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Abstract: As is well known, building integrated photovoltaic (BIPV) technology is becoming more
commonly used in residential and commercial buildings. Fire assessment of photovoltaic (PV)
modules as a whole is still insufficient. This work focuses on the thermal properties and combustion
behavior of CIGS (copper, indium, gallium and selenium) thin-film modules. Cone calorimeter
experiments were conducted at different external heat flux of 25, 30, 35, 40 and 45 kW m−2.
Several parameters are discussed, including surface temperature, ignition time, heat release rate
(HRR), mass loss rate, carbon monoxide (CO) and carbon dioxide (CO2) concentrations. The results
show that CIGS thin-film solar modules are inflammable at intermediate or high flashover risk.
A correction calculation for the gas toxicity index has been used to reduce the well-ventilation
condition effect. Compared with the uncorrected calculation, peak fractional effective dose (FED)
and lethal concentration for 50% of the population (LC50) are almost double. This work will help to
determine a more stringent fire safety provision for PV modules.

Keywords: photovoltaic fires; CIGS; flammability; fire hazard; cone calorimeter

1. Introduction

1.1. Background

Solar cells have been used in building integrated photovoltaic (BIPV) systems, vehicles, aerospace
applications and solar power plants. Photovoltaic (PV) technologies are divided into three generations,
which are wafer-based (1st generation PV), thin-film cell (2nd generation PV) and new emerging technologies
(3rd generation PV). However, the latter has not been used in the PV market recently [1]. The advantages
of thin-film solar technologies are flexibility and minimum material usage for good cost effectiveness [2].
Furthermore, the conservation of energy, materials and thin-film processes are eco-friendly.

As for PV device design and fabrication, there are choices to be made in areas such as substrates
(flexible or grid, metal or insulator), layers (e.g., contact, buffer, absorber reflector, etc.) and techniques
(e.g., PVD, CVD, ECD, plasma-based, hybrid, etc.) [3]. The most widely commercialized thin-film solar
cells include a-Si (thin-film amorphous silicon), CdTe (compound semiconductor cadmium telluride)
and compound semiconductor made of CIGS (copper, indium, gallium and selenium). CIGS solar
cell is presently regarded as the highest light-to-power conversion efficiency material [2,4]. The best
efficiency of CIGS is 22.3% [5], compared with CdTe (22.1%) [6] and α-Si (13.6%) [7].

New techniques such as nanotechnology improve solar cell application efficiency. Adding reduced
erbium-doped ceria nanoparticles as a coating on silicon solar cells can improve efficiency from 15% to
16.5% [8]. For CIGS cells, random distribution of Au and Ag nanoparticles broadens the resonance
wavelength of the transmittance, and improves efficiency by 1.2% and 1.4% [9]. Hyper branched
nanostructures also increase efficiency. When it used in FTO-glass sensitized with D-102 dye,

Materials 2018, 11, 1353; doi:10.3390/ma11081353 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/1996-1944/11/8/1353?type=check_update&version=1
http://dx.doi.org/10.3390/ma11081353
http://www.mdpi.com/journal/materials


Materials 2018, 11, 1353 2 of 17

a maximum efficiency of 3.96% is reached [10]. Al-doped ZnO nanostructured films as transparent
electrodes in photovoltaic devices shows high Haze factor (>80%) and may be exploited to enhance the
light trapping capability [11]. Metallic nanowires could boost the conductivity of the front conductor,
while the optical penalty can be solved by introducing a texture [12]. Thin-film techniques make solar
modules become a promising approach for terrestrial and space applications. Thin-film modules are
a suitable choice for new building types, for instance ETFE (ethylene tetrafluoroethylene) cushion
structure. ETFE structure is often used in stadiums and airport terminals, like the National Aquatics
Center for the 2008 Olympic Games. Temperature distribution and characteristics of a two-layer ETFE
cushion integrated flexible PV also had been studied in Hu’s research [8].

