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Abstract: In this study, we use a multi-parameter perturbation method to solve the problem of a 

functionally graded piezoelectric cantilever beam under combined loads, in which three 

piezoelectric coefficients are selected as the perturbation parameters. First, we derive the two basic 

equations concerning the Airy stress function and electric potential function. By expanding the 

unknown Airy stress function and electric potential function with respect to three perturbation 

parameters, the two basic equations were decoupled, thus obtaining the corresponding 

multi-parameter perturbation solution under boundary conditions. From the solution obtained, 

we can see clearly how the piezoelectric effects influence the behavior of the functionally graded 

piezoelectric cantilever beam. Based on a numerical example, the variations of the elastic stresses 

and displacements as well as the electric displacements of the cantilever beam under different 

gradient exponents were shown. The results indicate that if the pure functionally graded cantilever 

beam without a piezoelectric effect is regarded as an unperturbed system, the functionally graded 

piezoelectric cantilever beam can be looked upon as a perturbed system, thus opening the 

possibilities for perturbation solving. Besides, the proposed multi-parameter perturbation method 

provides a new idea for solving similar nonlinear differential equations. 

Keywords: functionally graded piezoelectric materials; cantilever beams; multi-parameter 

perturbation method; piezoelectric coefficients 

 

1. Introduction 

Functionally graded piezoelectric materials (FGPMs) have been increasingly used in 

piezoelectric sensors and actuators [1,2]. The FGPMs inherit the advantages of functionally graded 

materials (FGMs) and piezoelectric materials. The FGMs consist of two or more materials in which 

the composition of the materials varies continuously in certain directions, and there is no obvious 

interface in FGMs [3]. Therefore, the stress concentration problem caused by the bonding of the two 

materials can be avoided by using FGMs. The advantage of piezoelectric materials is their good 

conversion ability between mechanical energy and electric energy. Piezoelectricity is very suitable 

for physical sensors and biosensors construction [4] and there are many valuable applications in 

engineering fields (for example, structural health monitoring [5]). Piezoelectric materials 

characterization is a challenging problem involving physical concepts, electrical and mechanical 

measurements, and numerical optimization techniques [6,7]. Thus, the analysis of piezoelectric 

materials and structures becomes more and more important. However, the difficulties in studying 
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FGMs and piezoelectric materials are also inherited by FGPMs, and the nonlinear differential 

governing equations of the FGPM structures are usually difficult to be analytically solved. 

Over the past few decades, researchers have devoted a lot of effort to the problems of FGMs 

and FGPMs and have harvested some fruits. Eshraghi et al. [8]. studied the bending and free 

vibrations of FGM annular and circular micro-plates under thermal loading. Kim and Reddy [9] 

derived the equations of motion for FGM plates with surface-mounted piezoelectric layers by using 

Hamilton’s principle, in which the gradient elasticity was accounted for through the modified 

couple stress model and linear piezoelectricity. Kahya and Turan [10] presented a finite element 

model for free vibration and buckling analyses of FGM sandwich beams on the basis of first-order 

shear deformation theory. By using Hamilton’s variational principle and the classical plate theory, 

Arshid and Khorshidvand [11] studied the free vibration analysis of saturated porous FGM circular 

plates integrated by piezoelectric actuator patches via a differential quadrature method. On the 

basis of classical plate theory, Żur presented the analysis and numerical results for the free 

axisymmetric and non-axisymmetric vibrations of FGM circular plates elastically supported on a 

concentric ring [12] and annular plates elastically supported on the ring support [13] via 

quasi-Green’s function method. Zhu et al. [14,15] originally introduced the concept of FGMs into 

piezoelectric materials, and successfully manufactured FGPM actuators. Shi et al. presented the 

solution of FGPM cantilever beams subjected to different loadings [16], and investigated the 

electrostatic behavior of piezoelectric cantilevers with a nonlinear piezoelectric parameter [17]. 

Huang et al. proposed a piezoelasticity solution for FGPM cantilever beams under different loading 

conditions [18] and a unified solution for an anisotropic FGPM cantilever beam subject to sinusoidal 

transverse loads [19]. Zhong and Yu obtained a solution for FGPM cantilever beams under different 

loadings by assuming that the mechanical and electrical properties of the material have the same 

variations along the thickness direction [20], and proposed a general solution for FGPM cantilever 

beams with arbitrary graded material properties along the beam thickness direction by expressing 

the Airy stress function and the electric potential function in finite power series [21]. Yang and Xiang 

[22] and Komeili et al. [23] investigated the static bending FGPM beams under combined 

thermo-electro-mechanical loads. Based on the modified strain gradient theory and Timoshenko 

beam theory, Li et al. [24] developed a size-dependent FGPM beam model by using variational 

formulation, and solved the static bending and free vibration problems of a simply supported 

FGPM beam. Lin and Muliana [25] studied the nonlinear electro-mechanical responses of FGPM 

beams undergoing small deformation gradients. Pandey and Parashar [26] investigated the static 

bending of the FGPM beam under electromechanical loading, in which the effective material 

properties of the FGPM beam are graded according to sigmoid law distribution. Duc et al. [27] 

investigated the nonlinear dynamic response and vibration of an eccentrically stiffened FGPM plate 

subjected to mechanical and electrical loads in a thermal environment. Su et al. [28] dealt with the 

electro-mechanical vibration characteristics of FGPM rectangular plates with different boundary 

conditions based on first-order shear deformation theory. More recently, He et al. [29] presented an 

electroelastic solution for FGPM beams with different moduli in tension and compression. Given 

that there are many relative works in this field, we do not review them in detail. 

From the above studies, we may see that in the analysis of FGPM beams, the number of basic 

equations used for the solution of the problem is so large that it is difficult to solve them analytically; 

at least the process is relatively complex. In addition, the basic equations are generally presented in 

the form of a high-order partial differential equation, which further aggravates the complexity of 

the solution. For this purpose, we need to seek an effective mathematical method for similar 

boundary value problems.  

The parametric perturbation method (PPM) proposed by Poincaré [30] is one of the standard 

analytical methods used for the solution of nonlinear problems in applied mechanics and physics. 

Many studies have indicated that this method is a general analytical method for obtaining 

approximate solutions of nonlinear differential equations in initial or boundary value problems. In 

PPM, the solution of the nonlinear differential equation is constructed by developing an asymptotic 

series with respect to a certain parameter. The so-called perturbation is generated in the 
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neighborhood of the solution of the unperturbed equation, so that the known properties of the 

unperturbed linear system can be used to obtain the solution of the perturbed system. More recently, 

this basic idea of perturbation was demonstrated again by Lian et al. [31], in which the Hencky 

membrane problem without a small-rotation-angle assumption was solved by perturbation to the 

corresponding classical small-rotation-angle problem. Originally, there was only a single 

perturbation parameter in the PPM, which was called the single-parameter perturbation method 

(S-PPM), and many classical works were based on the PPM. Later, as the method was continuously 

studied, scholars began to discover if multiple parameters are introduced, the perturbation solution 

characterized by these parameters may well describe the separate influence of each parameter on 

the nonlinearity of the problem. The earlier work can be seen from Nowinski and Ismail [32], in 

which a multi-parameter perturbation method (M-PPM) was proposed to solve the deformation 

problem of a cylindrical orthotropic circular plate. The pioneer work in nonlinear beam problems 

was done by Chien [33], in which a biparametric perturbation method (B-PPM) was initially applied 

to solve the classical Euler-Bernoulli equation of beams with a height difference between the two 

ends from a practical engineering problem. Later, He et al. successfully used the so-called B-PPM to 

solve large deflection beam problems which Chien dealt with [34] and large deflection circular plate 

problems with a bimodular effect [35]. However, the application of the real M-PPM which contains 

three or more perturbation parameters has not been found yet. 

