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Abstract: Orthotropic membrane materials have been applied in the numerous fields, such as civil
engineering, space and aeronautics, and mechanical engineering, among others. During their serving
lifespan, these membranes are always facing strong stochastic vibrations induced by the random
impact load such as hail, heavy rain, and noise, among others. In this paper, the stochastic vibration
problem of orthotropic membrane subjected to random impact load is investigated. The statistical
characteristics of random impact load are initially obtained based on the stochastic pulse theory. Then,
the Von Karman theory is applied to model the nonlinear vibration of membrane with geometric
nonlinearity, which is then used to derive and solve the corresponding fokker—plank-kolmogorov
(FPK). The theoretical model developed is validated by means of experiment study and monte
carlo simulation (MCS) analysis. The effects of variables like pretension force, velocity of impact
load, and material features on stochastic dynamic behavior of membranes are discussed in detail.
This exposition provides theoretical framework for stochastic vibration control and design of
membranes subjected to random dynamic load.

Keywords: orthotropic membrane; random impact load; stochastic vibration; geometric nonlinearity;
FPK method

1. Introduction

Orthotropic membranes are lightweight, flexible structural elements used in numerous
applications in construction building, space and aeronautics, and mechanical engineering,
among others [1,2]. However, because of their specific aspects of lightweight and feeble stiffness,
membranes are quite sensitive to impact load such as pulse wind, hails, rainstorm, and so on [3].
As a result, the impact load could cause the membrane to vibrate severely with large deformation,
which may bring about structural failure [4]. Thus, it is necessary to study the vibration problem of
membrane subjected to impact load.

In recent decades, a number of investigations on dynamic response of membrane under impact
load have been performed. York et al. [5] applied the material point method to partition membrane
surface, and solved the nonlinear vibration problem of membrane under impact load by the Lagrangian
and Eulerian method. Porwal [6] performed the experiment of 2D membrane imposed by the ballistic
impact load. The results obtained are valuable and useful for the design of fibrous materials such as
body armor. Malla and Gionet [7] imagined a type of membrane planned to be a lunar habitat. Then,
the analytical model of membrane under impact load was purposed and expected to apply in space
colonization. Mostofi et al. [8] analyzed the fully clamped thin membrane subjected to impulsive load.
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The model could predict the structural dynamic response including large deflection result. Seide [9]
dealt with the center normal deflection problem of uniformly loaded membrane by applying the
expanded deflection function and an iterative method. The results will be helpful for the design
of a sensor. Steinmann et al. [10] found the solution of mechanical problem of orthotropic sensor
membranes under external pressure using Hermite polynomials and the Ritz method. Liu et al. [11]
developed the theoretical and numerical model of rectangular orthotropic membrane, and studied the
nonlinear vibration problem. Different from the study of scholars above, Zheng et al. [12] studied the
stochastic vibration of membrane with the consideration of the stochastic characteristic of impact load.
The statistical results including mean value, variance value, and mean square value were presented.
Li et al. [13] assumed the impact load with the Normal distribution and investigated the stochastic
vibration of membrane with the perturbation method. The analytical solution was validated by the
experimental results and provided the suggestion of design of membrane.

From the open literature summarized above, it can be found that present studies of dynamic
response of membrane under impact load are mainly confined to determined vibration analysis.
However, the impact load in nature, such as pulse wind, hails, and explosion, among others,
generally possesses uncertain characteristics [14], which will lead to the stochastic vibration with
larger deformation for membrane. In this case, the actual deformation of membrane can exceed the
prediction of analytical results based on the deterministic vibration theory, and increase their risk of
collapse in use. Nevertheless, the present analytical model could not provide a reliable solution from
probabilistic and statistical viewpoints. Therefore, it is worth purposing the stochastic vibration model
of membrane subjected to uncertain impact load.

In this paper, the stochastic vibration problem of orthotropic rectangular membrane under impact
load is investigated. First, the statistical aspects of impact load are determined based on the stochastic
pulse theory. Then, the fokker—plank-kolmogorov (FPK) motion equation of membrane under impact
load is established and solved, combining the Von Karman’s large deformation theory and FPK
method. Consequently, a series of statistical results including probability density function (PDF)
and cumulative distribution function (CDF) of displacement, mean value, and variance value of
displacement are obtained. Furthermore, the theoretical model is validated by the experiment using
the monte carlo simulation (MCS) method. Finally, the effects of pretension force, velocity of impact
load, and membrane material on stochastic vibration behavior are discussed.

2. Theoretical Study

In this section, firstly, the stochastic vibration model of membrane under stochastic impact load
will be outlined. Then, the differential motion equations and corresponding FPK equations will be
derived and solved. Finally, the statistical characteristics of the dynamic problem of membrane can
be determined.

2.1. Model Description

Consider a homogeneous and orthotropic pre-stressed rectangular membrane with length 24,
width 2b, and thickness &, as is shown in Figure 1.The pretension force along the directions of x and y
is Noy and No,, respectively.

The basic assumptions of membrane subjected to random impact load are as followings:

(1) Both membrane and impact load are symmetric. Furthermore, the center of impact load coincides
with the center of membrane, namely (0,0);

(2) The impact load is the mass of homogeneous intensity p* and area with the length of 22* and the
width of 2b*;

(3) The space distribution of impact load is symmetric and non-uniform;

(4) According to the central limit theorem, the amplitude of impact load follows a
Gaussian distribution;
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(5) The applied area of impact load can be defined as Qy = { (x,y)| —a* < x <a*,—b* <y < b*}.