These technologies ensure CIGS thin-film solar modules’ mass production and prospects for extensive
use. Modules used in our test are CIGS thin-film PV with a cover layer of ETFE. This module can be
integrated on curved surfaces due to its flexible substrate. Samples used in our research are made of
transparent contact-layer, blue cell, green cell, red cell, reflecting metal-layer and flexible substrate [13].
Compared with Si PV, they have light-spectrum-splitting capacity to reach higher efficiency [14].

1.2. Fire Hazard

PV system fires are common in residential and commercial properties. PV systems are often
accompanied by high life-threatening voltages, from 300 to 1000 Volts DC [15], and have the potential
risk of spontaneous ignition. When a fire occurs, it is hard to cut off the electric circuit to make sure
all components are de-energized. The light-to-power systems work under light irradiation as long
as they are not totally destroyed. For firefighters, it is much more difficult to deal with the potential
high voltage, since it puts their lives in danger. At present, PV module research has mainly focused
on fire-resistance testing and fire preventing. There are several standards for PV module fire safety
tests, such as IEC 61730-2 [16], UL 1703 [17] or even UL 1256 [18]. New research still improves these
standards. For example, a modified IEC 61730-2 [16] by Wohlgemuth et al. [15] includes overheat
caused by hot spots, high series resistance or arcing.

It is worth doing research about the burning behaviors and fire risks of solar modules. Guerin
confirmed the risk of fire with the large-scale solar photovoltaic construction project in Reference [19].
Based on the perspective of firefighters, Casey focused on firefighting of solar photovoltaic panels.
Casey also suggested a practice guidance for firefighters for emergency response [20]. Guerin and
Casey notice that the performance of rooftop solar panels under radiant heat is unknown. Besides this,
computational fluid dynamics (CFD) fire modeling tools also need effective material properties,
especially for large-scale simulation. Thermal degradation of solid fuels in a fire situation is complex,
because of interactions between different materials. Taking PV modules as a whole is a direct way to
reduce the amount of computation required.

However, fire hazard research concerned with taking PV modules as a whole is still insufficient.
In order to investigate the emissions and redistribution of elements, a commercial CdTe PV module
was heated up to 1273 K to simulate exposure to fires [21]. Yang et al. focused on the flammability and
fire hazards of polycrystalline silicon PV modules with glass covering [22]. In their research, a whole
silicon PV module was ignited under external radiation during cone calorimeter tests. Both heat and
smoke were discussed, because those are necessary when assessing full-scale fire. Cone calorimeter is
a widely used device to measure fire reaction properties, in fire potential assessment of wood, polymer,
and even for batteries. Fu’s paper concerning cone calorimeter tests of lithium ion batteries indicates
that the collected data can be used directly, as well as input data for mathematical models to analyze
the thermal and chemical threats [23].

Our research focuses on the combustion behaviors and thermal hazards of CIGS thin-film solar
modules. We also discuss the difference of fire behaviors, compared to Yang’s results for rigid
polycrystalline silicon PV modules. Compared with rigid solar modules, flexible modules use polymer
as the top layer and flex backsheet as bottom layer. Additionally, encapsulant layers bring more
combustible. In order to evaluate the effects of irradiation on properties and discuss the thermal
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properties and gas toxicity, these parameters are measured: surface temperature, ignition time, heat
release rate, mass loss rate, CO concentration and CO2 concentration. An evaluation system proposed
by Petrella has been introduced to classify the danger of heat contribution and flashover quantitatively.
Well-ventilation cone calorimeter test condition causes an underestimate of toxic gas concentration.
This underestimate could be dangerous when assessing building fire safety level and arranging
for evacuation. Han and Chow provide a correction calculation for the gas toxicity index in cone
calorimeter test [24]. In our work, we adopt these two evaluation systems and compare the results of
Petrella’s and Han and Chow’s.

