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Abstract: Asphalt mixtures containing recycled construction aggregates (RCA) have the problem of
high bitumen absorption. This paper characterizes the effects of glass on the bitumen absorption
and volumetric properties of asphalt mixtures containing 25% and 50% RCA through laboratory
investigation. The materials used in the test program include C320 bitumen, RCA and recycled
glass. Three glass contents of 0%, 10%, and 20% in terms of the total weight of fine aggregates are
used in the mixture designs for preparing 100 mm diameter specimens containing 0%, 25% and
50% RCA, under 120 gyration cycles. Different types of tests including aggregate specification tests
and volumetric analysis tests were conducted on individual aggregates and asphalt mixtures in
accordance with Australian standards. The test results indicate that the glass waste can be a viable
material for improving the problem of high bitumen absorption of asphalt mixtures containing RCA.
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1. Introduction

Waste materials are generated increasingly with the continuous growth in the economy and
as consumption increases. The growing quantities of waste materials, lack of natural resources and
shortage of landfill spaces represent the importance of finding innovative ways of reusing and recycling
waste materials. Due to the large quantities of construction and demolition waste (CDW), recycling
and utilization of Recycled Construction Aggregates (RCA) obtained from CDW in construction
projects, including asphalt pavement construction, can be the most promising solution to this problem.
Utilization of RCA in asphalt mixtures is a sustainable technology due to the important role and high
portion of aggregates in asphalt mixtures. In addition, RCA has better characteristics for Flakiness Index
and Particle Shape compared to basalt [1]. Since these two characteristics substantially influence the
stability and strength of asphalt mixture [2], they can be considered as one of the strong points of RCA.

However, the major drawback of RCA is its high water absorption compared to conventional
aggregates which subsequently results in high bitumen absorption of asphalt mixtures containing
RCA. By combining materials with low absorption, such as glass, the high bitumen absorption of
asphalt mixtures containing RCA can be compensated. Using waste glass in RCA-contained asphalt
mixtures reduces not only bitumen absorption but also the adverse environmental impacts associated
with waste glass disposal due to the nonmetallic and inorganic nature of glass waste, which makes it
impossible to be disposed in incinerators or sanitary landfills. In addition, the demand reduction for
virgin aggregates is another advantage resulting in subsequent economic advantages.
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However, developing a suitable mix design containing RCA and glass is necessary before
employing this technology in asphalt mixture production. The purpose of the present work is
to study the benefit of glass addition on the bitumen absorption of asphalt mixtures containing
RCA in order to optimize the RCA-contained asphalt mix design. In that sense, as discussed in the
following sections, several tests were conducted on individual aggregates in order to obtain further
knowledge on the recycled aggregate properties as well as to compare them with the corresponding
properties of the virgin aggregate and the standards requirements. Based on the results of the aggregate
specification tests, different tests were conducted on asphalt mixtures containing various combinations
of natural and recycled aggregates in order to investigate their performance in asphalt mixture and
to characterize the effects of glass on the bitumen absorption and volumetric properties of asphalt
mixtures containing different percentages of RCA. The findings of the experimental work are given in
three main sections including the mechanical and physical properties of coarse aggregates (i.e., RCA
and basalt), the physical characteristics of fine aggregates (i.e., glass and basalt) and volumetric
performance of Hot Mix Asphalt (HMA) containing RCA in combination with glass and without glass.
Figure 1 illustrates the flowchart of discussion in this research work.
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2. Background

Today, many waste materials such as tyres, plastics, waste glass, etc. are used for construction of
different layers of pavements including the asphalt surface layer [3–14]. Utilization of solid wastes
in the asphalt layer not only reduces the adverse impacts of waste disposal but also the demand for
natural materials which will subsequently results in cost savings and economic advantages. Moreover,
using the recycled materials in the asphalt surface layer can contribute to more improvement of
engineering characteristics of the asphalt pavement materials, representing a value-added application
for solid wastes. However, the selection of waste materials used for road construction, particularly the
surface course, is of high importance as the incorporation of wastes should not affect the functional
and structural aspects of the pavements [15–17].

In addition, due to the importance of the aggregates in asphalt concrete, the studies on the
utilization of the recycled aggregates such as reclaimed asphalt pavement (RAP), recycled construction
aggregate (RCA), recycled glass, etc. have increased worldwide over the past two decades [18–20].
Among the recycled aggregates, the large amount of construction and demolition waste generation
worldwide justifies the idea of using RCA in new asphalt mixtures. Referring to available literature
e.g., [21–28], RCA has been used in the base course and subbase course of pavements over the last two
decades. However, few research studies [29–36] have reported the utilization of RCA in HMA.
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According to comprehensive aggregate specification tests on RCA, RCA cannot satisfy aggregate
requirements for asphalt mixtures for two properties of water absorption and wet/dry strength
variation [37]. Accordingly, the application of RCA without any virgin aggregates may result in asphalt
mixtures with less efficiency. Therefore, it is required to consider the combination of RCA with other
aggregates in certain percentages for the asphalt mixture design. Accordingly, some other materials
such as recycled glass can be considered to compensate RCA for some of its shortcomings, and this
research will seek for the optimum combination of these materials.

In Australia, about 850,000 tonnes of glass are consumed, of which only 350,000 tonnes are
recycled [38]. This means that approximately 500,000 tonnes of glass are disposed into the landfill
every year. The Australian example is indicative of the glass waste disposal throughout the world.

Using waste glass in combination with RCA in asphalt mixture provides substantial environmental
and economic advantages since glass waste is one of the most important and particularly troublesome
components of solid waste because it cannot be incinerated or degraded. Therefore, it is required to
consider a proper approach for its management. Recycling is the most common method for handling
glass wastes. In fact, glass can be recycled without any loss in the product quality. Recycling the glass
wastes will result in substantial savings of energy as well as mineral resources. In addition, the recycling
of glass helps to alleviate the increasing cost of landfill disposal [39]. However, the variations in glass
colour have encouraged the authorities to seek alternative approaches to glass waste management.

