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Abstract: A novel LiMn2O4-graphene flexible film is successfully prepared by facile vacuum filtration
technique. LiMn2O4 nanowires with diameters of 50–100 nm are distributed homogeneously on
graphene sheet matrix. Used as cathode in rechargeable hybrid aqueous batteries, the LiMn2O4-graphene
film exhibits enhanced electrochemical performance in comparison to LiMn2O4-graphene powder.
The LiMn2O4-graphene film shows stable 13.0 mAh g−1 discharge capacity after 200 cycles at 1.0 C,
benefitting from the presence of graphene with strong conductivity and large pore area in this
free-standing film. This synthetic strategy for a free-standing film can provide a new avenue for
other flexible materials and binder-free electrodes.

Keywords: LiMn2O4-graphene; flexible film; rechargeable hybrid aqueous batteries;
electrochemical performance

1. Introduction

The new generation of the electronic equipment, such as light wearable electronic devices and
electric vehicles with high energy density batteries, is accelerating the development of rechargeable
batteries [1,2]. The traditional rechargeable lithium-ion batteries with organic electrolyte are facing
fiercer and fiercer challenge due to their high cost and low safety [3,4]. Recently, aqueous rechargeable
lithium batteries have attracted increasing attention in large-scale energy storage systems due to their
lower toxicity, lower cost and better safety, thanks to water solutions instead of organic electrolytes [5].
Among these, the rechargeable hybrid aqueous battery (ReHAB) has been attracting increasing
attention [6].

The ReHAB is composed of a zinc metal anode and a traditional cathode (such as LiFePO4 and
LiMn2O4), in which the Zn anode undergoes the reversible redox reaction, while the LiFePO4 or
LiMn2O4 cathode, for instance, undergoes lithium intercalation/de-intercalation. The electrochemical
reactions can be written as follows.

Anode: xZn2+ + 2xe−
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batteries [1,2]. The traditional rechargeable lithium-ion batteries with organic electrolyte are facing 
fiercer and fiercer challenge due to their high cost and low safety [3,4]. Recently, aqueous 
rechargeable lithium batteries have attracted increasing attention in large-scale energy storage 
systems due to their lower toxicity, lower cost and better safety, thanks to water solutions instead of 
organic electrolytes [5]. Among these, the rechargeable hybrid aqueous battery (ReHAB) has been 
attracting increasing attention [6]. 

The ReHAB is composed of a zinc metal anode and a traditional cathode (such as LiFePO4 and 
LiMn2O4), in which the Zn anode undergoes the reversible redox reaction, while the LiFePO4 or 
LiMn2O4 cathode, for instance, undergoes lithium intercalation/de-intercalation. The electrochemical 
reactions can be written as follows. 

Anode: xZn2+ + 2xe− ⇄ xZn  

Cathode: 2LiMn2O4 ⇆ 2Li1−xMn2O4 + 2xLi+ + 2xe− (0 ≤ x ≤ 1)  

Recent reports have presented Zn/LiCl + ZnCl2/LiMn2O4, Zn/LiCH3COO + 
Zn(CH3COO)2/LiFePO4, and Zn/LiCH3COO + Zn(CH3COO)2/MnO2 ReHABs with different cathodes 
and electrolytes [7–9]. Limited by poor electronic conductivity, low lithium ion diffusion rate and 
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fiercer and fiercer challenge due to their high cost and low safety [3,4]. Recently, aqueous 
rechargeable lithium batteries have attracted increasing attention in large-scale energy storage 
systems due to their lower toxicity, lower cost and better safety, thanks to water solutions instead of 
organic electrolytes [5]. Among these, the rechargeable hybrid aqueous battery (ReHAB) has been 
attracting increasing attention [6]. 

The ReHAB is composed of a zinc metal anode and a traditional cathode (such as LiFePO4 and 
LiMn2O4), in which the Zn anode undergoes the reversible redox reaction, while the LiFePO4 or 
LiMn2O4 cathode, for instance, undergoes lithium intercalation/de-intercalation. The electrochemical 
reactions can be written as follows. 