2. Experimental Setup

2.1. Samples

In this experiment, samples were collected from MiaSolé FLEX-01 70N [25]. FLEX-01 70N is a
manufactured product with a scale of 1723 mm × 370 mm × 2.5 mm (thickness with adhesive), shown
in Figure 1a. This batch production can be separated into three parts: sensitive part, back adhesive
and periphery. The sensitive part is the section with CIGS solar cells, which is the functional area
that transforms light energy to electrical energy. Figure 1b shows the sensitive part as a specimen in
sample holder. Figure 1c shows a slice of packaged CIGS solar cell, with the sensitive part having a
width of 5 cm. Back adhesive helps the module to remain fixed and does not have a light to electric
transformative function, shown in Figure 1d. There are three adhesive slices, with a width of 10.3 cm
each. On the periphery is the outer edge of the sensitive part, with the function of protection and electric
circuit. As shown in Figure 1, the black outer ring (with a width of 2.2 cm) around the module is the
periphery to protect the sensitive parts. Only the sensitive part was taken into consideration, without
back adhesives and periphery. Samples were of the size 100 mm × 100 mm × 1.5 mm with a weight
of 29 ± 2 g. All samples were wrapped using the shiny side of an aluminum foil layer. Then samples
were put in a holder frame with an open window area of 84 mm × 84 mm. The sample can be
separated into the four layers of ETFE, solar cells, metal backboard, and polyethylene terephthalate
(PET), from top to bottom.
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Figure 1. Copper, indium, gallium and selenium (CIGS) thin-film solar module and sample. (a) module;
(b) specimen; (c) CIGS solar cell sample; (d) adhesive.

2.2. Apparatus

Experiment procedures were conducted according to the ISO 5660 standard [26] with a cone
calorimeter developed by Fire Testing Technology under well-ventilated conditions. The schematic of
a cone calorimeter is shown in Figure 2 [27]. Forced-flaming combustion by external radiation was
chosen to investigate flame. Tests were conducted at various levels of heat flux ranging from 20 to
45 kW m−2. In order to reach real fire heat flux level, external radiation was employed. Babrauskas
suggests that 25–50 kW m−2 is suitable for most research purposes [28]. In this research, 45 kW m−2
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was enough to reach a short enough ignition time. The experiments were stopped manually according
to the mass loss rate criterion. That means the test ends when the average mass loss rate drops lower
than 1 g m−2 in a 60 s period. Two K-type thermocouples were used in the thermally thick tests to get
the temperature of upper and lower surfaces. For each condition, tests were repeated at least twice
to ensure reproducibility. These parameters were measured: surface temperature, ignition time, heat
release rate, mass loss rate, CO concentration and CO2 concentration.
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3. Results

3.1. Burning Behavior

Figure 3 presents the screenshots from a combustion test video shot using a Canon digital video
camera. It presents a burning progress with the four typical stages of heating, ignition, rapid burning
and extinction. After being exposed to external heat flux for a while, vapors rise above the sample
surface. Then vapors increases in quantity. The front ETFE cover melts with blistering, shown in
Figure 3a. With high external radiation, the blistering is more intense. Then ignition appears from
the higher part of the steam, shown in Figure 3b. Flammable steam is lit, and the combustion begins.
This time interval from exposed to external radiation to the ignition is usually called ignition time (tig).
With higher external radiation, ignition comes earlier. The flames become larger rapidly with a cluster
of bubbles, shown in Figure 3c. The fire reaches its maximum and then becomes smaller gradually.
With the fuel running out, the flames extinguish, shown in Figure 3d. After the test, solid residue
can be found in the sample holder, such as burning ash, CIGS cells, metal etc. During the heating
period, shape changes of the three CIGS chips happened, while they used to be arranged in parallel.
These shape changes lead to lower-layer combustible melts exposure to the fire, air and external heat
flux. In this experiment, the sample holder can be considered as a limited space without combustible
melts spreading out. In a real fire, these melts can exacerbate the risk of a fire spreading.