In this study, we extended the traditional S-PPM and B-PPM to M-PPM which contains three 

perturbation parameters and solved the governing equations of the FGPM cantilever beam under 

combined loads. The piezoelectric coefficients are selected as perturbation parameters. Thus, from 

the point of view of the perturbation idea, if the pure FGM cantilever beam is regarded as an 

unperturbed system, the FGPM cantilever beam can be looked upon as a perturbed system. In the 

next section, the mechanical model of a FGPM cantilever beam under the combined action of a 

uniformly distributed load, concentrated force, and bending moment is presented. In Section 3, the 

perturbation solution of the FGPM cantilever beam is obtained. In Section 4, based on a numerical 

example, the variations of the elastic stresses and displacements, as well as the electric 

displacements, are shown and some important issues are discussed. Section 5 is the concluding 

remarks. 

2. Mechanical Model and Basic Equations 

In this study, the mechanical model of the FGPM cantilever beam is established by using 

two-dimensional elastic beam theory and neglecting shear deformation, since what we consider 

here is a relatively shallow beam. Generally speaking, the mechanical and electrical parameters of 

FGPMs change along one direction only. In this study, we assume that the mechanical and electrical 

parameters of the FGPM cantilever beam vary along the thickness of the FGPM cantilever beam. As 

shown in Figure 1, an FGPM cantilever beam is fixed at its right end and subjected to uniformly 

distributed loads q on its upper surface, a concentrated force P, and a bending moment M at its left 

end, in which l, b, and h (h << l) denote the length, width, and height of the beam, respectively. A 

rectangular coordinate system is introduced with the upper and lower surfaces of the beam lying in 

= − / 2z h  and = / 2z h . The mechanical and electrical parameters of the FGPM cantilever beam 

vary along the z coordinate, such that  

= = =0 / 0 / 0 /, ,αz h αz h αz h

ij ij ij ij ij ij
s s e d d e λ λ e ,  (1) 

where α is a gradient exponent; 
ij
s , ij

d , and ij
λ  are the elastic coefficient, piezoelectric coefficient, 

and dielectric coefficient, respectively; and 0

ij
s , 0

ij
d , and 0

ij
λ  are values of the corresponding 

material parameters at = 0z , respectively. 
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Figure 1. Scheme of a functionally graded piezoelectric cantilever beam. 

By neglecting body forces and free charges, the mechanical equation of equilibrium and the 

electrical equation of equilibrium are 

 

 

 
+ =  


  + =

  

0

0

x zx

zx z

x z

x z

 (2) 

and 

 
+ =

 
0x z

D D

x z
, (3) 

where 
x
,

z
, and 

zx
 are the stress components; and 

x
D  and 

z
D are the electric displacement 

components. The constitutive equations of the materials are  

  

  

 

 

  

 = + +


= + +


= +
 = +

 = + +

11 13 31

13 33 33

44 15

15 11

31 33 33

x x z z

z x z z

zx zx x

x zx x

z x z z

s s d E

s s d E

s d E

D d E

D d d E

, (4) 

where 
x

, 
z

, and 
zx

 are the strain components; and 
x
E  and 

z
E  are the electric field 

components. The geometric equations give 

  
   

= = = +
   

, ,
x z zx

u w u w

x z z x
, (5) 

where u and w are the displacement components. The strain compatibility equation is 

    
+ − =

  

2 2 2

2 2
0x z zx

z xz x
. (6) 

The relationships between the electric field components and the electric potential are 

 
= − = −

 
,

x z
E E

x z
, (7) 

where Φ is the electric potential function. By introducing Airy stress function U(x, z), we may 

express the stress components as 

  
  

= = = −
  

2 2 2

2 2
, ,

x z zx

U U U

z xz x
. (8) 
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Substituting Equations (4), (7), and (8) into Equations (3) and (6), the governing equations for the 

Airy stress function U(x, z) and the electric potential function Φ(x, z) are 

 
        

+ − = +
       

2 2 3 2

31 33 15 33 112 2 2 2
( ) ( ) ( )

U U U
d d d

z z z zz x x z x
 (9) 

and 

      
+ + + +

       

      
= + −

    

2 2 2 3 4 4

11 13 44 13 332 2 2 2 2 2 4

2 3 2

31 33 152 2 2

( ) ( )

( ) ( )

U U U U U
s s s s s

zz z x x z x z x

d d d
z zz x z x

, (10) 

where 0

31
d , 0

33
d , and 0

15
d  in the piezoelectric coefficients 

31
d , 

33
d , and 

15
d  may be selected as the 

perturbation parameters. When = = =0 0 0

31 33 15
0d d d , Equation (10) may be regressed into the 

governing equation of the pure functionally graded cantilever beam (Equation (11) in [36]), i.e., 

      
+ + + + =

       

2 2 2 3 4 4

11 13 44 13 332 2 2 2 2 2 4
( ) ( ) 0

U U U U U
s s s s s

zz z x x z x z x
. (11) 

The mechanical and electrical boundary conditions are given as follows: 


−

=
/2

/2

h

zxh

P
dz

b
, 

−
=

/2

/2
0

h

xh
dz  and 

/2

/2

h

xh

M
z dz

b


−
= , at = 0x , (12) 

 

 

 = = =


= = = −

0, at / 2

, 0, at / 2

z zx

z zx

z h

q z h
, (13) 

/2

/2
0, at 0 and

0, at / 2 and / 2

h

xh

z

D dz x x l

D z h z h

−

 = = =

 = = = −

  (14) 

and 


= = =


0

w
u w

x
, at = 0z  and =x l . (15) 

3. Perturbation Solution 

Substituting Equation (1) into Equations (9) and (10), we have 

  
  

   

        
+ + + − = + +

      

     
+ + + + + +

      


+ + =

 

2 2 3 3 2 2
0 0 0 0 0 0 0 0

31 33 31 33 15 33 33 112 2 3 2 2 2

2 2 2 2 3 3 4 4
0 0 0 0 0 0 0

11 13 11 13 44 11 332 2 2 2 3 2 4 4

4
0 0

44 13 2 2

( )

2 (2 )

( 2 )

U U U U
d d d d d
h h h zz x z x z z x

U U U U U U
s s s s s s s

h hh z h x z x z z x

U
s s

x z

  







