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Abstract: In this study, we obtained an electroelastic solution for functionally graded piezoelectric
circular plates under the action of combined mechanical loads which include the uniformly distributed
loads on the upper surface of the plate and the radial force and bending moment at the periphery of
the plate. All electroelastic materials parameters are assumed to vary according to the same gradient
function along the thickness direction. The influence of different functionally graded parameters on
the elastic displacement and elastic stress, as well as the electric displacement and electric potential,
was discussed by a numerical example. The solution presented in this study is not only applicable to
the case of combined loads, but also to the case of a single mechanical load. In addition, this solution
reflects the influence of the function gradient on the pure piezoelectric plate, which is helpful to the
refined analysis and optimization design of similar structures.

Keywords: functionally graded piezoelectric materials; circular plate; combined mechanical loads;
electroelastic solution

1. Introduction

The concept of functionally graded materials (FGMs) can be traced back to the eighties and
nineties of last century, and at that time, to eliminate interface problems and relieve thermal stress
concentrations in conventional laminated materials, a group of Japanese scientists suggested using
this material as thermal barrier materials for aerospace structural applications and fusion reactors [1].
Generally, FGMs are a kind of inhomogeneous composite from the point of macroscopic view that are
typically made from a mixture of two materials. This mixture can be obtained by gradually changing
the composition of the constituent materials (along the thickness direction of components in most
cases). The characteristics of FGMs vary gradually with the thickness direction within the structure,
which eliminates interface problems, and thus the stress distributions are smooth. Moreover, FGMs
possess many new properties that most traditional laminated materials do not have, which gives the
use of FGMs many advantages in aerospace, automotive, and biomedical applications. During the
past decades, FGMs have received a significant amount of attention from the academic community
and engineering field, and many scholars have carried out research on functionally graded materials
and structures [2–12].

On the other hand, piezoelectric materials have been used extensively in the design of sensors and
actuators due to their high efficiency in electromechanical conversion [13–15]. Piezoelectric sensors
are usually a laminated original made by ceramic slice. However, on this kind of laminated original,
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it is easy to cause stress concentration and promote the growth of interfacial microcracks which
limit the application and development of the piezoelectric original. In order to solve this problem,
functionally graded piezoelectric materials (FGPMs), whose material properties change continuously
in one direction, were developed [16–19]. Because there is no obvious interface in this material,
the damage caused by the stress concentration at the interface can be avoided.

With the increasing application of functionally graded piezoelectric materials, precise
characterization of their mechanical properties is urgently needed. A great deal of research has been
done on the mechanical properties of functionally graded piezoelectric materials. Dineva et al. [20]
evaluated the stress and electric field concentrations around a circular hole in a functionally graded
piezoelectric plane subjected to antiplane elastic SH-wave and in-plane, time-harmonic electric load.
Chen and Ding [21] investigated the bending problem of a simply supported rectangular plate by
introducing two displacement functions and stress functions and combining the state space method.
Zhang et al. [22] studied the behavior of four parallel nonsymmetric permeable cracks with different
lengths in a functionally graded piezoelectric material plane subjected to antiplane shear stress loading
by the Schmidt method. Wu et al. [23] analyzed the electromechanical coupling effect for functionally
graded piezoelectric plates. The coupled static analysis of thermal power and electricity for functionally
graded piezoelectric rectangular plates was carried out by Zhong and Shang [24,25]. Based on the
generalized Mindlin plate theory, Zhu et al. [26] derived the finite element equations of functionally
graded material plates by using the variation principle and investigated and calculated the deflection
and potential of a simply supported functionally graded piezoelectric square plate with linear gradient
under uniformly distributed loads. Lu et al. [27,28] studied the bending problem of a simply supported
functionally gradient piezoelectric plate and a cylindrical plate under mechanical load separately
by using the similar Stroh equation. The exact solution of free vibration of functionally graded
piezoelectric circular plates was studied by Zhang and Zhong [29]. Recently, Liu et al. [30] presented
transient thermal dynamic analysis of stationary cracks in functionally graded piezoelectric materials
based on the extended finite element method (X-FEM). Yu et al. [31] analyzed interfacial dynamic
impermeable cracks in dissimilar piezoelectric materials under coupled electromechanical loading
with the extended finite element method. Given that there are many studies in this field, here we do
not review them in detail.

Among the studies above, we note that since the materials parameters vary with a certain direction
and the electromechanical coupling effect exists, the obtainment of an analytical solution is relatively
difficult. The basic equations of functionally graded piezoelectric structures are generally expressed
in the form of partial differential equations except for the physical equations. The general practice is
still the so-called separation of variables. According to the specific problem, for example, a spatial
axisymmetric deformation problem in [32,33], the unknown stress or displacement function and the
unknown electrical potential function are expressed as a polynomial with respect to two variables, i.e.,
F(r, z) = ∑ rn fn(z), in which r is the radial coordinate and z is the transverse coordinate along the
thickness direction. By continuous substitution and integration, the partial differential equations are
transformed into ordinary differential equations, and the integral constants may be determined
by boundary conditions, thus obtaining the final solution. Besides, to the authors’ knowledge,
the existing work of functionally graded piezoelectric plates focused mostly on the problem of the
plate subjected to a single load, and the problem under the action of combined mechanical loads seems
to be relatively less.