Impact load

>~

;\'m ‘,/ E -\\ /

Figure 1. The model of orthotropic pre-stressed rectangular membrane under impact load.

2.2. Statistical Characteristics of Impact Load

The random process of the impact load as the excitation to membrane can be expressed with
space and time variables as

P(x,y,t) = Q(x,y)F(t) @

where Q(x,y) is the component impact load varying with space variable expressed as [15,16]

A1CT . rtpap)1C
Qx,y) = [Si“ n(g;a)} 1[51“ %«b)} © ((xy) € Q)
0 ((x,y) & Qo)

2

where C; and C; are the spatial shape parameters along the x axis and the y axis, respectively.

Based on the characteristics of impact load in nature, the random impact load in time domain can
be extracted and modeled as Figure 2. As the random impact load is consisted of a series of independent
impact process, the component impact load varying with time variable can be expressed as

N(t)

F(t) =) Yid(t — %) ®)

k=1

where T is the moment when the k-th impact load applies on membrane, Y} is the corresponding impact
stress, 0(t, T ) is the Dirac function, and N() is the counting process assumed as Poisson process.

In general, the energy of impact load can be transferred mostly into the system, and the reflecting
velocity of impact load will show little to be ignored. Thus, the reflecting velocity of impact load is
assumed to be zero in this paper. According to the theorem of momentum, the impact stress can be

calculated as
mog

Y = % 4

where Y} is the k-th impact stress; m is the mass of impact load; v is the velocity of impact load; S is
the impact area on membrane surface; and 1 is the applied time interval of impact load, and can be
selected as 0.002 s [17].

Herein, it should be noted that only the velocity of impact load is the random variable, which will
directly lead to the uncertainty characterization of amplitude of impact load. Therefore, the statistical
characteristics of impact load investigated here are in essence related to the random velocity of
impact load.
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Figure 2. The model of random pulse impact load.

According to the definition of Poisson process, the probabilistic function of the counting process
N(t) within the time interval [0, T] can be expressed as

P(n,T) = H/OTA(T)dfrexp {—/()T/\(T)d’r} 5)

where A(T) is the arrival rate of Poisson process.
Then, the mean function of random impact load can be derived further based on the conditional

probabilistic rule.
N(T)
Ep(] = E| X %a(,m)

N(T
=E|E

(T)
Z Yk5(t,’l'k)
k=1
= Y P(n, T)E{i Yy (t, )
n=0 k=1

N(T) ] (6)

As the variables of Y} and 71} are independent, Equation (6) can be simplified as

e}

Ep(t)] = Y P(n,T)Y. ENJER (1 7) %

n=0 k=1

Based on the definition of mean function and Dirac function, the mean function of (¢, ;) can be
expressed as
fO t — Tk Tk)di
fO Tk di

E[5(t, )] = ®)

By substituting Equations (5) and (8) into Equation (7), the mean function of amplitude p(t) can
be obtained as

E[p(t)] = E[Yk}né)%[ T A(1)d } exp[ JiA dT}W o
= E[Y4] E [fo } " exp[—fOT/\(T dT} fo (t — ) AM1)d e

=
I |
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By extending exp [ fOT /\(T)d’[} as the Taylor series,

0 n—1
exp [f AT )dT} = ;1 (nil)! [fOTA(T)dT] (10)
And substituting Equation (10) into Equation (9), the mean value of amplitude p(t) can be
identified as .
Elp(t)] = E%]fy 8(t — A (m)dz -
= E[YiJA ()

The auto-correlated function of amplitude p(t) can be expressed as

$pp(t,t2) = E[p(t1)p(t2)]
N(T) N(T)
= ; El Yo (t1, ) Y16 (t2, 1)
o0 - - N(T) N(T)
=Y P(n,T) ¥ Y EVY]E[S(t, w)é(t2, )] 12
=0 k=1 zlv:(%) (12)
. k_l%c_wE[Yf]E[‘s(fl,Tk)fs(fz,Tz)H
= L P Nrynn
k21 21 E[YiYIE[6(t1, Ti)d(t2, T1)]

By substituting the Equations (5), (8), and (10) into Equation (12), the auto-correlated function of
amplitude can be identified as

Bpp(t1,12) = EPVE]A(1)8(12 — 1) + [E(G) PAE)A(t2) (13)

When t; = f; = t in Equation (13), the mean square function can be obtained as

E[p%(0)] = E[Z|A0)8(0) + [E() A% (1) (14)
Furthermore, the covariance function of amplitude can be derived as

cov(p(tr), p(t2)) = E[p(t1)p(t2)] — E[p(t1)]E[p(t2)]
= pp(t1, 12) — [E(Y)PA(t)A(t2) (15)
= E[Y?]A(t1)é(ta — 1)

When t; = t; = t in Equation (15), the variance function of amplitude can be obtained as
lop

2(t) = E[Y2|A(16(0) (16)

According to the Wiener-Khinchin theorem [18], the power spectral density (PSD) function can
be obtained by means of Fourier Transform.