         

+ + + − −
     

2 2 3 3 2
0 0 0 0 0 0

31 31 31 33 15 152 2 3 2 2
2 ( )d d d d d d

z h hh z z x z x

. (16) 

From the piezoelectric parameters of the five kinds of piezoelectric materials listed by Ruan et 

al. [37], it can be seen that the piezoelectric coefficients are usually very small. So, they can be 

selected as perturbation parameters to meet the requirement of convergence in perturbation 

expansions. Thus, from the point of view of the perturbation idea, if the pure FGM cantilever beam 

is regarded as an unperturbed system, the FGPM cantilever beam can be looked upon as a 

perturbed system. By selecting 0

31
d , 0

33
d , and 0

15
d  as perturbation parameters, we may expand Φ 

and U with respect to 0

31
d , 0

33
d , and 0

15
d , as follows: 
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 =  + + + + +

+ + + +

0 I 0 I 0 I 0 II 0 2 II 0 2

0 1 31 2 33 3 15 1 31 2 33

II 0 2 II 0 0 II 0 0 II 0 0

3 15 4 31 33 5 31 15 6 33 15

( ) ( )

( )

d d d d d

d d d d d d d
 (17) 

and 

= + + + + +

+ + + +

0 I 0 I 0 I 0 II 0 2 II 0 2

0 1 31 2 33 3 15 1 31 2 33

II 0 2 II 0 0 II 0 0 II 0 0

3 15 4 31 33 5 31 15 6 33 15

( ) ( )

( )

U U U d U d U d U d U d

U d U d d U d d U d d
, (18) 

where 0

0
Φ  and 0

0
U , IΦ

i
 and I

i
U  ( = 1,2,3i ), and IIΦ

i
 and II

i
U ( = 1,2,3,...,6i ) are unknown 

functions of x and z. 

Substituting Equations (17) and (18) into Equation (16), as well as into the boundary conditions, 

Equations (12)–(14), we may obtain a series of decomposed differential equations and the 

corresponding boundary conditions by comparing the coefficients of the same power of 0

31
d , 0

33
d , 

and 0

15
d . 

1. By comparing the coefficients of 0 0

31
( )d , 0 0

33
( )d , and 0 0

15
( )d  in Equation (16), we may obtain 

the differential equations for 0

0
Φ  and 0

0
U , 


  

   

     
+ + =

  
    

+ + + +
    

   
+ + + + =

   

0 2 0 2 0
0 0 00 0 0
33 33 112 2

2 0 2 0 3 0 3 02 2
0 0 0 0 00 0 0 0
11 13 11 13 442 2 2 2 3 2

4 0 4 0 4 0
0 0 0 00 0 0
11 33 44 134 4 2 2

0

2 (2 )

( 2 ) 0

h z z x

U U U U
s s s s s

h hh z h x z x z

U U U
s s s s

z x x z

, (19) 

which may be solved under the boundary conditions 

−


− =
 
2 0

/2
0

/2
( )

h

h

U P
dz

z x b
,

−


=




2 0
/2

0

2/2
0

h

h

U
dz

z
 and 

−


=




2 0
/2

0

2/2

h

h

U M
z dz

bz
,at = 0x , (20) 

 
= − = =

  

 

= − = = −
  

2 0 2 0

0 0

2

2 0 2 0

0 0

2

0, at / 2

, 0, at / 2

U U
z h

z xx

U U
q z h

z xx

 (21) 

and 





−

  
− − = = =

   


   + − = = = −
  


2 0 0

/2
0 0

15 11/2

2 0 2 0 0

0 0 0
31 33 332 2

( ) 0, at 0 and

0, at / 2 and / 2

h

h

U
d dz x x l

z x x

U U
d d z h z h

zz x

. (22) 

Suppose 

 = + +



= + +


0 2 0 0 0

0 1 2 3

2
0 0 0 0

0 1 2 3

( ) ( ) ( )

( ) ( ) ( )
2

x g z xg z g z

x
U f z xf z f z

, (23) 

where 0 ( )
i
g z  and 0( )

i
f z  ( 1,2,3i = ) are unknown functions of z. After Substituting Equation (23) 

into Equation (19), it is found that 
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0 0 0

1 1 2

0 0 0

2 3 4

0 0
0 0 0 0 011 11
3 5 6 1 20 0

33 33

( )

( )

( ) 2 2

z
h

z
h

z z
h h

g z B B e

g z B B e

h h
g z B B e B z B ze
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
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 (24) 

and 

0 0 0 0 0

1 1 2 3 4
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2 5 6 7 8

2
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3 9 10 11 12 13 1 44 2 13 20

11

2
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s

−

−

−

−


= + + +


 = + + +



= + + + − + +



− − +














, (25) 

where 0

i
B  ( = 1,2,3,...,6i ) and 0

i
C  ( = 1,2,3,...,12i ) are undetermined constants which can be 

determined by Equations (20)–(22), please see Appendix A. 

2. Similarly, by comparing the coefficients of 0 1

31
( )d , 0 1

33
( )d , and 0 1

15
( )d  in Equation (16), we 

may obtain the differential equations for IΦ
i
 and I

i
U  ( = 1,2,3i ), respectively, for term 0 1

31
( )d : 
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  
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

  
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0 3 0

0 0

2 3z z

, (26) 

for term 0 1

33
( )d : 

 
  

   

      
= +

     
    

+ + + +
    

   
+ + + + =

     

2 0 3 0I 2 I 2 I
0 0 0 0 02 2 2
33 33 112 2 2 2

2 I 2 I 3 I 3 I2 2
0 0 0 0 02 2 2 2
11 13 11 13 442 2 2 2 3 2

3 04 I 4 I 4 I
0 0 0 0 02 2 2
11 33 44 134 4 2 2 2

+ +

2 (2 )

( 2 )

U U

h z hz x x x z

U U U U
s s s s s

h hh z h x z x z

U U U
s s s s

z x x z x z








, (27) 

and for term 0 1

15
( )d : 


  

   



      
+ + −

    

   
+ + + +

    

      
+ + + + = − −

      

I 2 I 2 I 3 0
0 0 03 3 3 0
33 33 112 2 2

2 I 2 I 3 I 3 I2 2
0 0 0 0 03 3 3 3
11 13 11 13 442 2 2 2 3 2

4 I 4 I 4 I 3 0 2 0
0 0 0 03 3 3 0 0
11 33 44 134 4 2 2 2 2

=

2 (2 )

( 2 )

U

h z z x x z

U U U U
s s s s s

h hh z h x z x z

U U U
s s s s

hz x x z x z x









, (28) 

which may be solved under the boundary conditions 

−


− =
 
2 I

/2

/2
( ) 0

h
i

h

U
dz

z x
, 

−


=




2 I
/2

2/2
0

h
i

h

U
dz

z
 and 

2 I
/2

2/2
0

h
i

h

U
z dz
z−


=


  ( = 1,2,3i ), at = 0x , (29) 
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 
= − = =

  

 