In this study, we will analyze the axisymmetric deformation problem of functionally graded
piezoelectric circular plates under the action of combined mechanical loads (i.e., uniformly distributed
loads on the upper surface of the plate and radial force and bending moment at the periphery of the
plate). The basic equations and their electroelastic solution are presented in Section 2. In Section 3,
the influence of different functionally graded parameters on the elastic displacement and stress, as well
as the electric displacement and electric potential, are discussed by a numerical example. Section 4 is
the concluding remarks.
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2. Basic Equations and Their Electroelastic Solution

Considering a simply supported functionally graded piezoelectric circular plate with radius a
and thickness h, a uniformly distributed load q is applied on the upper surface of the plate and a radial
force N and a bending moment M are applied at the periphery of the plate, as shown in Figure 1.
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Figure 1. Sketch of a functionally graded piezoelectric circular plate.

Here, we introduce the cylindrical coordinate system (r, θ, z), where the upper and lower surfaces
of the plate are z = −h/2 and z = h/2, respectively, the center of the plate is r = 0, and the periphery
of the plate is r = a. The physical parameters of functionally graded piezoelectric materials are usually
the functions of coordinates, and in many practical situations, the physical parameters change only
in one direction. In this study, we assumed that the material parameters vary according to the same
function along the thickness direction,

cij = c0
ij f (z), eij = e0

ij f (z), λij = λ0
ij f (z), (1)

in which f (z) = eαz/h is the gradient function, α is the functional gradient parameter, cij, eij, λij
are elastic, piezoelectric, and dielectric parameters, respectively, and c0

ij, e0
ij, λ0

ij are the values of the
corresponding material parameters at z = 0. Supposing that the polarization direction is the forward
direction of the z axis, let us take a microelement in the circular plate, and from the balance of the force,
we can obtain

∂σr
∂r + σr−σθ

r + ∂τzr
∂z = 0

∂τrz
∂r + ∂σz

∂z + τrz
r = 0

}
, (2)

in which σr is the radial stress, σθ is the circumferential stress, σz is the stress in the thickness direction,
and τrz, τzr are the tangential stress. The equation of Maxwell electric displacement conservation is

∂Dr

∂r
+

∂Dz

∂z
+

Dr

r
= 0, (3)

in which Dr and Dz are the electric displacement components, respectively. In the cylindrical coordinate
system (r, θ, z), the physical equations of transversely isotropic, functionally graded piezoelectric
materials with the z axis being normal to the plane of isotropy read

σr = c11εr + c12εθ + c13εz − e31Ez

σθ = c12εr + c11εθ + c13εz − e31Ez

σz = c13εr + c13εθ + c33εz − e33Ez

τzr = c44γzr − e15Er

Dr = e15γzr + λ11Er

Dz = e31(εr + εθ) + e33εz + λ33Ez

, (4)
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in which εr, εθ , εz, γzr are strain components, and Er, Ez are the electric field in r and z directions,
respectively. The geometric equations are

εr =
∂ur
∂r , εθ = ur

r
εz =

∂uz
∂z , γrz =

∂uz
∂r + ∂ur

∂z

}
, (5)

in which ur, uz are the displacement in r and z directions, respectively. The relation of electric field and
electric potential is

Er = −
∂φ

∂r
, Ez = −

∂φ

∂z
, (6)

in which φ is the electric potential. Those equations shown above are the basic equations of the problem
presented here. The boundary conditions, which can be used for the solution of those basic equations,
are shown as follows:

σz = −q, τrz = 0, Dz = 0 at z = −h/2, (7a)

σz = 0, τrz = 0, Dz = 0 at z = h/2, (7b)

N(r) = N, M(r) = M, uz(r, 0) = 0,
∫ h/2

−h/2
Drdz = 0, τrz = 0 at r = a. (7c)

Suppose that [32,33]

ur(r, z) = ru1(z) + r3u3(z)
uz(r, z) = w0(z) + r2w2(z) + r4w4(z)
φ(r, z) = φ0(z) + r2φ2(z) + r4φ4(z)

, (8)

in which ui(z) and wi(z) are also looked at as the displacement functions, φi(z) is also looked at as the
potential functions, and they depend only on z. The detailed reason for the assumption of Equation (8)
is shown in the Appendix A, which includes some results from functionally graded piezoelectric
beams [34,35]. Substituting Equation (8) into Equation (5), it gives

εr = u1(z) + 3r2u3(z), εθ = u1(z) + r2u3(z)
εz = w′0(z) + r2w′2(z) + r4w′4(z), γrz = 2rw2(z) + 4r3w4(z) + ru′1(z) + r3u′3(z)

}
. (9)

Substituting Equations (6), (8), and (9) into Equation (4), we can obtain

σr = [e31φ′4(z) + c13w′4(z)]r
4 + [3c11u3(z) + c12u3(z) + c13w′2(z) + e31φ′2(z)]r

2

+ [c11u1(z) + c12u1(z) + c13w′0(z) + e31φ′0(z)]
σθ = [c13w′4(z) + e31φ′4(z)]r

4 + [3c12u3(z) + c11u3(z) + c13w′2(z) + e31φ′2(z)]r
2

+ [c12u1(z) + c11u1(z) + c13w′0(z) + e31φ′0(z)]
σz = [c33w′4(z) + e33φ′4(z)]r

4 + [4c13u3(z) + c33w′2(z) + e33φ′2(z)]r
2

+ [2c13u1(z) + c33w′0(z) + e33φ′0(z)]
τzr = [2c44w2(z) + c44u′1(z) + 2e15φ2(z)]r + [4c44w4(z) + c44u′3(z) + 4e15φ4(z)]r3