Many countries such as the United States, Japan, and several European countries have used glass
waste as a substitution for fine aggregate in asphalt mixtures [40]. However, glass as aggregate in
asphalt concrete should meet some technical specifications. Accordingly, many researchers [41–43]
have studied the utilization of glass as aggregate for asphalt mixtures. Arabani and Azarhoosh (2011)
studied the behaviour of asphalt mixtures containing glass (glassphalt) at different temperatures and
by using different sizes of glass at different rates. The results of this investigation revealed that adding
glass will improve the dynamic behaviour of and the stiffness of asphalt mixtures. In addition, asphalt
mixtures containing glass have less temperature sensitivity compared to conventional mixtures [44].
In another study by Jony et al. (2011), the effect of utilizing different fillers (including glass powder) at
different rates in asphalt mixtures was investigated. The results of this investigation indicated that
using glass powder as filler improves the Marshall Stability of asphalt mixtures in comparison with
the asphalt mixtures made with Portland cement or limestone powder as filler [45]. Pereira et al. (2010)
conducted research on the utilization of waste flat glass as filler in asphalt mixtures. This research
concluded that waste glass can be effectively used as filler in asphalt mixtures. In another field study,
two sections of road using two sizes of crushed glass were constructed in Minnesota [46]. Referring to
Marti et al. (2002), the results of a rutting test on these roads revealed that the incorporation of waste
glass with a size of 9.5 mm in asphalt mixtures provides asphalt mixtures with less dynamic stability
compared to asphalt mixtures containing waste glass with a maximum size of 4.75 mm [47].

Other research by Arnold et al. (2008) showed that the addition of up to 30% glass waste by mass of
aggregates will not significantly change the aggregates performance [48]. Shafabakhsh and Sajed (2014)
concluded that asphalt mixtures containing 10 to 15% crushed glass perform satisfactorily [49]. Finkle
and Ksaibati (2007) reported that waste glass can be used as an alternative to the virgin road base
materials. However, the glass content of up to 20% and maximum size of 12 mm was recommended
based on this research [50]. Wu et al. (2013) investigated the performance of asphalt mixtures
containing waste glass as fine aggregate. The maximum size of 4.75 mm and the optimum content
of 10% were recommended by this research [34]. In a report published by Australian Road Research
Board (ARRB) Group for the Packaging Stewardship Forum (PSF) of the Australian food and grocery
council (2012), the glass content of up to 20% was recommended for the utilization in asphalt mixtures
as fine aggregate. This report limits the utilization of waste glass to 30% by mass of the total fine
aggregate in asphalt mixture [51].

Referring to Su and Chen (2002), in a research program in Taiwan, the engineering properties of
the asphalt mixtures incorporating the crushed glass waste were studied through the laboratory and
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field tests. The result of this research revealed that the utilization of glass waste in asphalt mixtures
provides substantial economical and engineering advantages [52]. Pioneer Road Services carried out
the first glass mix trials in Australia in 2003. The roads were compared with conventional asphalt
roads for skid resistance properties. The investigation showed that the skid resistance of the asphalt
mixtures containing glass waste is similar to conventional asphalt mixtures [53]. Based on research by
Viswanathan (1996), the waste glass can be used in highway construction [54].

In general, glass is typically brittle and has very low impact resistance. This physical property
of glass has been used positively in crushing the waste glass in desirable sizes with low energy
consumption. Furthermore, glass shows high volumetric stability under high temperatures of up
to 700 ◦C. The thermal expansion coefficient and softening point of glass are in the range of 8.8 to
9.2 × 10−6 cm/◦C and 718 to 738 ◦C, respectively.

According to available literature, it can be concluded that the application of glass in asphalt
mixtures has both advantages and disadvantages, as summarized in Table 1, which introduces some
limits on the utilization of glass in asphalt mixture as follows:

• The use of recycled glass is recommended to be limited to 20% as the maximum replacement rate
in asphalt mixture

• In case of glass content of more than 15% of the total mixture, it is required to add 1 to 2%
antistripping agent to the asphalt mixture in order to avoid the stripping problems. Hydrated
lime is an effective antistripping agent which can be used in asphalt mixtures containing glass.

• Suitable particle size of glass as aggregates in asphalt mixture is 4.75 mm or smaller.

Table 1. Advantages and disadvantages of utilization of glass in asphalt mixture.

Advantage Description

Increased road safety Since the glass particles have low water absorption, the pavement surface gets
dry faster after rain

Easier to compact and cartage over
longer distance

Glass asphalt mixtures hold heat longer compared to conventional
asphalt mixtures

Improved night time road visibility Glass asphalt surfaces are more reflective in comparison with conventional
asphalt surfaces

Waste reduction Glass wastes are not disposed into the landfills offering environmental benefits
and saving costs

Improved workability The presence of long and flat particles will positively affect the workability of
asphalt mixtures

Commercial benefits Raw materials are replaced by glass resulting in savings on costs of materials

No need to change asphalt
paving process

The same construction method used for conventional asphalt mixtures can be
used for asphalt mixtures containing glass

Improved resistance to thermal cracking The small inflation coefficient of glass improves the thermal cracking resistance

Disadvantage Description

Bleeding problem Low bitumen absorption and density may cause a bleeding problem

Stripping problem The smooth surface of glass particles reduces the adhesion of asphalt film to the
crushed glass, which may cause stripping of the asphalt mixture.

