indirect DSC (20 K s−1

and 100 K s−1) are in the minimum and maximum range of these values.

Table 5. TMA parameters retracing HAZ.

Distance to Fusion Zone Max. Temperature in ◦C Heating Rate in K s−1 Cooling Rate in K s−1

Ca. 2 mm 500 100 10
Ca. 4 mm 425 75 10
Ca. 8 mm 325 50 8

Ca. 16 mm 225 25 4

3.2. Precipitation and Dissolution Behaviour of EN AW-6082 T651 in a Wide Dynamic Range

The excess heat capacity curves of heating the alloy EN AW-6082 with initial state T651 over a
heating rate range from 0.01 K s−1 to 5 K s−1 up to 585 ◦C are plotted in Figure 8. During heating
of aluminium alloys, dissolution and precipitation reactions occur. Precipitations were measured as
exothermic peaks and dissolution as endothermic peaks. These reactions are alternating and overlap
each other. Thus, the DSC curves show only the resulting sum signal, and only the initial temperature
of the first and the final temperature of the last reaction are true signals.
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Figure 8. Direct DSC heating curves of EN AW-6082 T651 heating rates 0.01 K s−1 to 5 K s−1.

The DSC curve recorded by Osten et al. [21] with another batch of EN AW-6082 with a 0.01 K s−1

heating rate resembles the curve from this study with the same scanning rate. There are only slight
differences in reaction behaviour at slow scanning rates, which can be explained by differences in
chemical composition, but the sequence of reactions is the same. Therefore, their interpretation of the
reaction sequence is used in this study. The reactions were labelled here with the same characters [21].

The first peak B for the initial state T6 is induced by the dissolutions of GP-zones and β”, with β”
being the phase which effects the maximum strengths of Al-Mg-Si alloys [13]. The peak d corresponds
to either the precipitation of β” or β′ depending on initial state [13,15]. For the initial state T651, there
is probably only a precipitation of β′, because β” is already dissolved in the previous reaction. The
reactions which cause the peaks F and g belong to the dissolution of β′ and the precipitation of β
(Mg2Si). The dissolution of the remaining precipitations, especially β (Mg2Si), is recorded as final
peak H. At very slow heating rates, there is a reaction-free range following peak H, which indicates a
complete dissolution of these particles [21].

As the heating rates increase, there is a shift of reactions to higher temperatures, which also
results in an incomplete dissolution with fast heating. Furthermore, the curves shift in the endothermic
direction. However, it is unlikely that dissolution will increase at faster heating rates. Rather, it can be
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assumed that the shift is thus caused because precipitation reactions are significantly more suppressed
than dissolution reactions.

Figure 9a displays the temperature–time course of the indirect DSC method. To maintain
the condition at Tmax and to prevent quench-induced precipitation, quenching is performed with
maximum gas flow after the first heating. The average cooling rates β of the Newtonian cooling course,
which depended on the temperature interval considered, are listed in Table 6.

Materials 2018, 11, x FOR PEER REVIEW  12 of 22 

 

above 100 °C. It can thus be assumed that no significant precipitation reactions took place during 
cooling and the state of the material reached at maximum temperature remains. 

The reheating curves are shown in Figure 9b,c. The reaction peaks are given the same characters 
as in Figure 8. Low curvature is present in the curves, which can give reasons for slight quantitative 
differences between single curves. This is particularly apparent at higher temperatures, e.g., the peaks 
g and H, or the slope of reaction free zone are influenced by this remaining curvature. Nevertheless, 
the development of reactions is clearly visible. The reheating curves of the investigated heating rates 
20 K s−1 and 100 K s−1 show no significant differences for the same Tmax. Depending on Tmax, there is a 
substantial development in the reheating curves for each heating rate. In conclusion, the reactions 
taking place in the HAZ are mainly dependent on Tmax and are less dependent on the heating rate, at 
least in the investigated range. 

 
Figure 9. Indirect DSC: (a) schematic temperature–time course; and reheating DSC curves of heating 
rates: (b) 20 K s−1; and (c) 100 K s−1. 