Dr = [2e15w2(z) + e15u′1(z)− 2λ11φ2(z)]r + [4e15w4(z) + e15u′3(z)− 4λ11φ4(z)]r3

Dz = [2e31u1(z) + e33w′0(z)− λ33φ′0(z)] + [4e31u3(z) + e33w′2(z)− λ33φ′2(z)]r
2

+ [e33w′4(z)− λ33φ′4(z)]r
4

(10)

Then, substituting Equation (10) into Equations (2) and (3), respectively, we can also obtain{
[8c11u3(z) + 2e31φ′2(z) + 2c13w′2(z)] + [2c44w2(z) + c44u′1(z) + 2e15φ2(z)],z

}
r

+
{
[4c13w′4(z) + 4e31φ′4(z)] + [4c44w4(z) + c44u′3(z) + 4e15φ4(z)],z

}
r3 = 0

, (11)
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{
[4c44w2(z) + 2c44u′1(z) + 4e15φ2(z)] + [2c13u1(z) + c33w′0(z) + e33φ′0(z)],z

}
+
{
[16c44w4(z) + 4c44u′3(z) + 16e15φ4(z)] + [4c13u3(z) + c33w′2(z) + e33φ′2(z)],z

}
r2

+[e33φ′4(z) + c33w′4(z)],zr4 = 0

, (12)

{
[4e15w2(z) + 2e15u′1(z)− 4λ11φ2(z)] + [2e31u1(z) + e33w′0(z)− λ33φ′0(z)],z

}
+
{
[16e15w4(z) + 4e15u′3(z)− 16λ11φ4(z)] + [4e31u3(z) + e33w′2(z)− λ33φ′2(z)],z

}
r2

+[e33w′4(z)− λ33φ′4(z)],zr4 = 0

. (13)

From Equations (11)–(13), we can obtain

[e33φ′4(z) + c33w′4(z)],z = 0, (14)

[e33w′4(z)− λ33φ′4(z)],z = 0, (15)

[4c13w′4(z) + 4e31φ′4(z)] + [4c44w4(z) + c44u′3(z) + 4e15φ4(z)],z = 0, (16)

[16c44w4(z) + 4c44u′3(z) + 16e15φ4(z)] + [4c13u3(z) + c33w′2(z) + e33φ′2(z)],z = 0, (17)

[16e15w4(z) + 4e15u′3(z)− 16λ11φ4(z)] + [4e31u3(z) + e33w′2(z)− λ33φ′2(z)],z = 0, (18)

[8c11u3(z) + 2e31φ′2(z) + 2c13w′2(z)] + [2c44w2(z) + c44u′1(z) + 2e15φ2(z)],z = 0, (19)

[4c44w2(z) + 2c44u′1(z) + 4e15φ2(z)] + [2c13u1(z) + c33w′0(z) + e33φ′0(z)],z = 0, (20)

[4e15w2(z) + 2e15u′1(z)− 4λ11φ2(z)] + [2e31u1(z) + e33w′0(z)− λ33φ′0(z)],z = 0. (21)

Substituting Equation (10) into Equation (7a,b), respectively, we can obtain

[c33w′4(z) + e33φ′4(z)] |z=±h/2 = 0
[e33w′4(z)− λ33φ′4(z)] |z=±h/2 = 0
[4c44w4(z) + c44u′3(z) + 4e15φ4(z)] |z=±h/2 = 0
[4c13u3(z) + c33w′2(z) + e33φ′2(z)] |z=±h/2 = 0
[4e31u3(z) + e33w′2(z)− λ33φ′2(z)] |z=±h/2 = 0
[2c44w2(z) + c44u′1(z) + 2e15φ2(z)] |z=±h/2 = 0
[2e31u1(z) + e33w′0(z)− λ33φ′0(z)] |z=±h/2 = 0
[2c13u1(z) + c33w′0(z) + e33φ′0(z)] |z=−h/2 = −q
[2c13u1(z) + c33w′0(z) + e33φ′0(z)] |z=h/2 = 0

(22)

We can obtain from the integration of Equations (14) and (15), respectively,

e33φ′4(z) + c33w′4(z) = b0, (23a)

e33w′4(z)− λ33φ′4(z) = b1. (23b)

Substituting Equation (23a,b) into the first and second ones of Equation (22), we can obtain

b0 = 0, b1 = 0. (24)

From Equations (23a,b) and (24), we can obtain

(e2
33 + λ33c33)w′4(z) = 0, (25a)

(e2
33 + λ33c33)φ

′
4(z) = 0. (25b)
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As we all know, (e2
33 + λ33c33) 6= 0, thus

w′4(z) = 0, (26a)

φ′4(z) = 0. (26b)

We can obtain from the integration of Equation (26a,b), respectively,

w4(z) = a0, (27a)

φ4(z) = a1, (27b)

in which, a0, a1 are integration constants. Substituting Equation (27a,b) into Equation (16), we can
obtain

[4c44a0 + c44u′3(z) + 4e15a1],z = 0. (28)

From the integration of Equation (28), one has

4c44a0 + c44u′3(z) + 4e15a1 = b2. (29)

Then, substituting Equation (29) into the third one of Equation (22), we can obtain

b2 = 0. (30)