Decreased transverse stability The angularity and friction angle of glass particles provides inadequate
transverse stability, particularly at braking or start-up

Sensitive to water damage
The high silica content in glass particles will make asphalt mixtures made with
glass have more moisture sensitivity depending on the glass particle size or the
glass content in asphalt mixture

Abrasion of tires The presence of long and flat particles (particularly in case of large glass
particles size) may result in abrasion of tires

Decreased skid resistance High amount of large size glass particles cause a decrease in skid resistance
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Through this information, it can be easily understood that the application of waste materials in
asphalt mixtures directly affects the behaviour of the asphalt mixtures, leading to both advantages
and disadvantages of overall asphalt mixture performance. Recognizing this fact, having knowledge
about the properties of individual components in asphalt mixtures and their combination will result in
selecting the best combination of aggregates for designing an optimum asphalt mixture.

3. Experimental Work

3.1. Materials

In the present study, RCA, glass and basalt have been used as aggregates and the original bitumen
studied in this research corresponds to C320, which is the most common binder for wearing courses
subjected to heavy loading and/or in hot climates. The typical characteristics of Bitumen C320 are
presented in Table 2.

Table 2. Characteristics of the original bitumen.

Characteristics Unit Methods Value

Softening point ◦C AS 2341.18 [55] 52
Penetration at 25 ◦C dmm AS 2341.12 [56] min 40

Flashpoint ◦C AS 2341.14 [57] min 250
Viscosity at 60 ◦C Pa·s AS 2341.2 [58] 320
Viscosity at 135 ◦C Pa·s AS 2341.2 [58] 0.5

Specific Gravity Kg/m3 AS 2341.7 [59] 1.03

The virgin aggregate (basalt) was obtained from Nepean Quarries which is a local quarry in
Sydney. RCA was obtained from the Revesby Recycling Centre located in Revesby, NSW, Australia.
This centre is a transfer station accepting residential and commercial wastes. Based on a statistical
study on RCA samples collected over one year, it was observed that there are different construction
wastes in RCA, which is mostly (about 64%) composed of sandstone or an agglomerate of sand and
cement paste. In addition, a matrix of portland cement concrete will vary between basalt (i.e., Basic
Igneous) and granite (i.e., Acidic Igneous) depending on the source of material and the age of the
building from which it came makes 17% of RCA. Also, ceramic, glass and brick make about 19% of
RCA. The result of the statistical study on RCA is reported in a separate paper.

Recycled glass used in this research was clear crushed glass made from recycled glass and passed
through 4.75 mm sieve size and was obtained from Schneppa Glass (Burwood, VIC, Australia).

The fillers considered in this research are hydrated lime and Portland cement. Using the correct
amount of hydrated lime, approximately 2% by weight, in mix designs will improve the durability
of mixtures and will minimize the problem of stripping, particularly in asphalt mixtures made with
partial glass substitution.

3.2. Laboratory Tests on Coarse Aggregates

As presented in the previous sections, in this research project, attempts are made to evaluate the
suitability of RCA as part of coarse aggregate in asphalt mixture. Since the basic properties of materials
are essential factors in any asphalt mixture design, the fundamental properties of RCA are investigated
through conducting different specification tests on different coarse aggregates used in this research
(i.e., RCA and basalt).

3.3. Laboratory Tests on Fine Aggregates

To achieve the goals of this research, the study of properties of recycled glass as part of fine
aggregate in combination with basalt has been considered as part of this research work. In light of this,
different tests have been conducted on recycled glass and basalt (passed 4.75 mm sieve size).
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3.4. Laboratory Tests on Asphalt Mixtures Containing Recycled Materials

3.4.1. Sample Preparation

In this study, the asphalt specimens were made from materials mixed in the Centre for
Infrastructure Engineering (CIE) laboratory at Western Sydney University. About 4 kg of materials
were used to produce three batches of laboratory asphalt mixtures for a finished specimen of diameter
100 ± 2 mm and height of 65 ± 5 mm, in accordance with AS2891.2.1 [60] and AS2891.2.2 [61] using an
IPC gyratory compactor.

For this experimental work, a group of specimens were prepared without recycled materials
(0%) as reference to specimens made with 25% and 50% RCA and 0% glass substitution. In addition,
in order to assess the effect of glass on the bitumen absorption of asphalt mixtures containing RCA,
two groups of specimens were also prepared with 25% and 50% RCA and glass at the rates of 10% and
20%. The glass substitution was made on each sieve from #4 down to #8. Therefore, 66 samples of the
following asphalt mixtures were prepared for this study, as indicated in Table 3.

Table 3. Bitumen and aggregate mix combination rates.

Mix Name Specimen
Name

Coarse Aggregate (%) Bitumen
Content (%)

Fine Aggregate (%)

RCA Basalt Glass Basalt

Mix I
B100-4.5 0 100 4.5 0 100
B100-5 0 100 5 0 100

B100-5.5 0 100 5.5 0 100

Mix II
B75-5 25 75 5 0 100

B75-5.5 25 75 5.5 0 100
B75-6 25 75 6 0 100

Mix III

B50-5 50 50 5 0 100
B50-5.5 50 50 5.5 0 100
B50-6 50 50 6 0 100

B50-6.5 50 50 6.5 0 100

Mix IV
B75-G10-5 25 75 5 10 90

B75-G10-5.5 25 75 5.5 10 90
B75-G10-6 25 75 6 10 90

Mix V
B75-G20-5 25 75 5 20 80

B75-G20-5.5 25 75 5.5 20 80
B75-G20-6 25 75 6 20 80

Mix VI
B50-G10-5 50 50 5 10 90

B50-G10-5.5 50 50 5.5 10 90
B50-G10-6 50 50 6 10 90

Mix VII
B50-G20-5 50 50 5 20 80

B50-G20-5.5 50 50 5.5 20 80
B50-G20-6 50 50 6 20 80

Figure 2 illustrates the design gradation curve used for the preparation of mixtures. It should
be noted that portland cement and hydrated lime were used in all asphalt mixtures as filler (passing
0.075 mm sieve).
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3.4.2. Evaluation of Volumetric Properties of Asphalt Mixtures

It is generally recognized that the volumetric composition of mixtures greatly influence their
performance. The volumetric properties evaluation of asphalt mixtures is the fundamental of asphalt
mix design, determining the performance of asphalt mixture. The asphalt mixture volumetric
properties including void content, voids filled with binder (VFB) and voids in mineral aggregate
(VMA) have been recognized as important parameters affecting the durability and performance
of asphalt pavements [62]. The minimum values are typically required for volumetric parameters
depending on the asphalt mixture type.