Anode: xZn2+ + 2xe− ⇄ xZn  

Cathode: 2LiMn2O4 ⇆ 2Li1−xMn2O4 + 2xLi+ + 2xe− (0 ≤ x ≤ 1)  

Recent reports have presented Zn/LiCl + ZnCl2/LiMn2O4, Zn/LiCH3COO + 
Zn(CH3COO)2/LiFePO4, and Zn/LiCH3COO + Zn(CH3COO)2/MnO2 ReHABs with different cathodes 
and electrolytes [7–9]. Limited by poor electronic conductivity, low lithium ion diffusion rate and 

2Li1−xMn2O4 + 2xLi+ + 2xe− (0 ≤ x ≤ 1)

Recent reports have presented Zn/LiCl + ZnCl2/LiMn2O4, Zn/LiCH3COO + Zn(CH3COO)2/LiFePO4,
and Zn/LiCH3COO + Zn(CH3COO)2/MnO2 ReHABs with different cathodes and electrolytes [7–9].
Limited by poor electronic conductivity, low lithium ion diffusion rate and drastic volume change,
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the electrochemical properties of pristine LiFePO4 or LiMn2O4 cathodes often deteriorate drastically
with increasing of charge-discharge rates. To overcome these issues, one of the effective strategies is
anchoring the active LiFePO4 or LiMn2O4 particles into various porous carbon matrixes to enhance
the electrical conductivity and suppress the volume change during cycling [10–12].

Among various carbon-based materials, graphene or reduced graphene oxide is always intensively
investigated, due to the large specific surface area, extraordinary electronic transport property and high
electrochemical stability. Some work has discussed the positive effect on the electrochemical properties
of graphene-based LiFePO4 or LiMn2O4 composites [12–14]. It is worth noting that most of this work
is focused on powder graphene composites and their application in lithium rechargeable batteries
with organic electrolyte. Recently, research into flexible films as binder-free electrodes for rechargeable
batteries has developed rapidly to power new applications, such as light and soft wearable electronic
devices [15,16]. Compared to carbon nanotubes and other carbon-based materials, it is most convenient
to make graphene into flexible film because of its layered structure [17]. However, few works have
discussed graphene-based flexible film electrodes for rechargeable hybrid aqueous batteries.

Herein, a free-standing LiMn2O4-graphene flexible film is designed and prepared by a facile
vacuum filtration method, and its electrochemical performance is investigated for the first time in
ReHAB. Compared to the LiMn2O4-graphene powder prepared by simple physical mixing and the
slurry casting technique, the LiMn2O4-graphene film exhibits an amazingly stable cycling ability and
enhanced rate performance.

2. Materials and Methods

2.1. Materials Preparation

Graphene oxide (GO) was synthesized by natural flake graphite according to previous work [18].
LiMn2O4 powder was prepared by the following process. 0.095 g KMnO4 was dissolved in 25 mL
deionized (DI) water and underwent ultrasonic radiation for 0.5 h to form the first solution. The second
solution was arranged by dissolving 0.220 Mn(CH3COO)2·4H2O in 25 mL DI water. The mixture of
the two solutions was transferred and sealed in a 60 mL Teflon autoclave for 20 h at 160 ◦C. After the
hydrothermal reaction, black MnO2 powder was collected, followed by centrifugation, washing with
ethanol and DI water, and drying in vacuum. The prepared MnO2 and LiOH·H2O powders with a
molar ratio of 2:1 were ground with ethanol for 1 h. After air solid-state reaction at 400 ◦C for 8 h and
750 ◦C for 10 h, the expected LiMn2O4 powder (LMO) was prepared.

The flexible LiMn2O4-graphene film was manufactured by an ordinary vacuum filtration method
followed by a thermal reduction process. Typically, 30 mg GO was dispersed in 10 mL deionized
water and underwent ultrasonic operation for 2 h to a uniform brown GO suspension. 20 mg LiMn2O4

powder was secondly dispersed into the GO suspension to undergo ultrasonic treatment for 2 h.
The suspension was then filtered through a filter membrane under vacuum. The flexible film
was peeled off carefully from the membrane after washing, drying and immersing in acetone for
15 min. After being heat treated in air at 220 ◦C for 2 h to reduce GO into graphene (GN), the final
flexible LiMn2O4-graphene film was obtained, labeled as LMO/GN-F. The preparation procedure and
photos of the flexible film are shown in Figure 1. For comparison, the LiMn2O4-graphene powder
(LMO/GN-P) was prepared by simple physical ball-milling.
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Figure 1. Schematic for the preparation process of the LiMn2O4-graphene film.