Figure 4 shows the SEM images of CIGS cell layer. The device used is a GeminiSEM 500, Carl
Zeiss, Germany. Figure 4a,b shows the top surface before and after burning test under external heat
flux of 40 kW m−2. Before the test, uniform size particles can be found on the surface. After the test,
the surface becomes irregular. Figure 4c shows the cross section image after test. A typical structure of
CIGS thin-film solar cell can be separated into five layers: transparent conductive layers (TCL), CdS
window, CIGS absorber, metal contact and substrate, from top to bottom [29]. These five layers can
be found in Figure 4c. TCL are usually thin conductive metal oxides. MiaSolé used ZnO for their
front contact and Mo for their back contact [30]. Figure 4d shows the details. It shows that surface
particles do not melt or disappear. Some attachments appear on the surface and cover the TCL contact.
Attachments may be the burning residue of ETFE.
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3.2. Thermally Thick

Determining the CIGS module sample as thermally thin or thick is the premise to the parameters of
ignitability and combustibility. Biot number (Bi) is calculated to classify whether material is thermally
thick or thin [31], and can be expressed as:

Bi =
hL
k

(1)

where h is heat transfer coefficient, L is characteristic thickness, and k is thermal conductivity
of the solid, respectively. However, for a multi-material sample, it is hard to use this equation.
An experimental method is presented below. With a thermally thick solid, the gradient of temperature
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in the solid sample can be observed [32]. Because of this feature, a temperature difference test was
performed as follows, also used in Reference [33].

Thermocouples were placed at the upper and lower surfaces of the specimen to monitor the
temperature difference, shown in Figure 5. The specimen was exposed to heat flux of 20 kW m−2. In the
pre-test, specimens could not ignite at less than 20 kW m−2. This value is suitable for the temperature
tests, because flame interference is eliminated. Temperature conducted by the thermocouple is shown
in Figure 6. Temperature difference can be observed between two thermocouples during the whole test.
The peak temperature difference is 122 K. Temperature difference indicates that heat conduction inside the
sample is much slower than heat convection away from its surface. Thus, the sample is thermally thick.
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3.3. Ignition Time

Ignition time is a key parameter for fire resistance, and is an indicator of fire starting.
Higher ignition time indicates longer time to heat up to ignition. The ignition time can be determined
by the time interval from the initial exposure to irradiation (t = 0) to the moment a flame arises on the
material surface.

A rapid decrease in ignition time is caused by the increase in heat flux. For example, tig decreases
from 128 s to 38 s when the heat flux increases from 25 to 45 kW m−2. Several simplified heat
conduction models have been developed for further analysis [34–36]. The model used in this work is
proved by Quintiere [37]. Sample ignition can be achieved when an external heat flux (

.
q′′e ) is higher

than a critical heat flux (CHF). During a time interval (tig), the specimen ignites. For thermally thick
materials, the ignition time is calculated by Equation (2):

tig =
π

4
kρCp(

Tig − T0
.
q′′e

)
2

(2)
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where ρ is density, Cp is ignition constant, Tig is ignition temperature, T0 is initial temperature, and
.
q′′e

is external heat flux. This equation is for thermally thick materials, also used in References [33,35–37].
In this model, the thermal response parameter (TRP) also has been computed, as Equation (3):

√
1

tig
=

√
4/π(q′′e − CHF)

TRP
(3)

According to Equations (2) and (3):

CHF = −
TRP·yintercept√

4/π
(4)

TRP =

√
4
π

1
Slope

(5)

According to Equation (3), the square root of the inverse of time of ignition is a linear correlation
with irradiation, shown in Figure 6. The linear trend shows that the specimen is thermally thick.
This result is consistent with the previous thermocouples test results in Section 3.2. The straight line
fits the data with the slope = 0.00364 and the yintercept = −0.00329. By applying Equations (4) and (5)
to the last results from Figure 7, we get CHF = 0.90385 kW m−2 and TRP = 309.9943 kW s1/2 m−2.
Then we get the theoretical CHF. According to the physical meaning of CHF, ignition occurs when
external heat flux is larger than CHF. It is noteworthy that no naked fire can be observed during
1000 s under external heat flux at 20 kW m−2. The CHF of ETFE in communications cable insulation
and jackets is 22 kW m−2 [38]. Using the theoretical CHF brings an underestimation of the module’s
retardant performance. The differences between experimental and extrapolated CHF are due to the
following three reasons. Non-linearity of the ignition time leads to the non-linearity of the square root
of the inverse of the ignition time for the lowest external heat flux, especially near the CHF [39]. Second,
as a multi-layer sample, the cover layer also brings non-linearity [40]. Third, Delichatsios et al. [41]
suggest that surface reradiation causes a higher critical heat flux than the extrapolated value.
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3.4. Heat Release Rate