Substituting Equation (30) into Equation (29) and integrating the two sides of Equation (29), it gives

u3(z) = −(4a0 + 4
e15

c44
a1)z + a2, (31)

in which a2 is an integration constant. Substituting Equations (27a,b) and (31) into Equations (17) and
(18), respectively, we can obtain

[4c13u3(z) + c33w′2(z) + e33φ′2(z)],z = 0, (32)

[4e31u3(z) + e33w′2(z)− λ33φ′2(z)],z = (16e15
e15

c44
+ 16λ11)a1. (33)

Integrating the two sides of Equations (32) and (33), we can obtain

4c13u3(z) + c33w′2(z) + e33φ′2(z) = b3, (34)

4e31u3(z) + e33w′2(z)− λ33φ′2(z) = (16
(e0

15)
2

c0
44

+ 16λ0
11)a1

∫ z

−h/2
f (z)dz + b4. (35)

Then, substituting Equations (34) and (35) into the fourth and fifth ones of Equation (22), we
can obtain

b3 = 0, b4 = 0, a1 = 0. (36)

Substituting Equation (36) into Equations (34) and (35), respectively, we can obtain

4c13u3(z) + c33w′2(z) + e33φ′2(z) = 0, (37)

4e31u3(z) + e33w′2(z)− λ33φ′2(z) = 0. (38)

From Equations (31), (37), and (38), we have

w′2(z) =
(4λ33c13 + 4e33e31)

(λ33c33 + e2
33)

(4a0z− a2), (39)
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φ′2(z) =
(4e33c13 − 4c33e31)

(λ33c33 + e2
33)

(4a0z− a2). (40)

Integrating the two sides of Equations (32) and (33), we can obtain

w2(z) =
(4λ33c13 + 4e33e31)

(λ33c33 + e2
33)

(2a0z2 − a2z) + a3, (41)

φ2(z) =
(4e33c13 − 4c33e31)

(λ33c33 + e2
33)

(2a0z2 − a2z) + a4, (42)

in which a3, a4 are integration constants. From Equations (31), (41), and (42), Equation (19) gives

[2c44w2(z) + c44u′1(z) + 2e15φ2(z)],z = (8c11λ33c33 + 8c11e2
33 + 8c33e2

31

−8e31e33c13 − 8λ33c2
13 − 8c13e33e31)

(4a0z−a2)

λ33c33+e2
33

. (43)

Integrating the two sides of Equation (43), we can obtain

[2c44w2(z) + c44u′1(z) + 2e15φ2(z)] = 4a0K0F1(z)− a2K0F0(z) + b5, (44)

in which K0 = 8 (c0
11λ0

33c0
33+c0

11e0
33e0

33+c0
33e0

31e0
31−e0

31e0
33c0

13−λ0
33c0

13c0
13−c0

13e0
33e0

31)

λ0
33c0

33+e0
33e0

33
, F0(z) =

∫ z
−h/2 f (z)dz, F1(z) =∫ z

−h/2 z f (z)dz. Substituting Equation (44) into the sixth one of Equation (22), we can obtain

b5 = 0, 4a0F1(h/2)− a2F0(h/2) = 0. (45)

From the second one of Equation (45), we can obtain

a2 = 4
F1(h/2)
F0(h/2)

a0. (46)

Substituting Equations (41) and (42) into Equation (44) and with the help of Equations (45) and
(46), we get

u′1(z) = 4a0
K0

c0
44

F1(z)
f (z)

− a2
K0

c0
44

F0(z)
f (z)

− K1(2a0z2 − a2z)− 2a3 − 2
e15

c44
a4, (47)

in which K1 = (8c44λ33c13+8c44e33e31+8e15e33c13−8e15c33e31)

c44(λ33c33+e2
33)

. Integrating the two sides of Equation (47), one

has

u1(z) = 4a0
K0

c0
44

H1(z)− a2
K0

c0
44

H0(z)−
2
3

K1a0z3 + K1a2
z2

2
− (2a3 + 2

e15

c44
a4)z + a5, (48)

in which H0(z) =
∫ z
−h/2

F0(z)
f (z) dz, H1(z) =

∫ z
−h/2

F1(z)
f (z) dz. Substituting Equations (41), (42), and (48) into

Equations (20) and (21), respectively, we can obtain

[2c13u1(z) + c33w′0(z) + e33φ′0(z)],z = 2a2K0F0(z)− 8a0K0F1(z), (49)

[2e31u1(z) + e33w′0(z)− λ33φ′0(z)],z = 2a2K0
e15
c44

F0(z)− 8a0K0
e15
c44

F1(z)
−(4e15

e15
c44

+ 4λ11)(8K2a0z2 − 4K2a2z− a4)
, (50)

in which K2 = c33e31−e33c13
λ33c33+e2

33
. Integrating the two sides of Equations (49) and (50), respectively, we get

[2c13u1(z) + c33w′0(z) + e33φ′0(z)] = 2a2K0G0(z)− 8a0K0G1(z) + b6, (51)
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[2e31u1(z) + e33w′0(z)− λ33φ′0(z)] = 2a2K0
e15
c44