As mentioned previously, all asphalt mixes in this research are dense-graded asphalt (DGA) with
a nominal size of 14 (AC14), which are prepared in accordance with Test Method RMS T661 [63] and
RMS T662 [64] (120 cycles of compaction) which are identical to AS2891.2.1 [60] and AS2891.2.2 [61],
respectively. The requirements for volumetric parameters of this type of mixture are summarized in
Table 4. In addition, a summary of the tests carried out to study the mixtures properties is explained in
the following sections.

Table 4. Volumetric parameters requirements for DGA AC14 (AS2150-2005).

Parameter Range Typical Values Description

Air Void 3–6% 5% Mixtures prepared in accordance with RMS T662

VMA 13–20% ≥15 Mixtures prepared in accordance with RMS T662

VFB 65–80% - Mixtures prepared in accordance with RMS T662

Binder Film Index - ≥7.5 µm Determined in accordance with Test Method
Austroads AG:PT/T237 or AS 2891.8

Filler-Binder Ratio 0.8–1.2 - Mixtures prepared in accordance with RMS T662

Bulk Density Test

In this research, the bulk density of compacted samples is determined using the presaturation
procedure in accordance with AS/NZS 2891.9.2 [65]. This method is suitable for dense-graded mixtures
with internal air voids that are largely inaccessible to moisture resulting in low permeability.

Maximum Density Test

In this study, the maximum density of a loose sample of mix is determined using the methylated
spirits displacement procedure, in accordance with AS/NZS 2891.7.3 [66]. Based on this test method,
firstly, the density of methylated spirit (ρm) was determined as 0.789 t/m3.
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Voids and Volumetric Properties

The voids and volumetric properties of asphalt mixtures are determined, in this research,
in accordance with AS/NZS 2891.8 [67].

3.4.3. Evaluation of Resilient Modulus of Asphalt Mixtures

The stiffness of asphalt mixtures is a fundamental property and plays an important role in
determining the performance of asphalt pavement under traffic loading. The resilient modulus is
the measure of stiffness of asphalt mixtures. In addition, the resilient modulus of asphalt mixtures is
useful in determination of layer thickness through estimation of the relative strength coefficient and
calculation of Structural Number (SN).

In this study, resilient modulus test was considered for evaluation of the stiffness of some
specimens selected based on the results of a primary test to assess the effect of the RCA amount
as well as the asphalt mixture composition on resilient modulus. To this point, the asphalt mixtures
were prepared using different combinations but with the same gradation. Subsequently, the asphalt
mixtures were compacted with GyroPac at the same level of compaction to make cylindrical specimens
of 100 mm in diameter and 65 mm in height.

The resilient modulus, in this research, was determined through an indirect tensile strength test in
accordance with AS/NZS 2891.13.1 [68]. In this test, firstly, the diameter and height of specimens were
measured. The specimen was placed in the temperature-controlled cabinet at the temperature of 25 ◦C
to allow the temperature in the specimen to reach equilibrium prior to the test. Then, the machine and
Linear Variable Differential Transformers (LVDT) were calibrated to conduct the test.

During the test, repeated haversine loading is applied to the specimen at the frequency of 0.1 Hz
considering 0.1 s loading and 0.9 s rest period (Figure 3).
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Following the preconditioning, five load pulses were applied with a certain rise time to the peak
load at a certain pulse repetition period. The recovered horizontal deformation of the specimen after
application of each load pulse was recorded. The Poisson’s ratio is considered as 0.4 in accordance
with AS 2891.13.1 [68]. The resilient modulus (Mr) in MPa for each specimen for each load pulse
during the resilient modulus test were obtained from the following equation:
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Mr = P × (µ + 0.27)
H × hc

(1)

where P is peak load (N), µ is Poisson ratio, H is recovered horizontal deformation of the specimen
after load pulse (mm), and hc is the height of specimen (mm).

4. Results and Discussion

4.1. Coarse Aggregate Tests Analysis

The properties of RCA and basalt were investigated throughout a comprehensive experimental
work. The results of these tests on three samples for each aggregate type are summarized in Table 5.

Table 5. Test results for evaluation of coarse aggregate properties.

Test Test Method
Aggregate Typical Limit Based on

Australian StandardsRCA Basalt

Flakiness Index Test AS 1141.15 [69] 6.9 19.0 25% (max)
Particle Shape Test AS 1141.14 [70] 6.2 18.3 35% (max)
Water Absorption AS 1141.6.1 [71] 6.30 1.64 2% (max)
Particle Density AS 1141.6.1 [71] 2.370 2.640 -

Particle Density on Dry Basis AS 1141.6.1 [71] 2.212 2.530 -
Particle Density on SSD Basis AS 1141.6.1 [71] 2.351 2.571 -

Aggregate Crushing Value AS 1141.21 [72] 29.21 8.91 35% (max)
Weak Particles AS 1141.32 [73] 0.23 0.23 1% (max)

Wet/Dry Strength Test AS 1141.22 [74] 26.6 8.5 35% (max)
Wet Strength AS 1141.22 [74] 119.7 359.2 150 kN (min)
Dry Strength AS 1141.22 [74] 163.1 392.9 -

As can be observed in Table 5, all properties of RCA, except for water absorption and wet strength,
meet the Australian Standards’ requirements, and hence, further investigation on the feasibility of the
utilization of RCA as part of basalt in asphalt mixtures appears plausible.