Heat release rate (HRR) is the rate at which fire releases energy, as discussed in many papers.
HRR is considered to be the most important factor in controlling fire hazards, owing to its strong
connections with several fire reaction properties [23]. It determines whether a neighbor module can be
ignited when fire happens in a large solar power installation [42]. HRR also provides a correspondance
between fire intensity and fire spread [43].

After a short time interval, HRR reaches its maximum, as peak HRR (pkHRR), and then it
drops down to almost zero, as shown in Figure 8. When the heat flux increases from 25 kW m−2 to
45 kW m−2, the pkHRR changes from 475 kW m−2 to 1024 kW m−2. Furthermore, the time to reach
pkHRR declines from 203 s to 90 s.
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In order to analyze the risks of heat contribution and flashover, Petrella’s evaluation system [43]
is used, as with References [22,44]. In this system, two important parameters are proposed, called total
heat release (THR) and x parameter. THR is the time integration of HRR, indicating the fire thermal
hazards of the material, and is calculated using Equation (5):

THR =
∫

HRR (6)

Additionally, the x parameter is calculated using Equation (3), as a fraction of the heat release rate
peak (pkHRR) to ignition time (tig):

x =
pkHRR

tig
(7)

Table 1 shows the details of Petrella’s evaluation system.
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Table 1. Petrella’s evaluation system.

Values Total Heat Release (THR) x Parameter

0.1–1.0 Very low risk to heat contribution Low risk to flashover
1.0–10 Low risk to heat contribution Intermediate risk to flashover
10–100 Intermediate low risk to heat contribution High risk to flashover

100–1000 High risk to heat contribution -

From the experimental results shown in Table 2, and through comparison with Perella’s value, we
arrive at the following conclusions:

(1) In the experimental range of external heat flux under 45 kW m−2, the CIGS thin-film solar cells
have intermediate low risk to heat contribution.

(2) The flashover risk is intermediate when the external heat flux is 25 and 30 kW m−2.
(3) When external heat flux becomes more than 35 kW m−2, the risk to flashover turns to high, which

is much more dangerous than polycrystalline silicon modules, according to Yang’s study [22].
(4) For a CIGS module used in the research with the power of 70 W, it releases energy of 49.49 MJ

with the surface area of 0.638 m2 with external heat flux of 45 kW m−2. Furthermore, BIPV
systems always need multiple slices to form a panel, and even more for an array. Large-scale
usage of this module, especially on the roof or wall of high-rise buildings, brings heavy fire load.

Table 2. Test results and thermal hazard classification.

External Heat Flux
(kW m−2)

Peak Time
(s)

pkHRR
(kW m−2)

THR
(MJ m−2)

x Parameter
(kW m−2 s−1)

25 203 475 38.95 (Intermediate risk) 3.71 (Intermediate risk)
30 144 635 59.74 (Intermediate risk) 6.90 (Intermediate risk)
35 112 762 62.5 (Intermediate risk) 11.72 (High risk)
40 102 941 73.71 (Intermediate risk) 18.82 (High risk)
45 90 1024 77.72 (Intermediate risk) 26.95 (High risk)

3.5. Mass Loss Rate

The index to measure the level of pyrolysis, volatilization, and burning of the specimen during
the whole cone calorimeter test under constant external heat flux is usually called mass loss rate (MLR).
To calculate MLR, we chose five-point numerical differentiation equations. MLR is connected with
heat release rate, specific extinction area, and CO yield [45], as shown in Figure 9. Mass loss rate
curves reach their maximum values quickly with the increases of external heat flux, as the peak value
at 25 kW m−2 is 0.225 g s−1.