\_ “F

S(w) L% dpp(tr, tr)e T dT

= 2 I {EDEIMt)0(2 — 1) + [ECRPA(R)A(E2) feTdr (17)
e

h—jN

EMIMO 4 e (v 222 ()6(w)

As the random impact process induced by impact load is mutually independent, the random
impact process can be assumed as a stationary process herein. Consequently, the variables including
arrival time A(7), mean value of impact stress E(Y}), and mean square value of impact stress E [Ykz]
are constant, and we note them as

ME) = Ao, EY] = oy, E[YZ] = 1y (18)
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By substituting Equation (18) into Equation (11), the mean function could be determined as
E[p(t)] = uyAo (19)
Substituting Equation (18) and noting T = t, — t; yields the auto-correlated function,
Ppp(T) = W'y Ad(T) + Y AG (20)
When t; = f; in Equation (20), the mean square function can be found as
E[P2(0)] = #'y100(0) + 1343 1)
By substituting T = t, — t; into Equation (15), the covariance function can be determined as
cov(p(tr), p(t2)) = w'yAod(7) (22)
When t; = f; in Equation (22), the variance function can be found as
7y (1) = 'y 103(0) (23)

By substituting Equation (18) into Equation (17), the power spectral density function can be
determined as

!/
A
S(w) = FL2 + 13230 (w) 4)

Based on the statistical results presented above, we find that the statistical properties of the
random impact process do not change over time, only varying the time interval.

After the derivation, the auto-correlation and power density spectrum of the amplitude of random
impact load is plotted in Figure 3. It can be found that the spectrum of the impulse process shows
a constant, inversely, the spectrum of the constant shows an impulse. For the random impact load
model, the power density spectrum of the amplitude, assumed as Poisson process, is uniform except at
w = 0, which indicates the random impact load could be modeled as the white noise signal input into
the membrane system. For practical engineering, the bandwidth of white noise signal varies within
limited interval. Combined with the assumption of amplitude following the Gaussian distribution,
the continuous impulse process induced by random impact load can be modeled as white Gaussian
noise input into membrane system.

@) L8 12
i (QN Oy (1) = 700 (1) + 1375
15
0 T
(b) 23250 HLA S
My Ay (‘(\J)\_9 S(w) - 2}:) +;{;/LO‘O((0)
M2y
27
0 ®

Figure 3. The statistical function of random impact load. (a) Auto-correlation function; (b) power
spectral density function.
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2.3. Establishing the FPK Equation

As large deformation may cause the median surface to stretch, the Von Karman theory [19] should
be applied to introduce the geometrical equation, to second-order, expressed as

2
_ du 1(ow
gx—§z+i<ﬁ)

2
__ Jdu 1(ow 25
ey =5 +4(%) >
__dv Ju Jw Jw
Yoy =ty toaxay

where ¢, and ¢, are strains in x and y direction, respectively; 7y, is shear strain; u and v are
displacement in x and y direction, respectively; and w is displacement of out-plane vibration on
membrane.

The relation between internal force and stress can be expressed as

N, = oxh
Ny = oyh (26)
Ny = Toyh

where Ny and Ny are internal stretching force in x and y direction, respectively; Ny, is internal shear
force; o, and 0y are tensile stress in x and y direction, respectively; Tyy is shear stress; and h is thickness
of membrane.

With consideration of orthotropic aspect of membrane material, the physical equation can be
expressed as

ex = E%(‘TX —vi0y) = ﬁ(Nx —v1Ny)

gy = E%(Uy — Up0x) = ﬁ(Ny — pNy) (27)
Tx

Ty =&

where E; and E; are elastic modulus in x and y direction, respectively; G denotes the shear modulus;
and v and v, are Poisson’s ratios in x and y direction, respectively. Moreover, the relation between
elastic modulus and Poisson’s ratio can be expressed as

U1 %)
— == 28
E (28)

As the membrane is a perfectly flexible thin plate, it is generally assumed that it provides no
resistance to bending moments and the ensuing normal shear forces [20]. Based on the mechanical
theory shown above, the governing equations for the vibration of pre-stressed rectangular membrane
have been derived by Zheng et al. [12] and Eisley [21], expressed as

2 2 2
PaaTDZU +C%if - (Nx + NOx)aaTLZU - (Ny + NOy)%*yzg = P(x,y,f)
821\27x =+ 1 azNy _ (azw )2 ?w P*w

1 1 Ow " _ dwdw
Elh ay Ezh ox2 axay 0x2 ayZ

(29)

where c is coefficient of damping.
The boundary condition of displacement can be expressed as

w(x,b,t) =0, w(a,y,t)=0
{ w(x,—b,t) =0, w(—a,y,t)=0 (30)
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By introducing the Airy stress function ¢(x, y, t), the relation between the membrane force and
the Airy stress function can be expressed as

Ny = h
21, (31)
N, = hog =%
In view of the boundary conditions, the mode shape function can be selected as
> o . omm(x+a) . nm(y+b)
W(x,y)= )Y ) sin sin (32)
Bosa 2a 2b

where m and n are the numbers of half-waves along the x and y direction, respectively.
The displacement function which satisfies Equation (30) can be assumed as

w(x/ Y, t) = 21 Zl Tmn(t)wmn(X,]/)
m=1n= (33)
= mE1 ngl Ty (t) sin ™ (2x+a) sin (2yb+b)