= − = = −
  

2 I 2 I

2

2 I 2 I

2

0, at / 2

0, at / 2

i i

i i

U U
z h

z xx

U U
z h

z xx

( = 1,2,3i ) (30) 

and 





−

  
− − = = =

   


   + − = = = −
  


2 I I

/2

15 11/2

2 I 2 I I

31 33 332 2

( ) 0, at 0 and

0, at / 2 and / 2

h
i i

h

i i i

U
d dz x x l

z x x

U U
d d z h z h

zz x

( = 1,2,3i ). (31) 

Suppose 

− −

− −

 = + +



= + +


I 2 I I I

3 2 3 1 3

2
I I I I

3 2 3 1 3

( ) ( ) ( )

( ) ( ) ( )
2

i i i i

i i i i

x g z xg z g z

x
U f z xf z f z

 ( = 1,2,3i ), (32) 

where I ( )
i
g z  and I ( )

i
f z  ( = 1,2,3,...,9i ) are unknown functions of z. After Substituting Equation 

(32) into Equations (26)–(28), it is found that 

I I I 0

1 1 2 40

33

I I I 0

2 3 4 80

33

0 00
I I I 0 0 0 I 013 1344
3 5 6 1 2 11 1 20 0 0 0 0

33 11 11 33 11

0 0 0
0 013 44 11
3 40 0 0

33 11 11 33

( )
2

( )

1
( ) [ ( 2 ) ]

2

1
[ (

z z
h h

z z
h h

z
h

g z B B e C ze
h

g z B B e C ze
h

s ssh
g z B B e z C C B C z

hs s s

s sh
z C C

hs s

− −

− −

−

= + −

= + −

= + − + + +

+ − + −

 

 














 



  

2
0 0 0 I

4 12 11 20 2

0 0 0 00
0 0 0 0 213 13 44 1311
3 4 4 40 0 0 0 0 0

33 11 11 33 11 33

2 )

1
( ) ]

2 6

z
h

C C B
h

s s s s
C C C z C z e
h hs s s

−












 − +



+ + − − +








 

  

, (33) 

I I I

4 7 8

I I I

5 9 10

I I I 0 0 I 0 2 0 I 0

6 11 12 1 11 7 2 11 8 40

33

( )

( )

1 1
( ) [( 2 ) + (2 ) ]

2

z
h

z
h

z z
h h

g z B B e

g z B B e

h
g z B B e C B z C z B C ze

h h

−

−

− −


= +




= +

 = + + − + −






 
 

 


, (34) 

I I I

7 13 14

I I I

8 15 16

I I I 0 0 I 0 I 0 0

9 17 18 2 11 13 11 14 3 40 0

33 33

( )

( )

1 1
( ) ( 2 ) (4 2 )

2

z
h

z
h

z z
h h

g z B B e

g z B B e

h h
g z B B e C B z B C C z ze

−

−

− −


= +




= +

 = + − + + − −






 

 
  

, (35) 

I I I I I

3 2 12 11 12 10 12 9 12 8

I I I I I

3 1 12 7 12 6 12 5 12 4

( ) ( )

( ) ( )

z
h

i i i i i

z
h

i i i i i

f z C C z C C z e

f z C C z C C z e

−

− − − − −

−

− − − − −


= + + +


 = + + +




 ( = 1,2,3i ) (36) 

and 
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02
I I I I I 0 I 0 I 0 0 I11
3 9 10 11 12 13 1 44 2 1 13 20 0

11 33

2
0 I 0 I 0 I

13 3 44 4 13 40

11

2
I I I I I 0 I 0 I 0

6 21 22 23 24 13 13 44 14 130

11

( ) ( ) (3 3 6 )
6

(3 3 )
6

( ) ( ) (3 3
6

z
h

z
h

z
h

z h h
f z C C z C C z e s C s C B s C z

s

z h
s C s C s C z e

s

z h
f z C C z C C z e s C s C s

s

−

−

−

= + + + − + + +

− − +

= + + + − + +









  





I

14

2
0 I 0 I 0 0 I

13 15 44 16 2 13 160

11

2
I I I I I 0 I 0 I 0 0 I

9 33 34 35 36 13 25 44 25 1 13 260

11

2
0 I 0 I 0 I

13 27 44 28 13 280

11

)

(3 3 6 )
6

( ) ( ) (3 3 6 )
6

(3 3 )
6

z
h

z
h

z
h

C z

z h h
s C s C B s C z e

s

z h h
f z C C z C C z e s C s C B s C z

s

z h
s C s C s C z e

s

−

−

−












− − + +

= + + + − + + +

− − +









 

 













, (37) 

where I

i
B ( = 1,2,3,...,18i ) and I

i
C ( = 1,2,3,...,36i ) are undetermined constants which can be 

determined by Equation (29)–(31), please see Appendix A. 

3. Similarly, by comparing the coefficients of 0 2

31
( )d , 0 2

33
( )d , 0 2

15
( )d , 0 0

31 33
d d , 0 0

31 15
d d , and 0 0

33 15
d d  

in Equation (16), we may obtain the differential equations for IIΦ
i

 and II

i
U  ( = 1,2,3,...,6i ), 

respectively, for term 0 2

31
( )d : 

 
  

   



      
+ + = +

    

    
+ + + + +

     

  
+ + + =

  

II 2 II 2 II 2 I 3 I
0 0 01 1 1 1 1
33 33 112 2 2 3

2 II 2 II 3 II 3 II 4 II2 2
0 0 0 0 0 01 1 1 1 1
11 13 11 13 44 112 2 2 2 3 2 4

4 II 4 II 2
0 0 01 1 1
33 44 134 2 2 2

2 (2 )

( 2 )

U U

h z hz x z z

U U U U U
s s s s s s

h hh z h x z x z z

U U
s s s

x x z h









    

− +
  

I 2 I 3 I

1 1

2 3
2

z h z z

, (38) 

for term 0 2

33
( )d : 

 
  

   

      
+ + = +

     

   
+ + + +

    

    
+ + + + =

   

II 2 II 2 II 2 I 3 I
0 0 02 2 2 2 2
33 33 112 2 2 2

2 II 2 II 3 II 3 II2 2
0 0 0 0 02 2 2 2
11 13 11 13 442 2 2 2 3 2

4 II 4 II 4 II 3 I
0 0 0 02 2 2 2
11 33 44 134 4 2 2

2 (2 )

( 2 )

U U

h z hz x x x z

U U U U
s s s s s

h hh z h x z x z

U U U
s s s s

z x x z










 
2x z

, (39) 

for term 0 2

15
( )d : 


  

   



     
+ + = −

    

    
+ + + + +

     

    
+ + + = − −

    

II 2 II 2 II 3 I
0 0 03 3 3 3
33 33 112 2 2

2 II 2 II 3 II 3 II 4 II2 2
0 0 0 0 0 03 3 3 3 3
11 13 11 13 44 112 2 2 2 3 2 4

4 II 4 II 3 I
0 0 03 3 3
33 44 134 2 2 2

2 (2 )

( 2 )