G0(z)− 8a0K0
e15
c44

G1(z)
−(4e0

15
e15
c44

+ 4λ0
11)[8K2a0F2(z)− 4K2a2F1(z)− a4F0(z)] + b7

, (52)

in which G0(z) =
∫ z
−h/2 F0(z)dz, G1(z) =

∫ z
−h/2 F1(z)dz, F2(z) =

∫ z
−h/2 z2 f (z)dz. Substituting

Equations (51) and (52) into the seventh, eighth, and ninth ones of Equation (22), respectively, we
obtain the following

b7 = 0, (53)

a4 = K3a0, (54)

b6 = −q, (55)

a0 = K4q, (56)

in which

K3 = 8K2
F2(h/2)
F0(h/2)

− 16K2
F2

1 (h/2)
F2

0 (h/2)
− 2

e0
15K0G0(h/2)F1(h/2)

(e0
15e0

15 + c0
44λ0

11)F2
0 (h/2)

+ 2
e0

15K0G1(h/2)
(e0

15e0
15 + c0

44λ0
11)F0(h/2)

K4 =
F0(h/2)

[8F1(h/2)K0G0(h/2)− 8F0(h/2)K0G1(h/2)]

Substituting Equation (48) into Equations (51) and (52), respectively, we get

c33w′0(z) + e33φ′0(z) = 2a2K0G0(z)− 8a0K0G1(z)− q− 8c13a0
K0
c0

44
H1(z)

+2c13a2
K0
c0

44
H0(z) + 4

3 c13K1a0z3 − c13K1a2z2 + (4a3c13 + 4c13
e15
c44

a4)z− 2c13a5
, (57)

e33w′0(z)− λ33φ′0(z) = −(4e0
15

e15
c44

+ 4λ0
11)[8K2a0F2(z)− 4K2a2F1(z)− a4F0(z)]

+2a2K0
e15
c44

G0(z)− 8a0K0
e15
c44

G1(z)− 8e31a0
K0
c0

44
H1(z) + 2e31a2

K0
c0

44
H0(z)

+ 4
3 e31K1a0z3 − e31K1a2z2 + (4a3e31 + 4e31

e15
c44

a4)z− 2e31a5

, (58)

From Equations (57) and (58), we can obtain

w′0(z) = J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5 + J5(z)q, (59)

φ′0(z) = L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q, (60)

in which

J0(z) = 1
(λ0

33c0
33+e0

33e0
33)

[−8K0
G1(z)
f (z) (λ

0
33 + e0

33
e15
c44

)− 8(λ0
33c0

13 + e0
33e0

31)
K0
c0

44
H1(z)

+ 4
3 (λ

0
33c0

13 + e0
33e0

31)K1z3 − 32e0
33(e

0
15

e15
c44

+ λ0
11)K2

F2(z)
f (z) ]

,

J1(z) = 1
(λ0

33c0
33+e0

33e0
33)

[2(λ0
33 + e0

33
e15
c44

)K0
G0(z)
f (z) + 2(λ0

33c0
13 + e0

33e0
31)

K0
c0

44
H0(z)

−(λ0
33c0

13 + e0
33e0

31)K1z2 + 16e0
33(e

0
15

e15
c44

+ λ0
11)K2

F1(z)
f (z) ]

,

J2(z) = 4
(λ0

33c0
13 + e0

33e0
31)

(λ0
33c0

33 + e0
33e0

33)
z,

J3(z) =
1

(λ0
33c0

33 + e0
33e0

33)
[4(λ0

33c0
13 + e0

33e0
31)

e15

c44
z + 4e0

33(e
0
15

e15

c44
+ λ0

11)
F0(z)
f (z)

],

J4(z) = −2
(λ0

33c0
13 + e0

33e0
31)

(λ0
33c0

33 + e0
33e0

33)
,
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J5(z) = −
λ0

33

(λ0
33c0

33 + e0
33e0

33)

1
f (z)

,

L0(z) = 1
(e0

33e0
33+λ0

33c0
33)

[8(c0
33

e15
c44
− e0

33)K0
G1(z)
f (z) + 8(c0

33e0
31 − e0

33c0
13)

K0
c0

44
H1(z)

+ 4
3 (e

0
33c0

13 − c0
33e0

31)K1z3 + 32c0
33(e

0
15

e15
c44

+ λ0
11)K2

F2(z)
f (z) ]

,

L1(z) = 1
(e0

33e0
33+λ0

33c0
33)

[2(e0
33 − c0

33
e15
c44

)K0
G0(z)
f (z) + 2(e0

33c0
13 − c0

33e0
31)

K0
c0

44
H0(z)

+(c0
33e0

31 − e0
33c0

13)K1z2 − 16c0
33(e

0
15

e15
c44

+ λ0
11)K2

F1(z)
f (z) ]

,

L2(z) = 4
(e0

33c0
13 − c0

33e0
31)

(e0
33e0

33 + λ0
33c0

33)
z,

L3(z) =
1

(e0
33e0

33 + λ0
33c0

33)
[4(e0

33c0
13 − c0

33e0
31)

e15

c44
z− 4c0

33(e
0
15

e15

c44
+ λ0

11)
F0(z)
f (z)

],

L4(z) = 2
(c0

33e0
31 − e0

33c0
13)

(e0
33e0

33 + λ0
33c0

33)
,

L5(z) = −
e0

33

(e0
33e0

33 + λ0
33c0

33)

1
f (z)

.