Figure 8 shows the mass loss evolution and rate under different external heat flux. Data recorded
during the experiment is shown, while time t = 0 means the moment of the exposure to the desired
irradiance. The end time is after the extinguishment.

Regardless of different external heat flux, two stages of thermal degradation can be observed.
The MLR curve shapes depend on the irradiance level value weakly, but the peak values are strongly
related to radiation intensity. When external heat flux increases from 25 to 45 kW m−2, the time to
reach the maximum becomes shorter. For example, this time interval shortens from 185 s at 25 kW
m−2 to 68 s at 45 kW m−2. Additionally, a higher maximal intensity of the MLR peak is reached.
It increases from 0.141 g s−1 at 25 kW m−2 to 0.225 g s−1 at 45 kW m−2. After a period of time
exposed to heat flux, the sample ignites and MLR quickly rises. Then MLR reaches its peak value,
then decreases. During the whole decomposition process under each radiation, only one MLR peak is
observed. That means the composites keep their thermally thick properties.
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The specific mass loss rate (SMLR) is determined as a ratio between MLR and the exposed sample
surface in the cone calorimeter. Moreover, SMLR can be calculated with Equations (8) and (9):

SMLR = (
1

∆Hg
)

.
q′′e +

FHF− εσT4
ig

∆Hg
(8)

FHFnet = FHF− εσT4
ig (9)

where εσT4
ig radiative heat flux loss and ∆Hg is latent heat of gasification. FHFnet means the heat flux

which the specimen contributes, as a minus of the flame heat flux sum and radiative heat flux loss
from the sample surface [46,47].Materials 2018, 11, x FOR PEER REVIEW  10 of 17 
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Figure 9. Mass loss rate (g s−1) as a function of experimental time(s).

Figure 10 shows the average SMLRs increase quickly with the rise of the external heat flux.
The average SMLR increases from 2.35 to 3.92 g m−2 s−1 when incident heat flux increase from 25
to 45 kW m−2. The linear trend of average SMLR curve shows that the heat of gasification changes
little when the module is considered as a whole. According to Equation (8), the slope (=0.08) and
yintercept (=0.39) of the best fit line of average SMLR vs.

.
q′′e allow the computation of other thermal

properties as Equation (10), such as gasification heat (∆Hg = 12.52 kJ g−1), and net flame heat flux
(FHFnet = 4.91 kW m−2). These two parameters are required in fire modeling. The gasification heat is
also used to estimate the fire resistance of a material [32].

Slope =
1

∆Hg
; yintercept =

FHF− εσT4
ig

∆Hg
(10)
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Figure 10. Averaged specific mass loss rate (g m−2 s−1) as a function of heat flux (kW m−2).

3.6. Gas Toxicity

Smoke inhalation accounts for roughly three quarters of all fire deaths. The concentrations of CO
and CO2 detected by the cone calorimeter are shown in Figures 11 and 12. The CO2 and CO yields for
lower external heat flux are lower than that for higher external heat flux. In particular, in the test of
external heat flux at 45 kW m−2, the concentration of CO increased significantly after the ignition, and
the concentration reached its maximum of 411.5 ppm with an aiguille on the curve.
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Figure 12. CO2 concentration versus time.

More detailed experimental and derived data can be found in Table 3. It is observed that the
maximum of concentration of CO2 increases from 0.89% to 1.72% while the external heat flux varies
from 25 to 45 kW m−2. However, the concentration maximum of CO in ppm is not simply increased.
When the external heat flux decreases, the concentration of CO decreases as well, but in the test of
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25 kW m−2 (321.8 ppm), the concentration reaches a large value compared with that of 30 kW m−2

(263.4 ppm). As the CIGS thin-film solar cells’ special multi-layer structure, the stainless steel substrate
on which the CIGS cells lie, and even the photovoltaic foils, brings difficulties for the under layers to
contact air, especially when the external heat flux is not large enough to burn through the stainless
steel substrate. The residue of the test of 25 kW m−2 found the stainless steel substrate with almost no
damage, which signifies an incomplete combustion of the substrate. Thus, combustion may occur with
more CO release.