The reheating curves from the initial state EN AW-6082 T651 to Tmax of 275 °C are almost 
identical. That means no significant reactions take place until heating to this temperature. From Tmax 
300 °C an exothermic reaction starts (see arrows in Figure 9b,c). These reaction peaks increase with a 

0 100 200 300 400 500 600

d

HF
B

450 °C

400 °C

350 °C

300 °C

275 °C

250 °C

Tmax: 200 °C

6082 T6

reheating of EN AW-6082: 1 K s-1 585 °C
heating: 20 K s-1 Tmax

Temperature in °C

endo

Ex
ce

ss
 c

p 
   

  0
,2

 J 
g-1

 K
-1

(b)

g

a

B+F

g

H

-80
30

200

400

600

(a)
quenching dilatometer:
heating: 20 /100 K s-1

Tmax: 200 - 450 °C
overcritical

cooling

DSC: reheating 1 K s-1

Te
m

pe
ra

tu
re

 in
 °C

Time
deepfreeze

0 100 200 300 400 500 600

(c)

450 °C

400 °C

350 °C

300 °C

275 °C

250 °C

Tmax: 200 °C

6082 T6

reheating of EN AW-6082: 1 K s-1 585 °C
heating: 100 K s-1 Tmax

Temperature in °C

endo

0,
2 

J g
-1

 K
-1

Ex
ce

ss
 c

p

B

d

F

g

H

H

g

B+F

a

Figure 9. Indirect DSC: (a) schematic temperature–time course; and reheating DSC curves of heating
rates: (b) 20 K s−1; and (c) 100 K s−1.

Table 6. Average cooling rates of heat treatment for indirect DSC.

Upper Temperature Lower Temperature Average Cooling Rate

450 ◦C 100 ◦C ~200 K s−1

200 ◦C 100 ◦C ~120 K s−1

100 ◦C 30 ◦C >32 K s−1
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Fröck et al. [24] used the same batch of 6082 to investigate the influence of different solution
conditions on the precipitation behaviour during subsequent cooling. For an incomplete solution
state (after 540 ◦C for 1 min), the upper critical cooling rate (uCCR) of 100 K s−1 was ascertained. The
cooling rates of the heat treatment for indirect DSC are higher than this uCCR in temperature ranges
above 100 ◦C. It can thus be assumed that no significant precipitation reactions took place during
cooling and the state of the material reached at maximum temperature remains.

The reheating curves are shown in Figure 9b,c. The reaction peaks are given the same characters
as in Figure 8. Low curvature is present in the curves, which can give reasons for slight quantitative
differences between single curves. This is particularly apparent at higher temperatures, e.g., the peaks
g and H, or the slope of reaction free zone are influenced by this remaining curvature. Nevertheless,
the development of reactions is clearly visible. The reheating curves of the investigated heating rates
20 K s−1 and 100 K s−1 show no significant differences for the same Tmax. Depending on Tmax, there is
a substantial development in the reheating curves for each heating rate. In conclusion, the reactions
taking place in the HAZ are mainly dependent on Tmax and are less dependent on the heating rate, at
least in the investigated range.

The reheating curves from the initial state EN AW-6082 T651 to Tmax of 275 ◦C are almost identical.
That means no significant reactions take place until heating to this temperature. From Tmax 300 ◦C
an exothermic reaction starts (see arrows in Figure 9b,c). These reaction peaks increase with a higher
maximum temperature of first heating. During the first heating, existing precipitates are dissolved
increasingly with rising temperature. A supersaturation occurs due to overcritical cooling, which
causes the measured precipitation reactions during reheating. This dissolution reaction BT651 during
rapid heating is crucial for softening in the HAZ.

The reaction peaks determined by direct DSC and the dissolution reaction BT651 determined by
indirect DSC are plotted in temperature–time courses of investigated heating experiments, to create a
continuous heating dissolution diagram for a wide range of heating rates, as shown in Figure 10.
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100 K s−1.

The temperatures of dissolution or precipitation reactions during heating of EN AW-6082 T651
within a range of 0.01 K s−1 to 100 K s−1 can be taken from this diagram. For heating of 20 K s−1

to 100 K s−1, investigated with indirect DSC, only the start of the dissolution reaction BT651 can be
determined at temperatures between 275 ◦C and 300 ◦C.
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3.3. Mechanical Properties of the HAZ

The results of hardness tests in Figure 11 provide an overview of properties as a function of
distance to the weld centre. At a distance from the weld centre of more than 50 mm a constant hardness
of about 100 HV1 was measured in the base material 6082 T651. At about 40 mm, a maximum hardness
of 110 HV1 is reached. One reason for the increase in hardness may be that the initial state T651 was
slightly underaged and the welding heat causes artificial ageing at this point. With decreasing distance,
the hardness decreases significantly to a minimum of about 60 HV1. The hardness increases in the
direct vicinity of the FZ. Hardness of the FZ was about 70–80 HV1.Materials 2018, 11, x FOR PEER REVIEW  14 of 22 
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Figure 11. Hardness after welding and natural aging in plate centre.