2.2. Material Characterization

The crystalline phases of the as-prepared samples were determined by X-ray powder diffraction
(XRD, D8 ADVANCE, Bruker, Billerica, MA, USA) equipped with Cu Kα radiation (λ = 0.15418 nm) at
a scanning rate of 0.02◦ s−1 in 10~70◦. The content of LiMn2O4 in the LiMn2O4-graphene powder and
the LiMn2O4-graphene film were confirmed by thermoanalyzer (DSC–TGA; SDT Q600, TA Company,
Boston, MA, USA) with air flow from room temperature to 600 ◦C at 10 ◦C min−1. To determine the
pore volumes and specific surface areas of the prepared films, Brunauere Emmette Teller (BET) and
Barrette Joynere Halenda (BJH) methods were carried out using nitrogen adsorption. The surface
morphologies of the samples were examined by field emission scanning electron microscopy (SEM,
Quanta FEG-400) and transmission electron microscopy (TEM, FEI-Tecnai G2-F20 S-TWIN) techniques.

2.3. Electrochemical Measurements

The free-standing LMO/GN-F electrodes were prepared by cutting the flexible LMO/GN film
into 10 mm circles directly. The compared LMO/GN-P electrodes were prepared by brushing the
n-methyl-2-pyrrolidinone slurry containing LMO/GN powder, acetylene black, and polyvinylidene
fluoride (80:10:10 wt %) on 10 mm stainless steel foil, followed by vacuum drying at 110 ◦C for one
night. The stainless steel foil was pressed at 10 MPa to achieve superior contact between the active
material and the current collector. The CR2025 coin cells were assembled using Zn metal as anode,
0.5 M LiCH3COO and 0.5 M Zn(CH3COO)2 aqueous solution as electrolyte, absorbent glass mat wet
as separator, and the LMO/GN-F or LMO/GN-P electrode as cathode.

The cyclic voltammetry (CV) was carried out on a CHI 660D electrochemical workstation at
a scan rate of 0.15 mV s−1 in the potential range of 1.35–2.15 V vs. Zn/Zn2+. The galvanostatic
charge-discharge tests were arranged on a LAND battery program-controlled tester in a cut-off
potential window of 1.45–2.05 V. Electrochemical impedance spectroscopy (EIS) was performed by
using the CHI 660D electrochemical workstation with a frequency range from 0.01 to 100 kHz.

3. Results and Discussion

Figure 2a shows the X-ray diffraction (XRD) patterns of the as-prepared samples. The XRD
patterns of GO displays only one obvious peak centered at around 11.5◦, which can be attributed to
the (002) reflection of graphene oxide. The XRD patterns of GN display one obvious peak centered
at around 25.6◦ and one weak peak at around 43.6◦, which can be attributed to the (002) and (100)
reflections of graphene, respectively [19]. The XRD pattern of LMO used in our experiment shows the
typical reflection pattern of cubic spinel LiMn2O4 with a space group of Fd3m [20]. The XRD pattern of
LMO/GN-F exhibits the characteristic features of spinel LiMn2O4 and a broad typical peak of graphene
at around 25.6◦, indicating that there are no phase transformations for LMO in the LMO/GN film.
No detectable peak at around 11.5◦ is observed, indicating that graphene oxide is reduced completely
to graphene during the experiment process. The XRD pattern of LMO/GN-P exhibits a very similar
shape with the XRD pattern of LMO/GN-F, indicating that the LiMn2O4-graphene composite can
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be made successfully by the physical ball-milling technique. The LMO contents in the LMO/GN
film and as-prepared LMO/GN powder are estimated by TGA under air atmosphere with a heating
rate of 10 ◦C min−1. Both LMO/GN-F and LMO/GN-P TGA curves in Figure 2b show only one
drastic weight loss from around 300 ◦C to 450 ◦C. From 450 ◦C upon 600 ◦C, the two TGA curves
remain approximately unchanged. The results indicate that the carbon component in LMO/GN-F
and LMO/GN-P is completely burned in air flow [21,22]. The two TGA curves remain unchanged
from 450 ◦C to 600 ◦C, showing that the LMO in the two samples has no phase transformations during
the heat treatment. The LMO/GN-F and LMO/GN-P exhibit around 44.2% and 48.5% LMO content,
respectively. The similar amounts of LMO content in the different samples can eliminate the influence
of different content on electrochemical performance.
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Figure 2. XRD patterns of samples (a), and thermogravimetric curves of LiMn2O4-graphene film and
LiMn2O4-graphene powder (b).