Integrating the two sides of Equations (59) and (60), respectively, we can obtain

w0(z) = j0(z)a0 + j1(z)a2 + j2(z)a3 + j3(z)a4 + j4(z)a5 + j5(z)q + a6, (61)

φ0(z) = l0(z)a0 + l1(z)a2 + l2(z)a3 + l3(z)a4 + l4(z)a5 + l5(z)q + a7, (62)

in which ji(z) =
∫ z
−h/2 Ji(z)dz, li(z) =

∫ z
−h/2 Li(z)dz, (i = 0, 1, . . . , 5).

From the above process, it can be seen that there are 8 integration constants ai(i = 0, 1, . . . , 7) in
total, in which a0, a1, a2, a4 have been determined and a3, a5, a6, a7 can be determined by the boundary
conditions at r = a.

Substituting the displacement functions ui(z), wi(z), and the electric potential function φ(z) into
Equation (10), the expressions of elastic stress and electric displacement components of the circular
plate can be obtained

σr = (c11 + c12)[4a0
K0
c0

44
H1(z)− a2

K0
c0

44
H0(z)− 2

3 K1a0z3 + K1a2
z2

2 − (2a3 + 2 e15
c44

a4)z + a5]

+K5 f (z)(4a0z− a2)r2 + c13[J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5 + J5(z)q]
+e31[L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q]

, (63)

σθ = (c12 + c11)[4a0
K0
c0

44
H1(z)− a2

K0
c0

44
H0(z)− 2

3 K1a0z3 + K1a2
z2

2 − (2a3 + 2 e15
c44

a4)z + a5]

+K6 f (z)(4a0z− a2)r2 + c13[J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5 + J5(z)q]
+e31[L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q]

, (64)

σz = 2c13[4a0
K0
c0

44
H1(z)− a2

K0
c0

44
H0(z)− 2

3 K1a0z3 + K1a2
z2

2 − (2a3 + 2 e15
c44

a4)z + a5]

+c33[J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5 + J5(z)q]
+e33[L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q]

, (65)

τzr = [4a0K0F1(z)− a2K0F0(z)]r, (66)

Dr = [8 (c44λ11c33e31−c44λ11e33c13+e15e15c33e31−e15e15e33c13)

c44(λ33c33+e2
33)

(2a0z2 − a2z)

+4e15a0
K0
c0

44

F1(z)
f (z) − e15a2

K0
c0

44

F0(z)
f (z) − 2(λ11 + e15

e15
c44

)a4]r
, (67)
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Dz = 8e31a0
K0
c0

44
H1(z)− 2e31a2

K0
c0

44
H0(z)− 4

3 e31K1a0z3 + e31K1a2z2 − 4e31a3z

−4e31
e15
c44

a4z + 2e31a5 + e33[J0(z)a0 + J1(z)a2 + J2(z)a3 + J3(z)a4 + J4(z)a5

+J5(z)q]− λ33[L0(z)a0 + L1(z)a2 + L2(z)a3 + L3(z)a4 + L4(z)a5 + L5(z)q]

, (68)

in which

K5 =
(4c13λ33c13 + 4c13e33e31 + 4e31e33c13 − 4e31c33e31 − 3c11λ33c33 − 3c11e2

33 − c12λ33c33 − c12e2
33)

(λ33c33 + e2
33)

,

K6 =
(4c13λ33c13 + 4c13e33e31 + 4e31e33c13 − 4e31c33e31)

(λ33c33 + e2
33)

− (3c12 + c11).

The expressions of the radial force and bending moment are

N(r) =
∫ h/2

−h/2
σrdz, (69)

M(r) =
∫ h/2

−h/2
zσrdz, (70)

and the expressions of the elastic displacement and electric potential are

ur(r, z) = [4a0
K0
c0

44
H1(z)− a2

K0
c0

44
H0(z)− 2

3 K1a0z3 + K1a2
z2

2

−(2a3 + 2 e15
c44

a4)z + a5]r + (a2 − 4a0z)r3
, (71)

uz(r, z) = j0(z)a0 + j1(z)a2 + j2(z)a3 + j3(z)a4 + j4(z)a5 + j5(z)q + a6

+[ (4λ33c13+4e33e31)

(λ33c33+e2
33)

(2a0z2 − a2z) + a3]r2 + a0r4 , (72)

φ(r, z) = l0(z)a0 + l1(z)a2 + l2(z)a3 + l3(z)a4 + l4(z)a5 + l5(z)q + a7

+[ (4e33c13−4c33e31)

(λ33c33+e2
33)

(2a0z2 − a2z) + a4]r2 . (73)

From Equation (7c), we can obtain

N(a) =
∫ h/2

−h/2
σrdz = N, (74)

M(a) =
∫ h/2

−h/2
zσrdz = M. (75)

There contain only two undetermined constants, a3 and a5, thus, from Equations (74) and (75), a3

and a5 can be determined. Then, from Equation (7c), one has

uz(a, 0) = 0. (76)

With the help of determined a3 and a5, the undetermined constants a6 can also be determined by
Equation (76). Thus, we obtain the electroelastic solution of the axisymmetric deformation problem
of simply supported functionally graded piezoelectric circular plates under the action of combined
mechanical loads.