The Airy stress function can be separated [12] as

p(x,y,t) = Z Z szn(t)(Pmn(x/y) (34)
m=1n=1

where T(t) is time function and ¢(x, y) is space function.
After the substitution of Equation (34) into Equation (29), the following formula can be obtained as

1o%  19%  mPnPrt mr(x + a) nm(y+b)
Epoy* ' Epox* 32422 ( a +cos b ) (35)

In the view of the boundary condition, the solution of Equation (35) can be assumed as

mrt(x +a)
a

n(x+a
¢(x,y) = acos + B cos % + 713(3 + 72x2 + 73]/3 + ’Y4]/2 (36)

By substituting Equation (36) into Equation (35), the undetermined parameters can be obtained as

Exn?a? _ Eym 2p2 *n%E, mm?E;
= e Pz M BT O S T T T 7

By substituting Equations (34), (36), and (37) into Equation (29), the governing Equation (29) can
be decoupled by the Galerkin method [22] and expressed as

d2T() o dT(t W
o oW 4 w2 SR — W (Now S + Noy S8 ) T(1) iy
_ —b 32 2 32 2
‘ —hw (53R + SHIW T (1) (38)

= 7, 2, [WQ(x,y)F(t)]dxdy

After integration of Equation (38), the inhomogeneous algebraic equation can be obtained as

d?T(t) cdT(t) = m*b*Nox + m2a’ Ny, 3B+ 3mtha g,
de? +E a 4pa’b? (*) 8pa2b? () = Kp(t) (39
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where

%\ 7 Co
K= / / {[sm x—l—a )} [SinW} sinmn(;;—a) sinnn(g;—b) }dxdy

Then, Equation (39) can be simplified as

X 4 21X + wiX + uoX>® = Kp(t) (40)
. a2t ( ) ( ) 5 ﬂ2b2N0X+7'(2112N0y 37‘[4h(0¢+,5)
where X = ==, X = =57, 2ng = 5, wy = T gz H0OT T

It can be found from Equation (40) that the governing motion equation [Equation (39)] has been
decoupled by the Galerkin technique, and transferred into the Duffing equation. For this simplified
random vibration model, the FPK method could be applied to obtain the exact analytical solution.
As Equation (40) is intended to be solved by the FPK method, the expression of Equation (40) should
firstly be turned into the expression of Ito equation. Note that

X=Y
{ X—v, (41)

Then, Equation (40) can be transformed into Ito equation as

{ Y1 = —2noYy — wiYs — uoYs + Kp(t) (42)

Y, =Y,

Based on the random impact load model proposed above, the statistical results of load term Kp(t)
in Equation (40) can be obtained as

mean function : E[Kp(t)] = puyAoK (43)
Further, the auto-correlated function is
E[Kp(HKp(t+7)] = K2 |1y Aod(7) + 1 A3 (44)

Because Equation (42) is Ito equation, whose solutions possess the Markovian characteristics,
the stationary condition is dp /0t = 0 [23]. Then, the FPK equation derived by Er [24] can be applied to
establish the FPK equation of stochastic vibration for membrane as

d(a1p) n d(ap) 10*(bup) 10%(biap) 1*(buip) 10*(baap)
Y, Y, 2 Y2 20vaY, 200V, 2 oYl

=0 (45)

where p = p(Y3,Y>) is the joint probability density function of variables Y; and Y;.
By substituting Equation (43) into Equation (42), the drift coefficient 4; in Equation (45) can be
obtained as

a; = lim iE[Yl(if + At) = Y1 ()] = —2ngY1 — w3 — poYS + uyAgK (46)

At—0 At

Based on Equation (42), we can derive the drift coefficients a, in Equation (45) as

1
= lim —E[Y(t+At) — Yo (t)] = Y; 47
% = fim gpEDR(t+ A0~ %] =Y @)



Materials 2018, 11, 1231 10 of 28

Then, by substituting Equation (44) into Equation (42), the diffusion coefficients b1 in Equation (45)
can be obtained as

1 _ 2\ _ 2
by = lim A—E{[Yl(t—FAt) Yi(1)] } = 'y AoK (48)

Substituting Equation (44) into (42) can yield the diffusion coefficients bp; and by, in Equation (45),
expressed as

o = by = Jim CE[Ya(t+ At~ Yy (D] [Ya(¢ + AD) — Ya(5)]] =0 (49)

By substituting Equation (44) into (42), the diffusion coefficient diffusion coefficients by, in
Equation (45) can be expressed as

1
by = AlimOA—E{[Yz(t A — Yz(t)]z} =0 (50)

By substituting Equations (46)—(50) into Equation (45), the FPK equation (45) can be
transformed into

(- 3 o O Wy MK Pp
oY1 g (whY2 + 10¥3 — vk ) =T 5 5, g ey (51)
In order to solve the FPK equation (45), Equation (51) can be collected as
(2 5 o] 2 WyAK? ap | _
l:Yl BY (ZUOY;)_ + .MOYZ ;Lly/\oK) E)Y aY Tl()Ylp -+ > aiyl =0 (52)

By neglecting the second term in Equation (52), we can obtain the analytical solution
approximately as

) J
Y, af (whY2 + 1o¥3 — py oK) axf 0 (53)

Moreover, the approximation herein is expected to be verified by the further experimental study.