U

h z z x x z

U U U U U
s s s s s s

h hh z h x z x z z

U U
s s s

hx x z x z







 




2 I

3

2x

, (40) 

for term 0 0

31 33
d d : 
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  
  

   

        
+ + = + + +

       

    
+ + + + +

     


+ + +



II 2 II 2 II 2 I 3 I 2 I 3 I
0 0 04 4 4 2 2 1 1
33 33 112 2 2 3 2 2

2 II 2 II 3 II 3 II 4 II2 2
0 0 0 0 0 04 4 4 4 4
11 13 11 13 44 112 2 2 2 3 2 4

4 II
0 04
33 44 134

2 (2 )

( 2

U U U U

h z h hz x z z x x z

U U U U U
s s s s s s

h hh z h x z x z z

U
s s s

x

 







        

= + + +
     

4 II I 2 I 3 I 3 I2
0 4 2 2 2 1

2 2 2 2 3 2
) 2
U

z hx z h z z x z

, (41) 

for term 0 0

31 15
d d : 

 
  

   

       
+ + = + −

      

    
+ + + + +

     

 
+ + +

 

II 2 II 2 II 2 I 3 I 3 I
0 0 05 5 5 3 3 1
33 33 112 2 2 3 2

2 II 2 II 3 II 3 II 4 II2 2
0 0 0 0 0 05 5 5 5 5
11 13 11 13 44 112 2 2 2 3 2 4

4 II 4 II
0 0 05 5
33 44 134 2

2 (2 )

( 2 )

U U U

h z hz x z z x z

U U U U U
s s s s s s

h hh z h x z x z z

U U
s s s

x x

  







         

= + + − −
     

I 2 I 3 I 3 I 2 I2
3 3 3 1 1

2 2 2 3 2 2
2

z h hz h z z x z x

, (42) 

and for term 0 0

33 15
d d : 

 
  

   

       
+ + = + −

       

    
+ + + + +

     

 
+ + +

 

II 2 II 2 II 2 I 3 I 3 I
0 0 06 6 6 3 3 2
33 33 112 2 2 2 2

2 II 2 II 3 II 3 II 4 II2 2
0 0 0 0 0 06 6 6 6 6
11 13 11 13 44 112 2 2 2 3 2 4

4 II 4 II
0 0 06 6
33 44 134

2 (2 )

( 2 )

U U U

h z hz x x x z x z

U U U U U
s s s s s s

h hh z h x z x z z

U U
s s s

x









      

= − −
     

3 I 3 I 2 I

3 2 2

2 2 2 2 2hx z x z x z x

, (43) 

which may be solved under the boundary conditions 

−


− =
 
2 II

/2

/2
( ) 0

h
i

h

U
dz

z x
, 

−


=




2 II
/2

2/2
0

h
i

h

U
dz

z
 and 

−


=




2 II
/2

2/2
0

h
i

h

U
z dz
z

( = 1,2,3,...,6i ), at = 0x , (44) 

 
= − = =

  

 

= − = = −
  

2 II 2 II

2

2 II 2 II

2

0, at / 2

0, at / 2

i i

i i

U U
z h

z xx

U U
z h

z xx

 ( = 1,2,3,...,6i ) (45) 

and 





−

  
− − = = =

   


   + − = = = −
  


2 II II

/2

15 11/2

2 II 2 II II

31 33 332 2

( ) 0, at 0 and

0, at / 2 and / 2

h
i i

h

i i i

U
d dz x x l

z x x

U U
d d z h z h

zz x

 ( = 1,2,3,...,6i ). (46) 

Suppose 

− −

− −

 = + +



= + +


II 2 II II II

3 2 3 1 3

2
II II II II

3 2 3 1 3

( ) ( ) ( )

( ) ( ) ( )
2

i i i i

i i i i

x g z xg z g z

x
U f z xf z f z

 ( = 1,2,3,...,6i ), (47) 

where II( )
i
g z  and II( )

i
f z  ( = 1,2,3,...,18i ) are unknown functions of z. After Substituting Equation 

(47) into Equations (38)–(43), it is found that 
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II II II

3 2 6 5 6 4

II II II

3 1 6 3 6 2

0 0
II II II II II11 11
3 6 1 6 6 5 6 40 0

33 33

( )

( )

( ) 2 2

z
h

i i i

z
h

i i i

z z
h h

i i i i i

g z B B e

g z B B e

h h
g z B B e B z B ze

−

− − −

−

− − −

− −

− − −


= +




= +

 = + − +






  

  

 ( = 1,2,3,...,6i ), (48) 

0
II II I II I II II4
1 1 1 2 2 3 40 0 0 0

11 11 11 33

0
II II I II I II II8
2 5 3 6 4 7 80 0 0 0

11 11 11 11

II II II I

3 9 10 50

11 1

1 1
2 [2 ( 1) ( 1)]

1 1
[ ( 1) ( 1)]

1 1 1
(2

2

z
h

z
h

Ch h
f C B z C z B C z C z e

h hs s s

Ch h
f C B z C z B C z C z e

h hs s s

h
f C C z B z

s s

−

−

= + + − + − + + +

= + + − + − + + +

= + + −





 

 

 

 



00 0
I II II 21344 44
1 1 20 0 0 0

1 11 11 11

0
0 0 0 0 0 0 I 2 I II 313
13 1 44 2 11 11 1 1 20 0 0 0 0

11 33 11 11 11

0 2 3 4 2
0 313
2 1 1 1 1 1 10 0 0 2 3 4 2

11 33 11

3

3

)

1 1 1 1
( 2 ) ( )

22 3

1
( 2 6 2

6

6

ss sh
B C C z

s s s

sh
s C s C s B z B C z
hs s s s

s h h h h h h
C z F G H I G z H z

s s

h
I

+ +

− + + − +

− − + + + + +

+








     



2
2 2 3

1 1 1 12
3 )

z
h

h h h
z H z I z I z e

−


















 + + +




 

, (49) 

II II II II II

3 2 12 11 12 10 12 9 12 8

II II II II II

3 1 12 7 12 6 12 5 12 4

( )

( )

z
h

i i i i i

z
h

i i i i i

f C C z C C z e

f C C z C C z e

−

− − − − −

−

− − − − −


= + + +


 = + + +




 ( = 2,3,...,6i ) (50) 

and 

2
II II II II II 0 II 0 II 0 II

6 21 22 23 24 13 13 44 14 13 140

11

2
0 II 0 II 0 II

13 15 44 16 13 160

11

2
II II II II II 0 II 0 II

9 33 34 35 36 13 25 44 260

11

( ) (3 3 )
6

(3 3 )
6

( ) (3 3
6

z
h

z
h

z
h

z h
f C C z C C z e s C s C s C z

s

z h
s C s C s C z e

s

z h
f C C z C C z e s C s C

s

−

−

−

= + + + − + +

− − +

= + + + − + +













I 0 II

13 13 26

2
0 II 0 II 0 II

13 27 44 28 13 280

11

0 00
II II II I II II 0 2 0 II 313 1344
12 45 46 11 37 38 1 2 38 20 0 0 0 0 0 0 0

11 11 11 33 11 33 11 11

2 3

22 3

6 )