The morphology of the synthesized LMO, GN film and LMO/GN film are measured by SEM
(Figure 3). The LMO nanowires are 5~10 µm in length (Figure 3a). There is a slight agglomeration
among LMO nanowires. The pristine GN film has curved and wrinkled surface morphology (Figure 3b).
The LMO/GN film has a similar wrinkled surface to GN film, except that LMO nanowires are
homogeneously distributed in the surface (Figure 3c). The thickness of the LMO/GN film is about
20 µm (Figure 3d). The fracture edge of this film displays layer-by-layer stacking of graphene
sheets. To further determine the size of LMO nanowires and their distribution in the LMO/GN
film, the samples are characterized by TEM. The pristine LMO nanowires have 50–100 nm in diameter
(Figure 4a). The LMO nanowires are anchored uniformly in the LMO/GN film (Figure 4b) and exhibit
the clear lattice fringes of LMO surrounded by unclear graphene polycrystalline lattice (Figure 4c).
The selected area electron diffraction (SAED) pattern of the LMO (Figure 4d) is composed of spotted
rings indexed to the (111), (311), (400), (222) and (331) planes of cubic LiMn2O4 inside and out. The SEM,
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TEM images and the XRD patterns in Figure 2a clearly reveal that the LMO/GN film is prepared
successfully by our facile vacuum filtration method.
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Figure 4. TEM images of LiMn2O4 (a), gradually enlarged TEM images (b,c), and SAED pattern (d) of
the LiMn2O4-graphene film.

In order to determine the specific surface area and pore volumes of the GN film and LMO/GN
film, the N2 adsorption and desorption isotherms are measured and shown in Figure 5. The BET
specific surface area of the LMO/GN film is calculated to be 60.4 cm2 g-1, which is obviously higher
than that of the pristine GN film (39.6 cm2 g-1). This result can be attributed to the presence of LMO
nanowires on or in the surface of the GN support. The LMO nanowires intercalating into the GN
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nanosheets may not only result in more pores, but also prevent the aggregation of the GN nanosheets.
In the meantime, the adsorption of the GN nanosheets can prevent the aggregation of the LMO
nanowires. Therefore, the total pore volume of the LMO/GN film is 0.30 cm3 g-1, which is higher
than that of the pristine GN film (0.21 cm3 g-1). Combining the result with TEM measurements, the
wrinkled surface morphology, large pore volume and specific surface area of the LMO/GN film can
permit easy access for electrons and ions to the electrode/electrolyte and accommodate the volume
change of the LMO nanowires during the charge and discharge process [23].
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The galvanostatic discharge-charge and CV tests are important challenging and key aspects for
ReHAB applications. Aiming to examine the electrochemical performance of the LMO/GN-F electrode
sufficiently, the LMO/GN-F as cathode material for ReHAB is examined by CV and galvanostatic
discharge-charge tests, as shown in Figure 6. All the CV curves over three cycles exhibit two obvious
pairs of oxidation and reduction peaks between 1.6 and 2.0 V vs. Zn/Zn2+, corresponding to the
two-step lithium de/intercalation of the LMO/GN-F electrode (Figure 6a). In detail, the oxidation peak
at 1.81 V is corresponding to the deintercalation of lithium ions from the spinel LiMn2O4 structure
until half of the 8a sites are empty in LixMn2O4 (0.5 ≤ x ≤ 1). The subsequent oxidation peak at 1.94 V
corresponds to the continued deintercalation of lithium ions until all of the 8a sites are empty. At this
point, LiMn2O4 is fully oxidized to λ-MnO2. The anodic peak at 2.15 V vs. Zn/Zn2+ is assigned to
O2 evolution due to the water decomposition [6]. The reduction peak at 1.85 V is assigned to the
intercalation of lithium ions into each available tetrahedral site (8a) in λ-MnO2, until half of the sites
are filled in LixMn2O4 (0 < x < 0.5). The other reduction peak at 1.72 V is associated with the lithium
ions filling the remaining empty 8a sites to form LixMn2O4 (0.5 ≤ x ≤ 1) [24,25]. As clearly shown in
the inset in Figure 6a, the peak intensity weakens slightly with increase in the CV test cycle, which
could be due to the small attenuation of electrochemical activity. Figure 6b illustrates the first three
charge-discharge profiles of the LMO/GN-F electrode at 0.5 C. According to the CV data, the potential
of the charge-discharge process is restricted from 1.45 V to 2.05 V vs. Zn/Zn2+ to avoid the water
decomposition. As shown in Figure 6b, all three curves have two well-defined plateaus at about
1.76 V and 1.92 V vs. Zn/Zn2+ in the charge and discharge profiles corresponding to the two-step
lithium de/intercalation mechanism of LMO/GN-F electrode, which is confirmed by the CV data.
The specific discharge capacities of LMO/GN-F electrode in the first three cycles are 121.1 (262.3–141.2),
120.4 (524.4–404.0) and 119.7 (786.0–666.3) mAh g−1, respectively. The initial coulombic efficiency of
LMO/GN-F electrode is around 85.7%. The low coulombic efficiency may be caused by the activation
of the fresh electrode and the irreversible side reactions during the initial charge and discharge process.
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To further examine the effect of GN in improving the electrochemical performance sufficiently, the
electrodes containing LMO/GN-P or LMO/GN-F as cathodes for ReHABs are tested for C-rate and
cycle ability for comparison (Figure 7). As shown in Figure 7a, as the C-rate increases stepwise, the
specific discharge capacities of both LMO/GN-P and LMO/GN-F electrodes decrease obviously, which
is due to the diffusion-controlled kinetics of the lithium de/intercalation reactions [26]. Compared to
LMO/GN-P, the rate performance of the LMO/GN-F is significantly improved (Figure 7a). In detail,
for LMO/GN-F, the reversible discharge capacities of 122.5, 119.3, 112.1, 101.1 and 86.6 mAh g−1