In Figure 12, the results of TMA with parameters according to Table 5 are plotted against Tmax

for the short term heat treatment. The yield strength has been measured after seven days of natural
ageing. Compared with the initial state, there is a small increase for Tmax 225 ◦C. From Tmax 225 ◦C to
425 ◦C, the yield strength decreases by about half to less than 130 N/mm2. For the highest investigated
Tmax of 500 ◦C the yield strength increases slightly.
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Microstructure analyses (SEM and TEM) were performed by Fröck et al. [24] with the same
material after annealing at different maximum temperatures. During annealing, both complete
and incomplete dissolution of secondary phase particles was achieved depending on the maximum
temperature. As Figure 9 shows, there will be an incomplete dissolution for fast heating rates.
In consideration of the quasibinary phase diagram Al-Mg2Si [15], the same phases are expected
after the TMA welding heat treatments as after solution annealing at 540 ◦C [24].

Because maximum temperature correlates with distance to the FZ, the course of the yield strength
(Figure 12) depending on maximum temperature is similar to the hardness profile (Figure 11).

Regarding DSC and TMA, the HAZ of 6082 T6 can be divided in four areas.

A. Above 425 ◦C, solution annealing takes place. Rapid quenching near the FZ causes a
supersaturated solid solution with potential for age hardening. Yield strength increases again
after natural aging.

B. From 275 ◦C to 425 ◦C, β” precipitates increasingly dissolve and yield strength decreases.
C. Weak precipitation of β” happens at a temperature range of 225 ◦C, which leads to a slight

increase in hardness and strength, but is hardly detected with DSC.
D. At a distance of more than 50 mm (below a certain Tmax), the T6 state consisting of β” precipitates

remains nearly unchanged. Hardness is not affected.

3.4. Flow Curves in a Welded Joint

For the calculation of the flow curve of the base material and the fusion zone the engineering
stress–strain curves determined from tensile tests on separate round specimens have been used.
The mechanical properties of the fusion zone material were also determined from these tensile tests
and are presented in Table 7. The chemical composition of the FZ according Table 1 appears in the
range of cast aluminium alloys, which also roughly applies for its mechanical properties.

Table 7. Mechanical properties of the fusion zone material.

Material E (N/mm2) Rm
(
N/mm2) Rp0.2

(
N/mm2) A5 (%)

FZ 71800 238 114 10

Whereas the base material shows ductile failure with necking after reaching the ultimate tensile
strength, the fusion zone material fails without any noticeable necking (see Figure 13a). Therefore,
the combined analytical and numerical approach described in Chapter 2.6 was used to calculate the
flow curve of the base material. Numerical iterations were not necessary for the fusion zone material,
since no necking and therefore no multiaxial stress state was present. The flow curve of the fusion
zone was simply calculated by Equations (2)–(4). An extrapolation with Equation (6) extends the curve
to a larger range of strains. To validate the obtained flow curves, a comparison between calculated
and measured technical stress–strain curves is also shown in Figure 13a. No differences between the
measured and simulated curves are visible.
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Figure 13. (a) Comparison between measured and calculated engineering stress–strain curves of base 
material and weld material; and (b) force–displacement curves of butt welded flat specimen. 

Whereas all tests with the base and fusion zone material showed very good repeatability, the 
global force–displacement curves of the three tested welded flat specimens showed slight differences 
(see Figure 13b). It is assumed that the differences occur because of irregularities in the weld seam in 
length direction as well as due to specimen manufacturing from slightly different areas over the sheet 

Figure 13. (a) Comparison between measured and calculated engineering stress–strain curves of base
material and weld material; and (b) force–displacement curves of butt welded flat specimen.

Whereas all tests with the base and fusion zone material showed very good repeatability, the global
force–displacement curves of the three tested welded flat specimens showed slight differences
(see Figure 13b). It is assumed that the differences occur because of irregularities in the weld seam in
length direction as well as due to specimen manufacturing from slightly different areas over the sheet
thickness. To overcome the differences between curves, one average curve was used for comparison
reasons with numerical simulations.

In addition to the global force–displacement curve, local force–displacement curves for the zones
Z1 and Z2 were also determined by using the DIC. The respective lengths and positions of the material
zones were derived from hardness measurements as shown in Figure 11. Z1 is the area between 4 mm
and 16 mm distance to the centre of the fusion zone. This is the area in which fracture occurs during
tensile tests. Z2 ends at 25 mm distance to the centre of the fusion zone when the hardness values
increase to about 95% of the base material (i.e., about 95 HV1). For distances to the fusion zone larger
than 25 mm (Z3), the properties of the unaffected base material are nearly reached.