Importantly, RCA displays a smaller value for two parameters of Flakiness Index and Particle
Shape in comparison with basalt. These two parameters significantly affect the final performance of
asphalt mixtures, and better values for these properties can be one of the strong points of RCA contributing
to the improvements in compaction, rutting resistance, and workability of asphalt mixtures.

In addition, as can be seen in Table 5, the results indicate that RCA has substantially higher
absorption in comparison to basalt, mainly due to the presence of great amounts of impurities and
cracks in RCA. The water absorption of RCA is also more than the typical limit specified in the
Australian Standard. Since the high water absorption of RCA may result in high bitumen absorption
of asphalt mixtures, the necessity of finding and studying potential materials to compensate for this
problem of RCA has led to the idea of utilization of glass waste in combination with RCA in asphalt
mixture design, which is the main goal of this paper.

4.2. Fine Aggregate Tests Analysis

As discussed in the previous sections, the recycled glass is used as part of fine aggregates in
this research to compensate for high absorption of RCA. Hence, some of the properties of glass and
basalt were studied through conducting a series of tests. These tests and their results analysis are
summarized in Table 6.

The data given in Table 4 clearly displays the low amount of water absorption of glass in
comparison with fine basalt and Australian standard limits, which makes it an adequate option
for combination with RCA.
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Table 6. Test results for evaluation of fine aggregate properties.

Test Test Method
Aggregate Typical Limit Based on

Australian StandardsGlass Basalt

Water Absorption AS 1141.5 [75] 0.10 2.35 3% (max)
Particle Density AS 1141.5 [75] 2.489 2.879 -

Particle Density on Dry Basis AS 1141.5 [75] 2.483 2.610 -
Particle Density on SSD Basis AS 1141.5 [75] 2.485 2.668 -

4.3. Volumetric Analysis of Asphalt Mixtures Containing RCA

The volumetric properties of the basalt-RCA asphalt mixtures were determined and then
compared with the standards specifications. According to Austroads (2014), the essential parameters
in the level 1 of mix design include air voids, voids in mineral aggregate (VMA), and voids filled with
binder (VFB), [76].

Table 7 presents the properties obtained for asphalt mixtures with different bitumen content and
aggregate combination at a selected level of gyrations (120 cycles).

Table 7. Volumetric properties of asphalt mixtures.

Specimen
Name

AV
(%)

Water
Absorption (%)

Bulk Density
(gr/cm3)

VMA
(%)

VFB
(%)

Binder Film
Index (µm)

Filler-Binder
Ratio

Height
(mm)

B100-4.5 7.2 0.46 2.398 16.4 59.6 6.9 1.2 69.0
B100-5 5.4 0.17 2.439 15.4 69.0 7.5 1.1 67.0

B100-5.5 4.1 0.11 2.441 15.8 78.6 8.7 1.0 66.3
B75-5 6.7 0.43 2.398 15.3 59.7 6.4 1.1 69.7

B75-5.5 5.4 0.23 2.410 15.3 68.7 7.4 1.0 67.6
B75-6 4.8 0.15 2.411 15.7 73.8 8.2 0.9 67.0
B50-5 7.3 0.56 2.355 15.3 55.3 5.9 1.1 73.6

B50-5.5 6.0 0.31 2.371 15.1 64.0 6.8 1.0 71.0
B50-6 5.4 0.24 2.373 15.5 69.1 7.5 0.9 68.9

B50-6.5 4.5 0.16 2.359 16.5 77.1 9.0 0.9 68.2

4.3.1. Optimum Bitumen Content Determination

To determine the optimum bitumen content for the asphalt mixture, the procedure indicated
by Australian standards, AGPT04B-14, was followed in this research. Three specimens at each
bitumen content (4.5%, 5%, 5.5%, 6%, and 6.5%) were tested for maximum density, bulk density,
and subsequently air voids and VMA calculations. The results of these tests and calculations are used
to determine the optimum bitumen content that provides air voids within the specified limits and
VMA near to the minimum value. According to the results obtained, Figure 4 illustrates the effect of
bitumen content and RCA content on air voids of asphalt mixtures.
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The air void content in the mix is a function of bitumen content, degree of compaction and VMA.
The air void percentage in the mixture affects mix stiffness, fatigue resistance, and durability. As shown
in this figure, air voids decrease with the bitumen content increase. Air voids of mixtures made with
RCA are substantially higher than the control mixtures because of porous cement paste attached to the
virgin aggregates and also porous structure of some aggregates in the RCA.

Generally, asphalt mixtures should have the lowest practical air voids in order to reduce the binder
ageing and the permeability and subsequent stripping problems. However, referring to Austroads
(2014), plastic flow and subsequent bleeding, flushing, shoving or permanent deformation of the
pavement may occur if the air voids are too low (less than about 2%). Accordingly, as can be observed
in Figure 4, some of the mixtures (i.e., B100-4.5, B75-5 and B50-5) cannot be acceptable in terms of
air voids requirements. As discussed previously, the optimum bitumen content can be obtained for
design air voids of 5%. Based on the results, the optimum bitumen content was found to be 5.1% for
reference samples (0% RCA), 5.8% for samples with 25% RCA and 6.2% for samples with 50% RCA, as
illustrated in Figure 4.