2.4. Solving the FPK Equation

For stationary process, the response variable Y and its derivative variable Y are
independent [25,26]. Then, the variables Y; and Y; in Equation (45) are independent as well, and the
joint probability density function can be decoupled as

p(Y1,Y2) = p(V1)p(Y2) (54)

Then, the probably density function can be turned into the one-dimensional variable. Thus,
Equation (53) can be transformed into

/ / l 2
2 3 rhi(M)  Ph(Y2)  WyAK® pri (1)
—ng — (wyYa + uoY5 — uyAgK +Y - =0 55
0 ( 02 R0z Ao )Pl(Yl) Upa(Y2) 2 p(n) 9)
Further, Equation (53) can be transformed into
1 p’l((;ﬁ)) _—
1P
o 1 P/Z(Y2) —— (56)
(w3Ya+p0Y5 —pyAgK) P2(Y2)

where L is the undetermined constant.
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After integration of Equation (56), the probabilistic density function of variables Y; and Y, can be
obtained, respectively, as

2
ri(v1) =C eXp<—L§1)

w2y2 Y4 (57)
p2(Y2) = Coexp [_L<022 + 52— VY/\OKYZH
where C; and C; are the undetermined constants.
By substituting Equation (57) into Equation (55), the undetermined constant L in Equation (56)

can be identified as
21’10

L= ——-" _ 58
Wy AoK? 8

According to the definition of probabilistic function of p;(Y]) expressed as
/7 p1(Y1)dY; =1 (59)

Then, the undetermined coefficient C; in Equation (57) can be identified as

1/2
H'yAoK?

_ 60
G [ T (60)

Finally, the probabilistic density function of p;(Y7) in Equation (57), namely the velocity variable
of dynamic response, can be obtained as

w0k ] o
Pl(Yl)I[m)] eXP<—WY1) (61)

Consequently, the mean and variance of velocity can be obtained, respectively, as

hy, = /_ pr(Y1)YadY; =0 (62)
and ) f°° 5
0y, = J_opr1(M1)YidY;
1 . HIYAOKZ (63)
- 21’!0

Extend exp (—poLY; /4) in Equation (57) as the Taylor series, and select the first two terms as

poLYs poLY;
xp ( ; 2 ) _q_ ; 2

+o0 (Yz) (64)

By substituting Equation (64) into Equation (57), and introducing the definition of probabilistic
function of p,(Y>), expressed as

/0; p2(Y2)dY, =1 (65)
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Then, the undetermined coefficient C, in Equation (57) can be identified as

4
HyAgK 'y AgK?
w} now3

2 ! 2 2 —-3/2
_ oMy 'y AoK I L —( nyAoK now3
S R ( / 2) now% 2?‘/1//\0K2 IV ngo V/Y)‘O(}(z (66)

Finally, the probabilistic density function of p»(Y>) in Equation (57), namely the displacement
variable of dynamic response at Point O, can be obtained as

4 2
ﬂy/\o sl y)\oK
ngo
2 / 2 —3/2
_ nopy 'y AgK=  pgng nowo
p2(Y2) €xp (y’ywé) \\ nowd 21y AoK? +3\/7( (y Y AoK?2 (67)

oYy _ ngwdY? + ZnOysz
ZP‘/Y)\OKZ P ’4/ /\OKZ

-1

By substituting Equations (67) into Equation (33), the probabilistic density function of
displacement at any point on membrane surface can be determined as

4
HyAgK 'y AgK?
w} nowd
2 -3/2
© 0o 2 ! 2 2
: . AgK n 1y AgK now,
Y,) = sin "X gin MY ) oxp ( 20k Ty A0RT Mol 3 /7 Pl 0wy
PZ( 2) mél ngl i b P My nowg 21’y AoK? * f w3 W'y AgK? (68)

L\ 52
43VE ([ _nowg
4\ W AK?

-1

_ HonoYs nUWOYZ +271014sz
2 10kZ ) XP I T AKZ T K

Consequently, the mean and variance of displacement can be obtained respectively as
e}
o = [ P2(Y2) YadY2
4
FY)‘O Ty Y)‘OKZ
[ty AgK? Hong nowo
2 T 2 ANK2 —-3/2 —5/2
"oty #yro now3 3
Ao 0% 3y [ _mows
_.—3\/»( % > < ./ )LOKZ + 4 ‘u/ /\OKZ
5/2 3 -3/2 (69)
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By substituting Equations (69) and (70) into Equation (33), the mean and variance of displacement
on membrane surface can be determined as
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3. Experimental Study

In this section, the developed experimental system and schedule will be presented in detail.
The experimental system consists of three major devices: pretension device, load device, and data
collection device. Then, the experimental schedule has three major items: samples, load program,
and measurement parameters. The experimental study is aimed at validating the theoretical
model proposed.
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3.1. Experimental System

3.1.1. Experimental Pretension Device

As is shown in Figure 4, rectangular membrane is tensioned uniformly by the pretension
device [27]. The pretension force is provided by the screw rod at each edge. For every fixture,
11 screw holes are laid uniformly and used to fix the membrane and transfer the pretension uniformly.
The tension gauge connects the screw rod and fixture, which is applied to measure and control
pretension force.

Biaxial tensile stent

Figure 4. Illustration of pretension device.