Table 3. Results of gas concentration and toxicity index.

External Heat Flux
(kW m−2)

pk[CO]
(ppm)

pk[CO2]
(%)

FED
(-)

FEDcor
(-)

LC50
(g m−3)

25 321.8 0.89 0.064 0.123 24.25
30 263.4 1.04 0.053 0.112 26.72
35 326.6 1.17 0.065 0.131 22.92
40 370.9 1.42 0.074 0.167 17.95
45 411.5 1.72 0.082 0.190 15.82

The peak fractional effective dose (FED) is denoted by Equation (10) referring to the N-GAS
model, which means the sum of the fraction of the concentration and the lethal concentration for 50%
of the population (LC50) for each gas over a 30 min exposure time, with a 14-day post-exposure period,
predicts that the fire gas will be lethal to 50% of a laboratory rat population [48].

FED =
m[CO]

[CO2]− b
+

21− [O2]

21− LC50,O2

+
[HCN]

LC50,HCN
+ · · · (11)

Due to the fact that only concentrations of CO and CO2 are detected, FED is calculated from
the peak concentration of CO and CO2 denoted by [CO] and [CO2] and the LC50 denoted by LCCO
and LCCO2:

FED =
[CO]

LCCO
+

[CO2]

LCCO2

(12)

The toxic potencies of CO2 are very large, and FED can be calculated only from the peak value of
[CO], denoted by pk[CO], taking the toxic potency LC50 of CO as 5000 ppm [44]:

FED =
pk[CO]

5000
(13)

It was found from a developed database that LC50 in actual fires would not deviate much from
LC50 determined by bench-scale tests. However, Han and Chow suggest that the calculation of FED
and LC50 in a cone calorimeter test is under well-ventilated conditions that may bring underestimation
of the gas concentration [24]. They suggest an adjustment of gas concentration extracted from the
burning facility with over-ventilated conditions, and this leads to a different result of FED and LC50.
FED calculated in this way is denoted here as FEDcor.

It is assumed that all the toxic gases can be collected in a chamber volume (Vc) of burning air, the
gas concentration increasing to the peak value at the time of burning out [24]. The LC50 (in ppmv or
g m−3) is calculated from the sample mass loss ∆m and Vc:

LC50 =
∆m

FEDcor ×Vc
(14)
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In order to get the FEDcor, a transient concentration of CO as a volume ratio, [CO]t, is given by
the ratio of the integrated volume V0→t

CO and Vc:

[CO]t =
V0→t

CO
Vc

=

∫ t
0 [CO]Cone

.
VConedt

Vc
(15)

The results of FEDcor and LC50 are shown in Table 3, with the volume Vc setting to be 0.01 m3

like [25].
The data shown in Table 3 brings us to the following conclusions:

(1) Compared with values without the consideration of good ventilation, FEDcor deduced using Han
and Chow’s method is almost twice as high. LC50 is 26.72 g m−3 at 30 kW m−2, and is higher
than that in other conditions.

(2) Calculating FED is an intermediate step to deduce LC50. A proper way to get LC50 from cone
calorimeter tests is relatively simple and easy to operate.

4. Discussion

Thermal properties and combustion behavior of CIGS thin-film solar modules was studied in
detailed. CIGS thin-film solar cell technology is considered to be a promising substitute for fossil
fuel because of its high efficiency and mass manufacture. Solar modules have been used as a part
of exterior wall covering in personnel-intensive area. Under the premise of whole-module testing,
a series of bench-scale tests on a cone calorimeter test bed were conducted. The results are compared
with the glass covered polycrystalline silicon PV modules by Yang [22].