3. Comparisons and Discussions

3.1. Comparisions with Existing Result

Here, we use a numerical example to verify the results presented in this paper. Since there is
no electroelastic solution for functionally graded piezoelectric circular plates under the action of
combined mechanical loads, only the solution under a single load [32] is available, and we verify the
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correctness of the results presented in this paper according to the regression. That is, let the radial
force and bending moment in this study be zero; the circular plate is now subjected to uniformly
distributed loads only, thus the obtained result may be compared with the solution presented in [32]
(subjected to uniformly distributed loads only). For this purpose, we consider a simply supported
functionally graded piezoelectric circular plate with a = 1 m, h = 0.1 m and subjected to the action of
uniformly-distributed loads q = 1 KPa on the upper surface of the plate, in which N = 0 and M at
the periphery of the plate. We here use two solutions, the solution presented in this study (denoted
by I) and the solution presented in [32] (denoted by II), to conduct the numerical comparisons. In the
comparisons, the functional gradient parameter α takes 2 and the material constants at z are listed in
Table 1. The comparison results are shown in Figures 2–5, in which Figures 2 and 3 show the elastic
displacement and stress, respectively; Figures 4 and 5 show the electric displacement and the electric
potential, respectively. From Figures 2–5, it can be found that the solution presented in this study (I)
and the solution presented in the previous study (II) are very close to each other, which demonstrates
the validity of the results presented in this study.

Table 1. Material constants.

Property Constants

Elastic(109N/m2)
c0

11 = c0
22 = 74.1, c0

33 = 83.6, c0
12 = 45.2,

c0
13 = c0

23 = 39.3, c0
44 = c0

55 = 13.17, c0
66 = 14.45

Piezoelectric(C/m2) e0
31 = e0

32 = −0.16, e0
33 = 0.347, e0

15 = −0.138, e0
24 = 0

Dielectric(F/m) λ0
11 = λ0

22 = 8.25× 10−11, λ0
33 = 9.02× 10−11
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Figure 2. Variation of elastic displacements with coordinates z, where I denotes the solution presented
in this study; II denotes the solution presented in [32]. (a) z-direction displacement at the center of
plate uz(0, z); (b) radial displacement at the periphery of plate ur(1, z).
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3.2. Influences of Functionally Graded Parameters

Let us consider another numerical example of a simply supported functionally graded
piezoelectric circular plate with a = 1 m, h = 0.1 m and subjected to the action of uniformly distributed
loads q = 1 KPa on the upper surface of the plate and the action of the radial force N = 6 kN/m and
the bending moment M = 6 kN at the periphery of the plate, to investigate the influence of different
functionally graded parameters on the elastic displacement and elastic stress, as well as the electric
displacement and electric potential of the circular plate. Suppose the functional gradient parameter
α takes 0, 1, and 2, respectively. Besides, in the computation we still adopt the material constants at
z = 0 in Table 1.

Figures 6–9, show the variation of the elastic displacement and stress, as well as the electric
displacement and electric potential with the coordinate z. From Figures 6–9 it can be found that the
variation curves of all physical quantities of the functionally graded piezoelectric circular plate (α 6= 0)
are deviated from the uniform piezoelectric plate (α = 0), and the degree of deviation increases with
the increase of functional gradient parameter α, in which the change of uz, σz, Dr, Dz, φ are obvious, the
change of σr is relatively small, and ur has almost no change. For the functionally graded piezoelectric
circular plate, ur and σr change linearly along the thickness direction and uz, σz, Dr, Dz and φ change
nonlinearly along the thickness direction.
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Figure 9. Variation of electric potential at the periphery of plate φ(1, z) with coordinates z.

Figures 10–13 show the variation of the elastic displacement and stress, as well as the electric
displacement and electric potential with the coordinate r at z = h/4. From Figure 10, it can be found
that the elastic displacements change linearly along r direction, and they have almost no change with
the increases of functional gradient parameter α. From Figures 11–13, we can know that the variation
curves of the elastic stress, electric displacement, and electric potential of the functionally graded
piezoelectric circular plate (α 6= 0) are deviated from the uniform piezoelectric plate (α = 0) and the
degree of deviation increases with the increase of functional gradient parameter α, in which Dr and φ

increase from center to edge of the plate and σr decreases along the same direction while Dz and σz

remain unchanged from center to edge of the plate. In addition, σz, Dr, and Dz change almost linearly
along the r direction, and σr and φ change nonlinearly along the r direction. These characteristics can
be used as a reference for the analysis and design of functionally gradient piezoelectric plates.
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Figure 11. Variation of elastic stress with coordinates r at z = h/4. (a) z-direction stress σz(r, h/4) at
z = h/4; (b) radial stress σr(r, h/4) at z = h/4.
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Figure 12. Variation of electric displacement with coordinates r at z = h/4. (a) Electric displacement
Dz(r, h/4) at z = h/4; (b) electric displacement Dr(r, h/4) at z = h/4.
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electrical loads; in this case, the displacement function used for the solution needs to be modified to 
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4. Conclusions

In this study, the electroelastic solution of the axisymmetric deformation problem of functionally
graded piezoelectric circular plates under the action of combined mechanical loads was derived by
supposing the variable separation form of the displacement function and electrical potential function.
Assuming that all the electroelastic materials parameters vary according to the same gradient function
along the thickness direction, the electromechanical coupling effect of functionally graded piezoelectric
circular plates under the combined mechanical loads was analyzed.