3.1.2. Load Device

The pulse wind sourced from the developed load system is used to mimic the impact load.
In order to realize the rectangular impact area, the holes arranged outside the rectangular area were
blocked by tapes. The load system mainly consists of high pressure centrifugal blowers, woven pipe,
and shock pipe, among others. The instantaneous characteristics of impact load can be achieved by
instantly stepping on the woven pipe. The different velocity of wind can be realized using different
high pressure centrifugal blowers. A photo of the whole experimental system is presented in Figure 5.
The parameters of high pressure centrifugal blowers are presented in Table 1.

iz

Figure 5. Photo of whole experimental system.
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Table 1. Parameters of the high-pressure blower.

Blower Type Power (W) Flow (m3/h)  Pressure (Pa) Rotational Speed (r/s)

CZR-CZT 1100 1140 1080 2800/60
Y90L-2 2200 1191 2562 2840/60
Y100L-2 3000 1704 3253 2880/60

3.1.3. Data Collection Device

The data collection includes the key parameters of pretension force, velocity of wind and
displacement. The pretension force can be obtained by the digital pretension device. The velocity
of wind can be measured by the digital velocity device shown in Figure 6, which has 3% precision
and 0-30 m/s range, respectively. The transverse displacement of membrane can be measured and
collected by the laser sensor, which possesses 0.1% precision and 2000 Hz sampling rate [27].

Figure 6. Digital velocity measurement.

3.2. Experimental Schedule

3.2.1. Experimental Samples

Three bands of membrane material including Heytex, ZZF and XYD, which have been applied
widely in engineering field, are selected to analyze. The material properties are all tested and shown in
Figure 7 [13]. In order to eliminate the effect of membrane material hysteresis and obtain the accurate
elastic modulus results, the material test should be performed beginning with three load—unload
cycles [28]. Furthermore, the key parameters can be extracted and presented in Table 2 [13]. The size of
membrane sample is 1.2 m x 1.2 m. The experimental samples are all cut into stripes at each edge to
realize the transmission of pretension force.
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Figure 7. The stress-strain curves of membrane materials.
Table 2. The brief introduction of membrane material.
Tvpe Density Thickness Poisson Ratio Elastic Modulus Tensile Strength
M (kg/m?) (mm) (Warp/Weft) (Warp/Weft) (MPa) (Warp/Weft) (N/cm)
Hextex 0.95 0.8 0.3/0.4 1520/1290 4000/3800/5
Z7F 0.95 0.8 0.3/0.4 1590/1360 4300/4000/5
XYD 0.95 0.8 0.3/0.4 1720/1490 4400/4200/5

3.2.2. Load Program

At the first step, the pretension force designed with 1000, 2000, 3000, 4000, and 5000 N, respectively,
is applied towards each edge. Under each level of pretension force, the pulse wind induced by
high-pressure blower is imposed into impact area illustrated in Figure 8. According to the theory of
the Monte Carlo method [29], the experiment for each case should be performed 300 times repeatedly.

2500 mm

Figure 8. Illustration of experimental samples and impact area.
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3.2.3. Measurement Parameters

The measurement parameters consist of wind velocity and displacement of membrane. A set
of velocity value of impact wind load could be obtained and formed the data basis to perform the
statistical analysis. As is shown in Figure 9, the measurement points are located at Point O, Point Al,
Point A2, Point B1, Point B2, and Point C, respectively. The displacement-time curves at specific points
could be collected and used to analyze the stochastic response characteristics of membrane system.
Some experimental samples of random impact velocity and the corresponding displacement with
respect to time at Point B1 are depicted in Figure 10. Finally, the developed experimental system and
program are summarized as the brief flow chart shown in Figure 11.

T

A 4

Q

e

0

> @
T R
150mm 150mm

AL

T

21
ol
o)

g @

= > o § ? ?
® J

E 50 © y o 9 [oo)
- @ Q@ °
*a‘ 2 @ o] ©
=]
©
> 9 4
-
3
a_ 6 1
_

3

0 , ) :

0 50 100 150 200 250 300
Time (s)

(@)

Figure 10. Cont.



Materials 2018, 11, 1231 18 of 28

Displacement (mm)

150 200 250 300
Time (s)

(b)

Figure 10. Some experimental data samples at Point A2. (a) Impact velocity with respect to time;
(b) displacement with respect to time.

1 Prepare
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data

Figure 11. Flow chart of the experimental program.

4. Validation of Theoretical Model

4.1. Impact Load

The spatial distribution results obtained from theory and experiment are given and compared
in Figure 12. The curve surface presents the theoretical results obtained from Equation (2), and the
red point shows the experimental results acquired from the experiment. It can be observed that the
experimental points are almost located around the theoretical surface, which indicates the reliability of
the theoretical model. In addition, because the load and membrane are symmetric, the spatial shape
parameters C; and C; are equal. After interpolation analysis of experimental data, the one-dimensional
spatial distribution shape could be obtained and is shown in Figure 13. Furthermore, the spatial shape
parameter C; and C; can be extracted as follows: 1.9 (maximal wind), 1.7 (medium wind), and 1.4
(minimum wind).
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Figure 13. One-dimensional spatial distribution shape of impact load.