Taking MiaSolé as a sample, the same flexible cells are used for both glass and flexible modules [49].
However, the module structures are completely different. A glass module can be separated into five
layers: top glass, encapsulant, cells, encapsulant and back glass. The main combustible component
is encapsulant. As for a flexible module, the front and back barriers change from glass to polymer.
These changes bring more combustible components.

In the incipient ignition stage, ignition behavior is different. In Yang’s research, fire ignited from
the edge of Si PV specimen. This fire behavior mainly results from the glass cover layer of module.
As a non-combustible material, glass covering used in a PV module also has better fire-resistance
performance. It is good at resistance to fire penetration and transfer of excessive heat. Under the
glass cover, some combustible materials, like encapsulate (i.e., ethylene-vinyl acetate copolymer) are
much easier to ignite at the specimen’s verge. This is because encapsulate contacts with air. However,
glass cover is not flexible enough. Our research considers a flexible CIGS PV module with ETFE cover.
When the CIGS sample was exposed under radiation, the temperature of center was higher than
the module margin. Because ETFE is combustible, ignition always begins at the center. The second
difference is ignition time. Ignition time of a CIGS module is shorter than an Si PV module under the
same conditions. The module with ETFE top layer is easier to ignite.

During the fire process, glass covers always broke into fragments. Those fragments are a potential
danger for firefighters. This result would not happen with the ETFE cover layer. However, when ETFE
burns, it releases hydrofluoric acid (HF). HF is extremely corrosive and toxic, therefore appropriate
action must be taken when facing this condition [50]. As for different modules, the fire processes have
similar single peak image of HRR. In order to evaluate fire hazard, some results can be found from
Petrella’s assessment. The THRs were in the range of 38–78 MJ m−2 for CIGS module and 38–57 MJ
m−2 for Si module. This means these two modules both are at intermediate risk of heat combustion.
However, for the index to evaluate the risk of flashover, the glass-cover Si module had lower risk than
the ETFE-cover CIGS module.
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5. Conclusions

Research was carried out on the combustion behavior and fire hazard of CIGS thin-film solar
modules. Cone calorimeter tests were conducted under five different external radiations varied from
25 to 45 kW m−2. Parameters were measured, such as surface temperature, ignition time, heat release
rate, mass loss rate, CO concentration and CO2 concentration. SEM images of CIGS layers before and
after burning test show that the CIGS cells structure is not changed. When the specimen was exposed
to heat flux, a temperature gradient was observed. It shows the thermally thick property of the PV
module. The ETFE cover layer is easily ignited when heat flux is greater than 25 kW m−2, which is
representative of a real fire. ETFE released hydrofluoric acid during its burning process. This is a
great danger for fire fighters and needs attention. The gasification heat of the module is 12.52 kJ g−1,
and the net flame heat flux is 4.91 kW m−2. These two parameters are required in fire modeling.

In order to discuss the hazardous nature of fire smoke toxicity, Petrella’s evaluation system was
introduced. In this research, the heat contribution risk was intermediate low with a THR range of
38–78 MJ m−2. The flashover risk was high when external heat flux was greater than 35 kW m−2.
Correction calculation of FED and LC50 of under well-ventilation condition was used. LC50 was
26.72 g m−3 at 30 kW m−2, and was higher than other conditions.

With the aim of reducing the fire risk of the whole module, the barrier and encapsulant layers
need more research. The flame retardancy of the front barrier determines the difficulty of ignition.
Additionally, the flex backsheet and encapsulant are all combustible components. The total heat release
is mainly determined by these three layers.

Different materials of cover layer or other structure in the product could lead to different
hazard levels. Most studies in the thin-film solar cells area focus on electric parameters such as
light transmittance, efficiency etc. Only few researches consider the PV module as a whole to study
fire behavior and fire hazards. These experimental data provide basic parameters to assess PV fire.
For deeper research, full-scale tests and fire propagation tests could be considered in future studies.
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