For this arrangement, the experimental force–displacement data for Z2 only allows a calculation
of the flow curve until about 0.3% plastic strain, because failure and strain localisation occurred in Z1.
The curve of Z2 is extended to higher strains by fitting a power law according to Equation (5). The
flow curve of Z1 is obtained afterwards through iteration with numerical simulations. In contrast to
the base material, it was not possible to use Equations (2)–(4) until necking occurs (see Figure 14).

Due to the inhomogeneity of the HAZ, uniform elongation cannot be assumed until the
maximum force is reached. Therefore, the experimental data were used as initial values for the
numeric iteration only as long as agreement was maintained between the measured and calculated
force–displacement curves.
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3.5. Validation of Obtained Flow Curves in the HAZ

The results of the tensile tests with butt welded flat specimen are here described in more detail.
To validate the calculated curves, the strain distribution in the experiment (DIC) can be compared with
the numerical results. Therefore, the maximum principal strain ε1 was calculated in the DIC software
at the specimen’s surface. First, Figure 15 shows that no uniform elongation of the specimen is present
even at low global displacements (maximum strain of 0.3%). Whereas the hardness measurements
(see Figure 11) suggest the highest strain in Z1 next to the fusion zone, the fusion zone material
dominates the deformation of the specimen at low strains. The behaviour of the flow curves (Figure 14)
of the two zones explains this phenomenon: at low strains, the flow stress of the fusion zone material is
less than the flow stress of Z1. A certain amount of strain hardening needs to occur for Z1 to dominate
the deformation behaviour of the specimen.
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Figure 15. Strain distribution in a welded flat specimen at low global displacements (0.1 mm).

The top of Figure 16 shows the measured strain distribution of the specimen at 1.3 mm global
displacement. In contrast to the strain distribution at low displacements, here, the highest strains occur
almost symmetrically next to the fusion zone in Z1. For comparison, the bottom of Figure 16 shows the
maximum principal strains calculated by the finite element (FE) simulation at the same displacement.
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Figure 16. Comparison of the strain distribution in a butt welded flat tensile specimen at 1.3 mm global
displacement: in the experiment (top); and in the FE simulation (bottom).

At first glance, the strain distribution shows good agreement between model and experiment.
In both cases, the maximum strain is located in Z1. Whereas there are still noticeable strains in the
fusion zone, the strain decreases within a few millimetres in Z2 to almost negligible strains in Z3.
Since Z3 and Z2 deform less than Z1, the deformation of Z1 is constrained in the width direction. This
constraint causes higher strains in Z2 at the edge of the specimen than in the middle. The constraining
effect on the different material deformations becomes stronger in the simulation than in the experiment,
because the FE model has no continuous change in material properties but rather an explicit change at
the end of each material zone.

Another difference becomes visible by comparing the maximum strain values. The measured
maximum strain is higher than in the numerical simulation and located closer to the fusion zone. It has
to be pointed out that differences in maximum strain occur even though the measured and simulated
force–displacement curves of the whole specimen are almost identical (see Figure 17). This is possible
because the flow curve of Z1 averages a quite large area of the HAZ compared to high changes in
hardness and the presumed mechanical properties in this zone. Since for example the lowest yield
stress is averaged to a higher value, a smaller strain peak will be calculated.
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To investigate the behaviour of the HAZ in different multiaxial stress states and to validate the
obtained flow curves in more detail, tensile tests and numerical simulations of notched specimens
were conducted. Figure 17 shows a comparison of three different specimen shapes: smooth, large
notch radius (40 mm) and small notch radius (10 mm) with equal nominal cross sections.

As it is well known, a notch will increase the maximum force: the smaller the notch radius, the
higher the maximum force. The experimental results confirm this fact. However, the increase of the
maximum force is small. This indicates that the inhomogeneity of the material dominates over the
geometric effect due to the notch. The increase of maximum force is calculated by the FE simulations
as well. However, the simulated and measured force–displacement curves of the specimen with large
notch radii have good agreement, while the simulation overestimates the maximum force of the sharp
notched specimen. Due to the material properties averaged in Z1, expressed by the flow curve, a larger
force is required in the finite element simulation in order to map the local strain concentration in the
notch root.

3.6. Correlation between Results of Tensile Tests and TMA of HAZ

When comparing the results of different methods, the type of joint used for temperature
measurement (T-joint) and tensile test specimen (butt joint) must be considered. Whereas in a butt
weld the heat can only be dissipated in two directions, the T-joints consists of three segments. Higher
Tmax as a function of distance and lower cooling rates can therefore be expected on the butt weld.