(3 3 )
6

1 1 1 1 1 1 1
( ) ( ) (

2 6

2

z
h

B s C z
h

z h
s C s C s C z e

s

s ssh h
f C C z B z C C C z C C z F

s s s s s s

h h
G

−

+

− − +

= + + − + − + − −

+ +







  

 

4 2 3 2
2 2 3

2 2 2 2 2 2 2 24 2 3 2

II II 0 II I I 2 0 0 I 2

15 57 11 58 17 1 2 11 130 0

11 33

2 3 2
2

3 3 3 3 3 32 3 2

II II II

18 69 70

6 2 6 3 )

1 1
[ ( 2 )

2

( 2 2 ) ]

z
h

z
h

h h h h h h h
H I G z H z I z H z I z I z e

h h
f C s C z B z B z C B z

s

h h h h h h
F G H G z H z H z e

f C C z

−

−

+ + + + + + +

= + + − − +

− + + + + +

= +





     


 

    
2

II II 0 II 0 II 0 II

71 72 13 61 44 62 13 620

11

2
0 II 0 II 0 II

13 63 44 64 13 640

11

( ) (3 3 )
6

(3 3 )
6

z
h

z
h

z h
C C z e s C s C s C z

s

z h
s C s C s C z e

s

−

−





























+ + − + +


 − − +










, 

(51) 



Materials 2018, 11, 1222 12 of 24 

 

where Fi ( = 1,2,3i ), Gi ( = 1,2,3i ), Hi ( = 1,2,3i ), and Ii ( = 1,2i ) can be found in Appendix A,  

and II

i
B  ( = 1,2,3,...,36i ) and II

i
C  ( = 1,2,3,...,72i ) are undetermined constants which can be 

determined by Equations (44)–(46) , please see Appendix A.  

Thus, the expression of the electric potential function Φ(x, z) and Airy stress function U(x, z) 

may be obtained by means of Equations (17) and (18), Equations (23)–(25), Equations (32)–(37), and 

Equations (47)–(51). Substituting Equations (17) and (18) into Equations (7) and (8), the electric field 

components and the stress components may be expressed as 

 = − + − +


    = − + + − −

I I 0 I I 0

1 2 31 7 8 15

2 I I I 0 I 0 I 0

1 2 3 31 6 33 9 15

(2 ) (2 )

( )

x

z

E xg g d xg g d

E x g xg g d g d g d
 (52) 

and 








      = + + + + + +


=


 = − −



2
0 0 0 II 0 2 II 0 2 II 0 0 II 0 0

1 2 3 3 31 9 15 12 31 33 15 31 15

0

1

0 0

1 2

( ) ( )
2x

z

zx

x
f xf f f d f d f d d f d d

f

xf f

. (53) 

And substituting Equations (52) and (53) into Equation (4), the electric displacement 

components and the strain components may be written as 



 



 



  = − + + + + +

   = + + +

     − + + + +


0 I I 0 0 I I 0 0 0 0 /

11 1 2 31 11 7 8 15 1 2 15

2
0 0 0 0 / 0 0 /

1 2 3 31 1 33

2 I I I 0 I 0 I 0 0 /

1 2 3 31 6 33 9 15 33

[ (2 ) (2 ) ( ) ]

( )
2

[( ) ]

z h

x

z h z h

z

z h

D xg g d xg g d xf f d e

x
D f xf f d e f d e

x g xg g d g d g d e

 (54) 

and 







      = + + + + − − −

   + + − + −

  = + +

2
0 0 0 0 0 0 0 I 0 II 2 I I I 0 2

11 1 11 2 11 3 13 1 11 3 1 2 3 31

0 II 0 2 0 II I 0 0 0 II I 0 0 /

11 9 15 11 12 6 31 33 11 15 9 31 15

2
0 0 0 0 0 0

13 1 13 2 13 3

[( ) ( )( )
2

( ) ( ) ( ) ]

[(
2

x

z h

z

x
s f s xf s f s f s f x g xg g d

s f d s f g d d s f g d d e

x
s f s xf s f





  + + − +

    + − − − + −

 = − + + + + +

0 0 0 II 0 2 I 0 2 0 II 0 2

33 1 13 3 31 6 33 13 9 15

0 II 2 I I I 0 0 0 II 0 0 I 0 0 /

13 12 1 2 3 31 33 13 15 31 15 9 33 15

0 0 0 I I 0 2 I I 0 0

1 2 44 7 8 15 1 2 31 15

) ( ) ( ) ( )

( ) ]

[( ) (2 )( ) (2 ) ]

z h

zx

s f s f d g d s f d

s f x g xg g d d s f d d g d d e

xf f s xg g d xg g d d e















/z h

. (55) 

Substituting Equation (55) into the first two items of Equation (5), and integrating with respect 

to x and z, respectively, the displacement components may be obtained as 



     = + + + − + + −

   + − − − − +

3 2 3 2
0 0 0 0 0 0 0 I I I I 0 II 0 2

11 1 11 2 11 3 13 1 1 2 3 11 3 31

0 II 0 2 I 0 II 0 0 I 0 II 0 0 /

11 9 15 6 11 12 31 33 9 11 15 31 15 1

[( ) ( )( )
6 2 3 2

( ) ( ) ( ) ] ( )z h

x x x x
u s f s f xs f xs f g g xg xs f d

xs f d x g s f d d x g s f d d e g z

 (56) 

and 
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0 0 02 2 2 2
0 0 0 0 0 0 0 0 0 033 13 44
13 4 3 8 7 3 12 11 3 42 2 0 2 0 0

13 11 11

0 0 002 2 2 2
0 0 0 0 0 0 0 0 233 13 1344
13 4 8 4 12 3 4 42 2 0 2 0 0 0

13 11 11 11

[ ( 2 ) ( 2 ) 2 ]
2

1 1 1 1
[ ]
4 2 2 2 2

s s sx h
w s C C x C C C C C C C z

h h hh h s h s s

s s ssx
s C C x C C C C C z s

hh h s h s s s

= − + + − + + − + − +

+ + + + − − − −

     



   
0

0 013
13 30

11

0 0 0 0 0 0 0 002
0 3 0 0 4 0 0 0 0 013 44 13 33 13 33 13 3344
4 13 4 13 1 1 2 20 0 2 0 0 0 0 0 0

11 11 13 11 13 13 11 13

0
0 / 0 0 213
2 13 1 1 13 1 10

11

(
6

2
) [ (1 ) (

6 24

) ] [ ( ) ( )
2

z h

s
C

h hs

s s s s s s s ssh h h
C z s C z s C C C C

s s h s s s s s s

s
C z e s G F z s H G z

h hs

+
− − + − − + − +

− + − + −

 



  