This work may be regarded as a theoretical reference for the analysis of functionally graded
piezoelectric materials and structures. Specially, the solving method presented here can also be
conveniently applied to other cases under the action of a single mechanical load or under different
boundary conditions. Moreover, this work may be extended into the other problem under external
electrical loads; in this case, the displacement function used for the solution needs to be modified to
some extent. This work may also be extended to functionally graded beams and plates with different
properties in tension and compression [36,37]. Obviously, the introduction of different moduli in
tension and compression may bring some new issues, which will further complicate the solving of the
problem. We will carry out these interesting works in the future.
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Appendix A

Let us introduce two stress functions F(r, z) and ψ(r, z)

σr = F,zz + r−1ψ,r, σθ = F,zz + ψ,rr, σz = r−1(rF,r),r, τrz = −F,rz. (A1)

In this way, the Equation (2) is satisfied automatically. Then, suppose that the stress functions
have the following form [32]

F(r, z) =
n

∑
i=0

riFi(z), ψ(r, z) =
n

∑
i=0

riψi(z), (n = 0, 1, 2 . . .), (A2)
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in which Fi(z) and ψi(z) are undetermined functions. Substituting Equation (A2) into Equation (A1),
we can obtain

σz =
F1
r +

n
∑

i=0
(i + 2)2riFi+2, σr =

ψ1
r +

n
∑

i=0
ri[Fi,zz + (i + 2)ψi+2],

σθ =
n
∑

i=0
ri[Fi,zz + (i + 2)(i + 1)ψi+2], τrz = −

n
∑

i=0
(i + 1)riFi+1,z, (n = 0, 1, 2 . . .)

. (A3)

The stress components σz and σr are limited values at r = 0, thus we have

F1(z) = 0, ψ1(z) = 0. (A4)

From Equation (A4), we may infer that all the odd terms of r in Equation (A2) could be zero. From
Equations (4) and (6) we can know the electric potential ∂φ/∂z corresponds to the stresses σz, σθ , and
σr. So, we can see that all the odd terms of r in the expression of electric potential φ are also equal to
zero. Thus, the electric potential φ can be expressed as

φ(r, z) =
n

∑
i=0

riφi(z), (n = 0, 2, 4 . . .). (A5)

Moreover, the Equation (4) can be transformed into

εr = s11σr + s12σθ + s13σz + d31Ez

εθ = s12σr + s11σθ + s13σz + d31Ez

εz = s13σr + s13σθ + s33σz + d33Ez

, (A6)

in which sij are the flexibility coefficients and dij are the piezoelectric constants. Substituting Equations
(5), (6), and (A3) into (A6), we get

ur
r = s12

n
∑

i=0
ri[Fi,zz + (i + 2)ψi+2] + s11

n
∑

i=0
ri[Fi,zz + (i + 2)(i + 1)ψi+2]

+ s13
n
∑

i=0
(i + 2)2riFi+2 − d31

n
∑

i=0
ri ∂φi(z)

∂z , (n = 0, 2, 4 . . .)

∂uz
∂z = s13

n
∑

i=0
ri[Fi,zz + (i + 2)ψi+2] + s13

n
∑

i=0
ri[Fi,zz + (i + 2)(i + 1)ψi+2]

+ s33
n
∑

i=0
(i + 2)2riFi+2 − d33

n
∑

i=0
ri ∂φi(z)

∂z , (n = 0, 2, 4 . . .)

. (A7)

From Equation (A7), we can obtain

ur = s12[
n
∑

i=0
ri+1[Fi,zz + (i + 2)ψi+2]] + s11[

n
∑

i=0
ri+1[Fi,zz + (i + 2)(i + 1)ψi+2]]

+s13[
n
∑

i=0
(i + 2)2ri+1Fi+2]− d31

n
∑

i=0
ri+1 ∂φi(z)

∂z , (n = 0, 2, 4 . . .)

uz = s13[
n
∑

i=0
ri∫ z

0 [Fi,zz + (i + 2)ψi+2]dz] + s13[
n
∑

i=0
ri∫ z

0 [Fi,zz + (i + 2)(i + 1)ψi+2]dz]

+s33[
n
∑

i=0
(i + 2)2ri∫ z

0 Fi+2dz]− d33
n
∑

i=0
riφi(z), (n = 0, 2, 4 . . .)

. (A8)

From Equation (A8) we can see that all the even items of r in the expression of ur are zero and
all the odd items of r in the expression of uz are zero. Then, according to the boundary conditions
of simply supported circular plates, we can finally get the forms of the displacement and the electric
potential as follows (i.e., Equation (8); the more detailed derivation can be found in [32]):
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ur(r, z) = ru1(z) + r3u3(z)
uz(r, z) = w0(z) + r2w2(z) + r4w4(z)
φ(r, z) = φ0(z) + r2φ2(z) + r4φ4(z)

. (A9)

In addition, similar expressions for displacement and potential function may be found in the
analysis of functionally graded piezoelectric beams [34,35], in which the stress function U and the
potential functions Φ were expressed in the form

U(x, z) = x2

2 f (z) + x f1(z) + f2(z)
Φ(x, z) = x2 f3(z) + x f4(z) + f5(z)

}
(A10)

in which x represents the longitudinal direction of the beam (similar to the radial direction r in the
plate problem) and z stands for the thickness direction (similar to the transverse direction z in the
plate problem). From the similarities of two sets of expression of beams and plates, we may find some
consistencies in the analyses of beams and plates. For example, the derived analytical solutions both
satisfy exactly the boundary conditions on the upper and lower surfaces of beams and plates (main
boundary), while both satisfy approximately, in the Saint Venant sense, the end conditions for beams
and the circumferential boundary conditions for plates (local boundary).
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