Furthermore, VMA is another important volumetric property which should be checked for
selection of the final bitumen content. VMA is the combination of air voids in the compacted mix and
the volume occupied by the effective binder which is total binder minus any binder absorbed into
the aggregate. VMA is a function of the gradation and the particle shape and surface texture of the
aggregate particles. VMA should be large enough to provide a sufficient amount of air voids in the
compacted mixture for ensuring the asphalt mixture stability while leaving enough space for the binder
to ensure the mixture durability. If VMA is too low, the binder would be insufficient for cohesion and
durability whereas too high VMA results in more costly asphalt mixtures due to increased binder
volume to satisfy the air voids requirements.

The variation of VMA with bitumen content for Mix I, Mix II and Mix III are shown in Figure 5.
As can be observed in Figure 5, VMA increases with bitumen content after a minimum point. The test
results on different samples showed that VMA of mixtures containing RCA is quite a bit lower than the
control samples which can be as a result of higher bitumen absorption of RCA resulting in the lower
amount of not-absorbed binder (effective binder). As illustrated in Figure 5, mixtures at optimum
bitumen content meet the requirements of 15% (minimum) for VMA.
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4.3.2. Determination of Bulk Density and Water Absorption

Bulk density is an important parameter used for volumetric properties evaluation of asphalt
mixtures. Bulk density of Mix I, Mix II and Mix III are shown in Figure 6. It can be seen that bulk
densities of mixtures containing RCA are considerably lower than bulk density of mixtures made with
virgin aggregates (Mix I), mainly because of the low density of cement paste and RCA particles.
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Furthermore, the experimental results show the water absorption increase of the mixtures by the
increase in amount of RCA at the same bitumen content due to porous structure of RCA, as expected
and shown in Figure 7.
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4.3.3. Determination of Voids Filled with Bitumen (VFB)

Another important volumetric parameter is voids filled with binder (VFB). VFB is defined as
the ratio of the effective binder (by volume) and the VMA. Mixtures with low VFB are dry and lack
durability, cohesion and fatigue resistance.

These mixtures may also be more permeable, whereas asphalt mixtures with too high VFB can
become unstable and susceptible to rutting. Figure 8 illustrates the variation of VFB with the RCA and
bitumen content. The VFB values obtained for asphalt mixtures containing RCA are relatively lower
compared to the control samples because of higher absorption of RCA leading to a less amount of
not-absorbed binder (effective binder).
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4.3.4. Determination of Binder Film Index (BFI)

Binder Film Index (BFI) is another parameter that can be considered at the volumetric design stage
as a guide to the incorporation of sufficient binder in the asphalt mixture to ensure adequate durability,
cohesion, resistance to the effects of moisture and fatigue resistance (Austroads, 2014). BFI is a function
of the surface area of filler and the aggregates as well as the effective bitumen content. According to
the results obtained, the binder film index of Mix I, Mix II and Mix III are shown in Figure 9. As can be
observed in Figure 9, BFI values for Mix II and Mix III are lower than BFI for control samples (Mix I) at
the same bitumen content, as more binder is absorbed by the mixtures incorporating RCA, resulting in
less aggregate particles coating due to the reduction of available binder for this purpose. As can be
expected, the BFI is increased with the increase in bitumen content.
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In addition, as can be seen in Figure 9, all samples at their optimum bitumen content meet the
minimum requirements of 7.5 µm for BFI.

4.4. Volumetric Analysis of Asphalt Mixtures Containing RCA and Glass

Since asphalt mixtures made with RCA have the problem of high absorption, as discussed in
previous sections, it is desired to optimize the absorption characteristics of these asphalt mixtures by
adding recycled glass, which is the primary objective of this research work.
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To this end, different asphalt mixtures containing RCA with three glass contents of 0%, 10% and
20% (by weight of fine aggregates) were prepared for evaluating the effect of the addition of glass to
RCA-basalt asphalt mixtures. For this purpose, different combinations of aggregates at different rates
of bitumen content of 5%, 5.5% and 6% were considered to make specimens with 100 mm diameter at
a required level of gyration (120 cycles) for the considered traffic category. Table 8 presents the results
of volumetric analysis for asphalt mixtures containing RCA and glass with different bitumen content.

Table 8. Volumetric properties of asphalt mixtures containing RCA and glass.

Specimen
Name

AV
(%)

Water
Absorption (%)

Bulk Density
(gr/cm3)

VMA
(%)

VFB
(%)

Binder Film
Index (µm)

Filler-Binder
Ratio

Height
(mm)

B75-G10-5 5.9 0.29 2.394 14.8 63.9 6.6 1.1 68.2
B75-G10-5.5 4.7 0.16 2.400 15.1 73.0 7.7 1.0 67.1
B75-G10-6 4.3 0.14 2.406 15.3 76.3 8.2 0.9 66.1
B75-G20-5 5.6 0.27 2.384 14.5 65.2 6.6 1.1 68.1

B75-G20-5.5 4.6 0.15 2.394 14.6 72.7 7.4 1.0 67.8
B75-G20-6 4.2 0.12 2.398 14.9 76.3 7.9 0.9 65.7
B50-G10-5 6.9 0.54 2.352 14.9 56.9 5.9 1.1 69.9

B50-G10-5.5 5.5 0.27 2.363 14.9 67.0 7.0 1.0 69.7
B50-G10-6 4.9 0.18 2.366 15.3 72.1 7.7 0.9 69.0
B50-G20-5 6.5 0.30 2.339 14.7 59.2 6.0 1.1 69.4

B50-G20-5.5 5.3 0.21 2.353 14.6 67.7 6.9 1.0 68.6
B50-G20-6 4.2 0.14 2.364 14.7 75.8 7.7 0.9 67.7

4.4.1. Determination of optimum bitumen content for asphalt mixtures with glass

Similar to the procedure explained in Section 4.3.1, the optimum bitumen content for the asphalt
mixtures made with RCA and glass were determined in accordance with Australian standards. To this
end and in order to compare the effect of glass addition to RCA-basalt mixtures, three specimens at
different bitumen contents of 5%, 5.5% and 6% made with 25% RCA and recycled glass at rates of 10%
and 20% were prepared and tested for maximum density, bulk density, and subsequently air voids and
VMA calculations.