 
02 2

3 0 4 13
1 1 13 12 2 0 0

33 11

0 0 00 2
0 0 0 0 I 0 / 0 2 0 I 0 0 213 13 1344
2 1 2 11 1 2 31 33 12 4 40 0 0 0 0 2

11 11 11 11 33

0 0 0 / 0 2 0

1 2 2 33 13

1
( )

43

1 1
( 2 ) ]( ) [( )

2

( ) ]( ) [

z h

z h

sh
I H z s I z
h hh s

s s ss h
C C C B C z e d B C z C z

h h hs s s s h

h
C C C z e d s

h

+ − − +

 − + + − + + −

− − + +





  

 

   
 

 





2 2
II II II 2 I / 0 2

35 36 36 13 152 2 0

11

0 00 0 0
I 2 I I 0 0 0 0 0 I8 134 44 11
2 4 6 3 4 4 12 11 20 0 0 0 0 0

33 33 33 11 11 33

0 0 0

13 2 13 2 13 1

1
( 2 ) 2 ]( )

2

1
{[ ( ) ( ) ( 2 )

2

] [ (
2

z hh
C C z C z B e d
h h s

C sC sh h h
B x B x B C C C C B

h h h hs s

s G s F z s H G
h h

− + −

+ + + + + − − + − − +

+ − + −

 



   


     

 
0 0 0 2 2

0 0 0 0 I 013 13 44
2 3 4 12 11 2 80 0 0 2 2 0

33 11 11 33

0 0 0 00
0 2 2 0 0 0 0 3 013 13 44 1311
4 13 2 2 3 4 4 40 0 0 0 0 0

33 11 11 33 11 33

2
0 4 1
13 2 2

21
) ( ) (2

2 2 4

21
)] [ ( ) ( )] (

3 46 6

) 2

s s s
C C C B C x
hs s h h

s s s s
C x z s I H C C C z C

h h h h hs s s

sh
s I z

+
− − + − −

+
+ + − + − − +

− +

  


 

    

  



0 00 0
0 0 0 0 0 / 0 03 1344 11
1 2 2 11 7 2 31 33 3 30 0 0 0 0

33 11 13 13 11

2 2 2
2 3 I 0 0 I / 0 0

3 3 3 1 2 11 13 31 152 0 2 0 2

33 33

0 I 0 0

33 18 3 40

33

( ) } [( )
2

1 1
( ) (2 2 ) ]

2 3

1 1
[( ) (

2

z h

z h

ss s
C C C B C z e d d G F z
h h hs s s s

h h h
H G z H z B C B e d d

h h

B C z C
h

− + + + + −

+ − − − + +

+ + + −





  




 


    






2
0 2 0 3 0 0 I / 0 0

3 4 2 11 13 33 15 22
) ( 2 ) ] ( )

6
z hh

C z C z C B e d d g x
h h

− + + + 




, 

(57) 

where 
1
( )g z  and 

2
( )g z  are unknown functions of x and z, respectively. Substituting Equations 

(56) and (57) into the third item of Equation (5) yields, 

+ + + − = + + +2 / 3 21 2
1 2 3 4 5 6 7

( ) ( )z h dg z dg x
k z k z k e k k x k x k x

dz dx
, (58) 

where 
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 



     

 





= − +

= − + + − +

= − − −

= − − +

=

2 2
0 0 0 0 0

1 13 8 8 33 312 2 0

33

2
0 0 0 0 0 0 0 0 0 I 0 0 0

2 13 8 13 7 44 8 8 31 15 4 8 33 312 0 0

33 33

I 0 0 I 0 0 0 0

3 3 31 15 15 15 15 44 6

I 0 0 0 0 0 0

4 4 31 15 44 8 44 7

2
0

5 11 42

2 2

2 ( )

1

6

k s C C d d
h h

k s C s C s C C d d B C d d
h h hh h h

k B d d B d d s C

k B d d s C s C
h

k s C
h





 



   

 

 

−

= −

= + − − + − − −

+ − + + −

2
0 0 0 0

4 31 312 0

33

2 2
0 0 0 0 0

6 11 8 8 31 312 2 0

33

02
0 0 0 0 0 0 0 0 0 0 II I11

7 11 12 13 3 44 4 44 3 4 11 60 142 0 0

33 33

2
I 0 0 I 0 2 0 II 0 2 I

2 31 15 2 31 11 36 15 2 42

1

3 2

1 1

2 2

1
2 ( 2

2 ) ( ) ( ) (2

C d d
h

k s C C d d
h h

k s C s C s C s C C s C B
h h hh

B d d B d s C d B C
h h



























II 0 0 0

8 11 31 33
)s d d

h

. (59) 

By letting 

+ + + − = + + + =2 / 3 21 2
1 2 3 4 5 6 7

( ) ( )z h dg z dg x
k z k z k e k k x k x k x v

dz dx
, (60) 

where v  is an undetermined constant, we have 


= + + + −


 = − − − +


2 /1
1 2 3 4

3 22
5 6 7

( )

( )

z hdg z
k z k z k e k v

dz
dg x

k x k x k x v
dx

. (61) 

Integrating Equation (61), one has 






= + + + − +


 = − − − + +


3 2 /

1 1 2 3 4 0

4 3 2

2 5 6 7 0

1 1
( )

3 2
1 1 1

( )
4 3 2

z hh
g z k z k z k e k z vz u

g x k x k x k x vx w

, (62) 

where 
0
u  and 

0
w  are undetermined constants. The undetermined constants v , 

0
u , and 

0
w  may 

be determined by Equation (15) (please see Appendix A for details). Substituting Equation (62) into 

Equations (56) and (57), the final expression of the displacement components may be obtained. 

4. Results and Discussions 

In the governing equation, Equation (16), U and Φ are coupled with each other. By using 

M-PPM, Equation (16) is decoupled and simplified, as shown in the decomposed differential 

equations, i.e., Equation (19), Equations (26)–(28), and Equations (38)–(43). Thus, the perturbation 

solution of the governing equations can be easily obtained under boundary conditions. From 

Equations (52) and (54), it can be seen that there are only the first-order perturbation items in the 

electric field components (
x
E  and 

z
E ) and electric displacement components (

x
D  and 

z
D ), which 

are deduced from the first-order perturbation solutions of the electric potential function,  I

i
 

( = 1,2,3i ). While in the stress components (
x
, 

z
 and 

zx
), strain components ( 

x
, 

z
 and 

zx
), 

and displacement components (u and w), there are the zero-order and second-order perturbation 

items, which are deduced from the zero-order and second-order perturbation solutions of the Airy 

stress function, 0

0
U  and II

i
U  ( = 1,2,3,...,6i ). This phenomenon can be explained by Figure 2. 
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Figure 2 shows the relationship between the applied mechanical and electrical loads and the each 

order perturbation expressions of the Airy stress function and electric potential function.  

mechanical

loads (q, P, M )

electrical

loads (0)

U
0

0

¦ µ
0

0

U
I

i

¦ µ
I

i

U
II

i

¦ µ
II

i

(i = 1,2,3)

(i = 1,2,3)

(i = 1,2,3,...,6)

(i = 1,2,3,...,6)

 

Figure 2. Relationship between the applied loads and the each order perturbation expressions. 