The PDF results of velocity of impact wind load at Point O obtained from experiment and their
fitted theoretical PDF curve are plotted in Figure 14. It can be observed that the theoretical and
experimental solutions are well matched. Based on the percentage error analysis listed in Table 3,
the error varies in a very limited manner with the maximal error of 4.60%. Furthermore, the PDF
of velocity of impact wind load basically follows the Gaussian distribution, which validates the
assumption of the Gaussian distribution for random impact load. The method of least squares was
applied to identify the key parameters, including mean and variance value, which are listed in Table 3
for the three cases of random impact load induced by different power blowers. The set of parameters
reveal that the variance of velocity will increase with their mean value increasing.

Table 3. Comparison of mean and variance value of random wind velocity.

Mean Value Variance Value

Wind Type Theory Experiment Error Theory Experiment Error
(m/s) (m/s) (%) (m?/s?) (m?/s?) (%)
Minimum wind 2.716 2.652 2.41 1.164 1.142 1.93
Medium wind 13.997 14.187 -1.34 2.749 2.628 4.60
Maximal wind 21.912 22.017 —0.48 3.829 3.874 —1.16
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Figure 14. Comparison of PDF results of random wind velocity.

4.2. Stochastic Vibration Characteristic

The monte carlo simulation (MCS) method is believed to be one of the most effective tools to
predict the probabilistic characteristics of a system. A set of experimental samples can be used to
calculate the simulated solution of stochastic vibration. The accuracy of results based on the MCS
depends on the number of the statistical samples. In order to make the statistical error within 5%,
the number of experimental samples is designed to be 300 [29].

Figure 15 illustrate the PDF and CDF results of displacement at Point O, respectively, in which
case the mean value of velocity of impact wind load is 13.997 m/s and the pretension force is 1000 N.
It can be seen that the theoretical results calculated by the FPK method are almost consistent with the
experimental results obtained by the MCS method. For the position with the most dominant dynamic
response, namely Point O, the mean values of displacement obtained by the theoretical model and
experiment are 3.035 and 2.983 mm, respectively, with the error of 1.743%. The discrepancy occurs
partly from the assumption of ignoring the reflecting velocity of random impact load.
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Figure 15. PDF and CDF results of displacement at specific positions: (a) Point O, (b) Point A1, (c) Point
A2, (d) Point B1, (e) Point B2, and (f) Point C.

Besides this, another interesting phenomenon should be noted that when the strong stochastic
vibration with larger deformation and more nonlinearity takes place in the central region, such as Point
O, the experimental PDF curve of displacement will prove non-Gaussian distribution, which may
indicate the function of membrane as the nonlinear filter system. However, when the energy of random
impact load is limited to only being able to induce weak stochastic vibration occurring at the edge
region, such as Point A1, Point A2, and Point C, the PDF curve of displacement will approximate the
Gaussian distribution, which may suggest the function of membrane as the linear filter system.

Tables 4 and 5 present the mean value and variance value of displacement at different
measurement locations. It is easily found that the discrepancy between the theoretical result and
experimental result are very limited, with the largest error of 2.035% for mean value and 6.452% for
variance value. When the mean value of displacement decreases from central region (Point O) to
edge region (Point B1 and B2), the variance value will reduce as well, which reveals that the random
characteristics of random vibration are reducing.

Table 4. Comparison of mean value of displacement at measurement points.

Position Theory (mm) Experiment (mm) Error (%)
Point O 3.035 2.983 1.743
Point A1l 1.994 1.982 0.605
Point A2 2.457 2.408 2.035
Point B1 1.248 1.224 1.961
Point B2 1.368 1.342 1.937
Point C 1.952 1.974 1.114
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Table 5. Comparison of variance value of displacement at measurement points.

Position Theory (mm?) Experiment (mm?) Error (%)
Point O 0.033 0.031 6.452
Point Al 0.031 0.029 5.969
Point A2 0.032 0.030 5.864
Point B1 0.018 0.017 3.053
Point B2 0.024 0.023 4.013
Point C 0.030 0.028 6.078

5. Results and Discussions

The displacement of membrane subjected to impact load may exceed deformation capacity,
which will further lead to the crack and tearing of membrane. Thus, the displacement is regarded
as the vital parameter for the stochastic vibration analysis and dynamic design [30]. In this section,
the effects of variables, including pretension force, velocity of impact load, and membrane material,
on the stochastic results of displacement are discussed in detail.

5.1. Effect of Pretension Force

5.1.1. Effect of Pretension Force on Mean Value of Displacement

The effect of pretension force on the mean value of displacement at Point Al is illustrated and
discussed in Figure 16. For the case that the mean value of velocity of impact wind load is 13.997 m/s
and the pretension force is 1000 N, the theoretical result obtained by the FPK method is approximate
to experimental data acquired from the MCS method, with the error of 0.605%. From the figure,
the mean value of displacement declines 31% averagely and nonlinearly with the pretension force
increasing from 1000 to 3000 N. However, this trend becomes stable with the declination of 6% when
the pretension force varies from 3000 to 5000 N. The phenomenon indicates that the pretension force
varying within 3000 N has obvious effect on the stiffness of membrane.

2.5
[ ]
- Vmax (Experiment)
>
= Vmax (Theory)
.'\ [ ] Vmedium (Experiment)
= = Vmedium (Theory)
\ A Vmin (Experiment)

AY = \'min (Theory)

Mean of displacement (mm)

0
1000 2000 3000 4000 5000
Pretension force (N)

Figure 16. Mean value of displacement versus pretension force.