The same bitumen content and glass content was also considered for preparation of samples
containing 50% RCA.

The effect of bitumen content and glass content on air voids of asphalt mixtures is illustrated in
Figures 10 and 11. As can be clearly observed in Figures 10 and 11, air voids of mixtures containing
glass are lower than the mixtures containing RCA without glass due to highly hydrophobic property
of glass. In addition, air voids decrease with the increase of bitumen content in all samples.
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4.4.1. Determination of optimum bitumen content for asphalt mixtures with glass 

Similar to the procedure explained in Section 4.3.1, the optimum bitumen content for the 
asphalt mixtures made with RCA and glass were determined in accordance with Australian 
standards. To this end and in order to compare the effect of glass addition to RCA-basalt mixtures, 
three specimens at different bitumen contents of 5%, 5.5% and 6% made with 25% RCA and 
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Figure 11. Effect of bitumen content and glass content on air voids of Mix III containing 50% RCA without
glass and Mix VI and Mix VII containing 50% RCA as coarse aggregate and glass as fine aggregate.

Importantly, the results of volumetric analysis and air void calculations based on the bulk density
test and maximum density test reveal that the optimum bitumen content of asphalt mixtures varies
with the amount of waste glass used, so that mixtures containing more glass require less bitumen,
as presented in Figures 10 and 11. The results of the obtained optimum bitumen content based on all
specimens studied in this research work are presented in Figure 12.
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Figure 12. Optimum bitumen content (OBC) of asphalt mixtures.

Furthermore, as discussed previously, VMA is another parameter required to be considered in
selecting the optimum bitumen content. The variation of VMA with bitumen content for mixtures
containing 25% and 50% RCA made with recycled glass or without glass are illustrated in Figures 13
and 14, respectively.

The test results on different samples showed that VMA of mixtures containing glass is quite a bit
lower than the samples made with RCA without glass. It can be due to the lower air voids and lower
particle density of combined mineral aggregates in samples made with RCA and glass. However, in all
group of Mixes, VMA increases with bitumen content after a minimum point.
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As illustrated in Figures 13 and 14, mixtures without glass and containing 10% glass meet the
requirements of 15% (minimum) for VMA at their optimum bitumen content. However, VMA for
other mixtures containing 20% glass is still in the acceptable range.

4.4.2. Determination of Bulk Density and Water Absorption for Asphalt Mixtures with Glass

Bulk density test was conducted on specimens containing glass and RCA to measure the bulk
density and water absorption of samples.

Based on the results obtained from the bulk density test on two groups of asphalt mixtures with
25% and 50% RCA in combination with different rates of recycled glass, it can be noticed that the
bulk density decreases with the increase in the glass content due to lower bulk density of glass in
comparison with basalt, as illustrated in Figures 15 and 16.

In addition, the data obtained from the bulk density test indicate that water absorption decreases
with respect to the amount of recycled glass, and asphalt mixtures containing glass appear to have
low water absorption because of the hydrophobic property of glass. Figure 17 illustrates the water
absorption of all different specimens.



Materials 2018, 11, 1053 17 of 25
Materials 2018, 11, x FOR PEER REVIEW  17 of 25 

 

 
Figure 15. Effect of bitumen content and glass content on bulk density of Mix II containing 25% RCA 
without glass and Mix IV and Mix V containing 25% RCA as coarse aggregate and glass as fine 
aggregate. 

 

Figure 16. Effect of bitumen content and glass content on bulk density of Mix III containing 50% RCA 
without glass and Mix VI and Mix VII containing 50% RCA as coarse aggregate and glass as fine 
aggregate. 

In addition, the data obtained from the bulk density test indicate that water absorption 
decreases with respect to the amount of recycled glass, and asphalt mixtures containing glass 
appear to have low water absorption because of the hydrophobic property of glass. Figure 17 
illustrates the water absorption of all different specimens.  

 
Figure 17. Comparison of water absorption in asphalt mixtures with different aggregate type. 

Figure 15. Effect of bitumen content and glass content on bulk density of Mix II containing 25% RCA
without glass and Mix IV and Mix V containing 25% RCA as coarse aggregate and glass as fine aggregate.

Materials 2018, 11, x FOR PEER REVIEW  17 of 25 

 

 
Figure 15. Effect of bitumen content and glass content on bulk density of Mix II containing 25% RCA 
without glass and Mix IV and Mix V containing 25% RCA as coarse aggregate and glass as fine 
aggregate. 

 

Figure 16. Effect of bitumen content and glass content on bulk density of Mix III containing 50% RCA 
without glass and Mix VI and Mix VII containing 50% RCA as coarse aggregate and glass as fine 
aggregate. 

In addition, the data obtained from the bulk density test indicate that water absorption 
decreases with respect to the amount of recycled glass, and asphalt mixtures containing glass 
appear to have low water absorption because of the hydrophobic property of glass. Figure 17 
illustrates the water absorption of all different specimens.  

 
Figure 17. Comparison of water absorption in asphalt mixtures with different aggregate type. 

Figure 16. Effect of bitumen content and glass content on bulk density of Mix III containing 50% RCA
without glass and Mix VI and Mix VII containing 50% RCA as coarse aggregate and glass as fine aggregate.

Materials 2018, 11, x FOR PEER REVIEW  17 of 25 

 

 
Figure 15. Effect of bitumen content and glass content on bulk density of Mix II containing 25% RCA 
without glass and Mix IV and Mix V containing 25% RCA as coarse aggregate and glass as fine 
aggregate. 