From Figure 2, it may be seen that the mechanical loads (q, P, M) give rise to 0

0
U , 0

0
U  gives rise 

to  I

i
 ( = 1,2,3i ), and then  I

i
 ( = 1,2,3i ) gives rise to II

i
U  ( = 1,2,3,...,6i ), while 0

0
, I

i
U  

( = 1,2,3i ), and II

i
 ( = 1,2,3,...,6i ) have no effect on the stress, strain, displacement, and electric 

displacement components because the applied electrical loads are 0. Therefore, for the sake of 

simplification, Equations (17) and (18) may also be written as 

 = + +I 0 I 0 I 0

1 31 2 33 3 15
d d d  (63) 

and 

= + + + + + +0 II 0 2 II 0 2 II 0 2 II 0 0 II 0 0 II 0 0

0 1 31 2 33 3 15 4 31 33 5 31 15 6 33 15
( ) ( ) ( )U U U d U d U d U d d U d d U d d . (64) 

Next, based on the presented perturbation solution, let us consider a functionally graded 

piezoelectric cantilever beam with = 1l  m and = 0.2h  m subjected to transverse uniformly 

distributed loads = 1q  N/m2 to discuss some related issues. The elastic, piezoelectric, and dielectric 

constants at = 0z  are shown in Table 1 [37]. 

Table 1. Elastic, piezoelectric, and dielectric constants of the cantilever beam at = 0z . 

Elastic Constant 

(10−12 m2/N) 

Piezoelectric Constant 

(10−12 C/N) 

Dielectric Constant   

(10−8 F/m) 
0

11s     
0

13s     
0

33s     
0

44s  
0

31d      
0

33d      
0

15d  
0

11       
0

33  

12.4    −5.52   16.1    39.1 −135     300     525 1.301     1.151 

Figure 3 shows the variation of the stress components ( 
x

, 
z

 and 
zx

), the horizontal 

displacement (u), and the electric displacement components (
x
D  and 

z
D ) of the cantilever beam at 

= / 2x l with /z h , and the variation of the vertical deflection w at = 0z  with /x l , when α takes 

−2, −1, 1, and 2, respectively.  
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Figure 3. Variation of stresses, displacements, and electric displacements: (a) Variation of 
x

 with 

/z h  at = / 2x l ; (b) Variation of 
z

 with /z h  at = / 2x l ; (c) Variation of 
zx

 with /z h  at 

= / 2x l ; (d) Variation of u with /z h  at = / 2x l ; (e) Variation of w with /x l  at = 0z ; (f) 

Variation of x
D  with /z h  at = / 2x l ; (g) Variation of z

D  with /z h  at = / 2x l . 
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From Figure 3a,c,d it may be seen that,  = 0
x

, = 0u , and the maximum shear stress (i.e., 


maxzx

) take place at the same /z h  when   takes the same value, and this /z h  moves toward 

= −/ 0.5z h  with the increase of  . For  x , when   0  (or   0 ), the maximum compressive 

stress (or the maximum tensile stress) takes place at = −/ 0.5z h  (or =/ 0.5z h ), but the maximum 

tensile stress (or the maximum compressive stress) does not always take place at =/ 0.5z h  (or 

= −/ 0.5z h ), especially when the absolute value of α (i.e.,  ) is relatively large. In addition, the 

maximum absolute value of 
x
 (i.e., 

maxx
) and 

maxzx
 always take place at the side of  / 0z h  

(which means   and z are always contrary positive or negative signs since  0h ) and increase 

with the increase of  . It is easily seen from Figure 3b that 
z
 decreases with the increase of  . 

From Figure 3e, it may be seen that, when   0 , w decreases with the increase of  , while   0 , 

the regulation is contrary. Besides, the w when   0  is larger than the one when   0 . From 

Figure 3f,g, it may be seen that the absolute value of the maximum electric displacements (i.e., 

maxx
D  and 

zmax
D ) always takes place at the side of  / 0z h  (which means   and z are always 

identically positive or negative signs since  0h ), because the piezoelectric coefficient = 0 /z h

ij ij
d d e  

at the side of  / 0z h  is larger than the 
ij
d  at the side of  / 0z h . In addition, 

maxx
D  and 

zmax
D  also increase with the increase of  . 

5. Concluding Remarks 

In this study, by extending the traditional single-parameter and biparametric perturbation 

method to the multi-parameter perturbation method, we solved the problem of a functionally 

graded piezoelectric cantilever beam under the combined action of uniformly distributed loads, 

concentrated load, and bending moment. The following main conclusions can be drawn. 

(i) By selecting the piezoelectric coefficients as perturbation parameters, the multi-parameter 

perturbation method can be used to decouple and simplify the governing equations of the 

functionally graded piezoelectric cantilever beam. 

(ii) The expansion expression of the Airy stress function and electric potential function with 

respect to the perturbation parameters, i.e., Equations (17) and (18), can be simplified to Equations 

(63) and (64), when only mechanical loads are applied on the functionally graded piezoelectric 

cantilever beam.  

(iii) The 
maxx

 and 
maxzx

 always take place at the side of  / 0z h , and the 
maxx

D  and 

zmax
D  always take place at the side of  / 0z h , but they all increase with the increase of  . 

It should be pointed out that the analytical results found in the sample example should be 

validated by comparison with other numerical methods (e.g., Finite Element results) and/or 

experimental tests. Besides, the multi-parameter perturbation method may also be applicable to the 

problem of other functionally graded piezoelectric structures under electrical loads or 

electro-mechanical loads. In these cases, different boundary conditions concerning mechanical or 

electrical properties will inevitably introduce some new influences on the final results. Due to the 

fact that the analytical expressions obtained are expressed in terms of the piezoelectric coefficients, 

we can see clearly how the piezoelectric effects influence the behavior of the functionally graded 

piezoelectric structural element, which is exactly the benefit of parameter-based perturbation 

solutions. Therefore, as far as the practical application of the work is concerned, the results obtained 

in this study may serve as a theoretical guide for the design of smart structures with functionally 

graded piezoelectric structural elements.  

Finally, it should be noted here that in our multi-parameter perturbation method, the 

parameters are not dependent on each other, thus leading to a large number of independent 

perturbation equations. However, in the literature, there exists an alternative and much more 

efficient method [38–42], in which all the parameters (irrespective of their number) are perturbed 

together along straight lines in the parameter space, thus formally re-conducting the 
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multi-parameter case to that of a single parameter. At the end of the procedure, however, the 

parameters can be varied independently, since the exploring straight line can be freely chosen. It 

can be expected that this procedure can be used to solve this kind of problem effectively, and 

possibly be contrasted to the results obtained in our work. We will study these interesting issues in 

the future. 
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The solving process of undetermined constants v , 
0
u , and 

0
w : substituting Equations (49) and (50) 

into Equation (15), we have 
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From Equations (A20)–(A22), it can be obtained that 

= + +3 2

5 6 7
v k l k l k l , (A23) 
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