5.1.2. Effect of Pretension Force on Variance Value of Displacement

The effect of pretension force on the variance value of displacement is illustrated and discussed
in Figure 17. It can be seen the experimental values are distributed around the theoretical curves.
For the case that the mean value of velocity of impact wind load is 13.997 m/s and the pretension
force is 1000 N, the theoretical result calculated by the FPK method is consistent with the experimental
value, with the error of 5.969%. Similar to the rule of mean value, the variance reduces obviously and
nonlinearly with the pretension force increasing within 3000 N. When pretension force is over 3000 N,
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the influence tends to be gentle. This suggests that the displacement within 3000 N is more dispersed
and worthy of consideration carefully in design.
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Figure 17. Variance value of displacement versus pretension force.

5.2. Effect of Velocity of Impact Load

5.2.1. Effect of Velocity of Impact Load on Mean Value of Displacement

The effect of velocity of impact load on the mean value of displacement at Point A1 is presented
and discussed in Figure 18. It can be found that there is a nonlinear trend in the displacement-velocity
relationship with pretension force, particularly for the cases of pretension force with 1000 N. Moreover,
the slope tends to reduce along with the increase of velocity of impact load, revealing the hard-spring
characteristics of membrane system. Another interesting phenomenon can be observed in that the
displacement-velocity curve is approximate to linear relationship when the velocity of impact load
varies within 3 m/s. Then, the displacement starts to rise nonlinearly with the velocity of impact load
increasing over 3 m/s. This phenomenon indicates that membrane subjected to larger velocity of
impact load shifts the stochastic vibration characteristic from linearity to hardening nonlinearity type,
and the feature of hardening nonlinearity is more pronounced with lower pretention force.
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Figure 18. Mean value of displacement versus velocity of impact wind.
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5.2.2. Effect of Velocity of Impact Load on Variance Value of Displacement

The effect of velocity of impact load on the variance value of displacement at Point Al is
shown and discussed in Figure 19. Similar to the effect of velocity of impact load on mean value of
displacement, the variance of displacement increase significantly with the rise of velocity of impact
load, indicating that the statistical results of stochastic vibration spread out more when membrane is
subjected to larger velocity of impact load. In addition, the change of slope does not vary obviously
as the condition of mean results show in Figure 18, which means that the rise of variance due to the
increase of velocity of impact load is faster than the case of the mean results, especially for the case
with the lower level of pretension force.
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Figure 19. Variance value of displacement versus velocity of impact wind.

5.3. Effect of Membrane Material

5.3.1. Effect of Membrane Material on Mean Value of Displacement

The effect of membrane material on the mean value of displacement at Point A2 is depicted and
discussed in Figure 20. This case is that the membrane is subjected to the impact load with mean
velocity of 13.997 m/s. For Heytex membrane material, the mean value of displacement is the maximal.
In contrast, the result obtained from XYD membrane material is the minimal. It could be explained by
the fact that the elastic modulus of Heytex membrane material is the minimal, which results in the low
structural stiffness. Thus, Heytex membrane is more prone to vibrate stochastically subjected to the
impact load.
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Figure 20. Mean value of displacement versus membrane material.
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5.3.2. Effect of Membrane Material on Variance Value of Displacement

The effect of membrane material on the variance value of displacement at Point A2 is illustrated
and discussed in Figure 21. Unlike the effect of pretension force and velocity of wind, the effect of
membrane material on variance value of displacement is obvious within 1000 N. It is considered that
the difference of elastic modulus for these three types of membrane material is not large, only with
about 4.8% discrepancy. Therefore, the effect of membrane material on the variance result can be
ignored when the pretension force exceeds 1000 N.
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Figure 21. Variance value of displacement versus membrane material.

6. Conclusions

In this paper, the stochastic vibration problem of orthotropic membrane subjected to random
impact load is investigated theoretically and experimentally. In the theoretical part, the model
of random impact load is initially developed as white Gaussian noise input with respect to the
membrane system based on the stochastic pulse theory. Then, the FPK governing motion equations
for geometrically nonlinear membrane are derived and solved based on Von Karman theory and
FPK method. Consequently, the probabilistic and statistical results can be identified. Afterwards,
the theoretical model is validated by experimental study. Furthermore, the parameter discussions
including pretension force, velocity of impact load, and membrane material on stochastic vibration
behavior are performed. The main conclusions can be summarized as follows:

e  The theoretical model proposed can predict the stochastic dynamic characteristics of the membrane
accurately subjected to random impact load;

e  When the strong stochastic vibration with obvious nonlinearity occurs, membrane will function
as the nonlinear filter system, with the PDF results of dynamic response prone to approximate
the Rayleigh Distribution. However, when the stochastic vibration proves weak, membrane will
function as the linear filter system, with the corresponding PDF results more likely to follow the
Gaussian distribution.

e  The developed experimental system and program paves a way to study the stochastic vibration
problem of membrane subjected to random impact load;

e The mean and variance value declines nonlinearly with pretension force and elastic modulus
increasing. However, it will rise with velocity of impact load increasing. Furthermore, pretension
force affects stochastic vibration results most dominantly among different variables.

Author Contributions: Z.Z. proposed the studied problem and the corresponding solving method; D.L. conducted
the theoretical derivation and wrote the paper; R.Y. and P.Z. conducted the experimental study.
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