are acquired at 0.5, 1.0, 2.0, 4.0 and 8.0 C, respectively. The returning of the C-rate back to 0.5 C can
recover the discharge capacity of 120.6 mAh g−1, indicating robustness of the LMO/GN flexible film.
The long-term cyclabilities of the two electrodes are shown in Figure 7b. Both discharge capacities and
capacity retentions of the LMO/GN-F electrode are obviously better than those of the LMO/GN-P
electrode. After 200 cycles at 1.0 C, the discharge capacities of LMO/GN-F and LMO/GN-P electrodes
are 113.0 mAh g−1 and 68.3 mAh g−1. The corresponding capacity retentions are 94.8% and 76.7%,
respectively. The coulombic efficiencies of both electrodes reached 99% after a few activated cycles.
All the data indicate that the LiMn2O4-graphene film exhibits an amazingly stable cycling ability and
enhanced rate performance.
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LiMn2O4-graphene film cathodes.

Benefitting from the vacuum filtration method, the LMO nanowires and graphene sheets in
LMO/GN-F contact each other more closely than in LMO/GN-P prepared by simple physical mixing.
The improvement of electrochemical performance is mainly attributed to the positive effects of
graphene in enhancing electronic conductivity [27], decreasing the LMO nanowires agglomeration
and handling the volume expansion of LMO during charge-discharge cycles. The positive influence
of the LMO/GN-F electrode on charge transfer behavior and conductivity of the system can be
proved by the EIS measurements (Figure 8). As shown in Figure 8, both impedance plots of the
LMO/GN-P and LMO/GN-F electrodes have the similar shape, which is composed of a semicircle in
the high-to-medium frequency and a straight line in the low frequency. The slope angle of the straight
line in the low-frequency region of the LMO/GN-F electrode is larger than that of the LMO/GN-P
electrode, demonstrating that the LMO/GN-F electrode has a smaller Warburg impedance (W),
resembling the solid-state diffusion of within the electrode [28,29]. The diameter of the semicircle in
the high- to medium-frequency region for LMO/GN-F electrode is about 15 Ω, which is significantly
smaller than that of the LMO/GN-P electrode (about 25 Ω), indicating that the LMO/GN-F electrode
has a lower charge-transfer resistance (Rct) at the electrode/electrolyte interface. The equivalent
circuits are inset in Figure 8. In addition to W and Rct, discussed above, RΩ is the ohmic resistance
representing the total resistance of the electrolyte, separator, and electrical contacts. CPE is the constant
phase-angle element, involving double layer capacitance of the active materials. The enhancement of
charge transfer and Li+ diffusion in combination with the lower aggregation of LiMn2O4 nanowires
and the better volume change handling could lead to the superior electrochemical performance of the
LMO/GN flexible film.
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4. Conclusions

A flexible LMO/GN hybrid film was successfully prepared through a facile vacuum filtration and
reduction process. Compared to the LMO/GN powder prepared by physical mixing, the designed
LMO/GN film exhibits significantly enhanced electrochemical performance as cathodes in ReHABs.
Benefited from the wrinkled surface and relatively large pore volume and specific surface area, the
LMO/GN film could deliver reversible discharge capacities of 122.5, 119.3, 112.1, 101.1 and 86.6 mAh
g−1 at 0.5, 1.0, 2.0, 4.0 and 8.0 C, respectively. Even after 200 charge-discharge cycles at 1.0 C, it could
hold a high discharge capacity of 113.0 mAh g−1. The improvement of the electrochemical performance
for LMO/GN film in ReHABs is mainly a result of the enhanced electronic conductivity and convenient
Li+ transportation provided by graphene sheets, together with the positive effects of graphene in
handling the aggregation and volume change of LMO nanowires.
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