Hardness profiles (see Figure 18) of both welds were recorded in order to compare the welds and
in particular the size of the HAZs with each other.Materials 2018, 11, x FOR PEER REVIEW 19 of 22 
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of Z1, but it can be assumed that it follows the curve with Tmax 325 °C. These results are in good 
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treatment. 

Figure 18. Hardness development in butt and T-joint depending on the position.

For the T-joint, the values of the FZ and the vertical plate are shown. In HAZ the hardness first
decreases to a minimum, which is at a distance to FZ of 4 mm in the T-joint and at 5–6 mm in the butt
joint. In further course the hardness increases until the initial value of about 100 HV1 is reached at
12 mm (T-joint) and 21 mm distance (butt joint) respectively. The courses of hardness are the same and
the locations of, e.g., the minimum or initial hardness, match, considering the geometrically changed
distribution of Tmax.

Flow curves of the HAZ determined with tensile test and TMA can therefore be compared as seen
in Figure 19.
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Figure 19. Flow curves of real and retraced HAZ determined with tensile and compression tests.
The compression tests are carried out after the welding cycle and seven days of natural ageing.

The curve of Z1 is enveloped by the retraced HAZ with Tmax 500 ◦C and 425 ◦C for low plastic
strains. The experimentally determined flow curve of Z2 is only available up to the maximum stress
of Z1, but it can be assumed that it follows the curve with Tmax 325 ◦C. These results are in good
agreement regardless of the different heat input in tensile and TMA samples. Whereas the tensile tests
were carried out with specimens heated three times up to different maximum temperatures (three weld
beads), the TMA specimens were subjected to a single, precisely defined short-term heat treatment.

The lowest mechanical properties are obtained by TMA with Tmax 425 ◦C. By evaluating tensile
tests in Z1 with the combined numerical and analytical approach described previously, the low
mechanical properties as in the TMA cannot be determined due to the averaging in Z1. Averaging
over the area of Z2 leads to a curve similar to the TMA flow curve with Tmax 325 ◦C, even though no
significant difference to the BM is expected at the end of Z2. As Figure 12 shows, the short-term heat
treatment with Tmax 225 ◦C results in maximum strength just above that of the BM.

It becomes visible that a combined approach with tensile tests, DIC and numerical simulations
and DSC and TMA following temperature profiles during welding can lead to an improved description
of material behaviour in different areas of a weld for a specific welding process and geometry. With
knowledge of the maximum temperatures depending on the distance to the FZ, phase transformations
obtained by DSC and material properties obtained in a TMA can therefore deepen understanding of
the microstructural changes in the HAZ and refine numerical structure–mechanical simulations of
welded components.

4. Conclusions

In this study, HAZ properties of welded joints made of AlMgSi wrought alloy EN AW-6082 T651
were investigated using several combined methods. The following conclusions can be drawn from the
consideration of the individual results and their mutual discussion:

1. Dissolution and precipitation reactions in different areas of the HAZ can be analysed in situ with
DSC. To retrace the thermal history in the HAZ, the temperature rate range was extended with
the indirect DSC method.

2. There is a good agreement between results of phase transformations determined with DSC and
changes in mechanical properties measured with TMA.
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3. The softening in HAZ is strongly dependent on peak temperature. With increasing peak
temperature, the initial state is increasingly dissolved and the material is softened to a minimum.
Near the FZ, the mechanical properties increase due to strong dissolution of alloying elements
and the associated potential for natural aging.

4. The development of dissolution and precipitation can be described by continuous heating
dissolution diagrams, similar to welding-transformation diagrams of steels.

5. Mechanical properties from TMA and results of tensile tests on welded joints show good
agreement in relevant HAZ zones.

6. Flow curves of the base material, fusion zone material and two areas in the HAZ in a
butt welded joint can be calculated with a combined numerical and analytical approach.
DIC measurements can provide the necessary force–displacement data in the HAZ without
manufacturing separate specimens.

7. A certain amount of strain hardening in the FZ needs to occur before the HAZ dominates the
deformation of welded flat specimen.

8. Small increases of maximum force with decreasing notch radii indicate that the inhomogeneity of
the HAZ dominates over the geometric effect due to the notch.

9. Numerical simulations of notched tensile specimens with these flow curves lead to accurate
force–displacement curves for large notch radii. The maximum principal strain is underestimated
by numerical simulations, because of the averaging of material behaviour in the HAZ.
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