 

Figure 16. Effect of bitumen content and glass content on bulk density of Mix III containing 50% RCA 
without glass and Mix VI and Mix VII containing 50% RCA as coarse aggregate and glass as fine 
aggregate. 

In addition, the data obtained from the bulk density test indicate that water absorption 
decreases with respect to the amount of recycled glass, and asphalt mixtures containing glass 
appear to have low water absorption because of the hydrophobic property of glass. Figure 17 
illustrates the water absorption of all different specimens.  

 
Figure 17. Comparison of water absorption in asphalt mixtures with different aggregate type. Figure 17. Comparison of water absorption in asphalt mixtures with different aggregate type.



Materials 2018, 11, 1053 18 of 25

4.4.3. Determination of Voids Filled with Bitumen (VFB) for Asphalt Mixtures with Glass

Figures 18 and 19 illustrate the variation of VFB with the bitumen content and glass content.
As previously stated, VFB is one of the indicators of asphalt mixture performance in terms of durability,
fatigue resistance and susceptibility to rutting.
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Figure 18. Effect of bitumen content and glass content on VFB of Mix II containing 25% RCA without
glass and Mix IV and Mix V containing 25% RCA as coarse aggregate and glass as fine aggregate.
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As can be observed in Figures 18 and 19, the values obtained for asphalt mixtures made with
glass and RCA are higher than the samples containing RCA without glass due to a lower degree of
absorption resulting in increased effective binder.

4.4.4. Determination of Binder Film Index (BFI) for Asphalt Mixtures with Glass

As discussed previously, BFI is an indicator of adequate cohesion and the incorporation of
sufficient binder in the asphalt mixture.

According to the results obtained, the binder film index of different mixtures were investigated
in this research and the variation of BFI with glass and bitumen content in two groups of samples
containing 25% and 50% RCA are illustrated in Figures 20 and 21.
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Figure 20. Effect of bitumen content and glass content on BFI of Mix II containing 25% RCA without
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As can be observed in Figures 20 and 21, both samples containing glass have slightly higher
binder film thickness than samples without glass. However, the comparison of samples at their
optimum bitumen content shows that BFI for samples containing 20% glass is less than the minimum
requirements of 7.5 microns.

4.5. Volumetric Analysis of Asphalt Mixtures at Optimum Bitumen Content

The results of volumetric properties evaluation of asphalt mixtures with different combinations
of aggregates at their optimum content are presented in Table 9. As shown in Table 9, the results
of the tests on asphalt mixtures reveal that all mixtures made of RCA meet the standard limits for
volumetric properties. However, their high bitumen absorption necessitates the study of volumetric
properties of asphalt mixtures made with RCA in combination with recycled glass. To this point,
as can be observed in Table 9, all asphalt mixtures containing RCA and 10% recycled glass meet the
Australian Standards’ requirements and therefore are deemed appropriate for consideration as asphalt
mix design. In addition, results for samples with RCA and 50% of recycled glass, except for binder
film index and VMA (which are shown in bold in Table 9), meet the standard typical values. However,
VMA for these samples are within the Australian Standards limits. To this point, it can be concluded
that asphalt mixtures containing 25% RCA and 10% glass are the most comparable mixtures with
control samples.
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Table 9. Volumetric properties of asphalt mixtures at optimum bitumen content.

Specimen Name Optimum Bitumen
Content (%)

Bulk Density
(gr/cm3) VMA (%) VFB (%) Binder Film

Index (µm)
Filler-Binder

Ratio

B100 5.1 2.442 15.5 71.5 7.8 1.1
B75 5.8 2.411 15.6 72.0 7.9 0.9

B75-G10 5.4 2.398 15.0 70.5 7.5 1.0
B75-G20 5.3 2.390 14.5 69.5 7.1 1.0

B50 6.2 2.368 15.9 72.2 8.2 0.9
B50-G10 5.9 2.365 15.2 70.8 7.6 0.9
B50-G20 5.6 2.355 14.6 69.5 7.1 1.0

Standard Limit - - 13–20% 60–80% - 0.8–1.2
Typical Value - - 15% (min) 7.5 µm (min) -

In addition, for all samples at different rates of bitumen content, as presented in Tables 7 and 8,
it can be observed that increasing the bitumen content results in the specimen height reduction.
This effect can be due to the extra lubrication provided by the hot bitumen during compaction leading
to the better and quicker compaction for the same compactive effort.

4.6. Resilient Modulus of Asphalt Mixtures at Optimum Bitumen Content

It has been well established that predicting the performance of asphalt mixtures containing
recycled materials is very difficult given the inconsistency of materials and their complex interaction
with natural materials. Therefore, in this research, primary tests were conducted on different mixtures
in terms of materials combinations as well as the materials amount.

Based on the result of the primary tests, the most acceptable samples were selected for estimating
their resilient modulus through the indirect tensile test for three specimens selected based on the
results of primary tests, as presented in Table 10.

Table 10. Material combination for preparation of specimens of indirect tensile test.

Asphalt Mixture
Coarse Aggregate (%) Fine Aggregate (%) Optimum Bitumen

Content (OBC, %)Basalt RCA Basalt Glass

B100 100 0 100 0 5.1
B75 75 25 100 0 5.8

B75-G10 75 25 90 10 5.4

To conduct the resilient modulus test, a triaxial repeated loading machine capable of applying
50 kPa of loading was used considering repeated haversine loading. Using this machine, the test
sequence can be monitored through the user-friendly program and all test outputs are sent to a desktop
computer (Figure 22).
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The results of resilient modulus test conducted on three specimens from each asphalt mixture
type are presented in Table 11.

Table 11. Result of resilient modulus test in accordance with AS 2891.13.1 (2013).

Asphalt
Mixture

Ave. Sample
Height (mm)

Ave. Sample
Diameter (mm)

Peak
Load (N)

Recovered Horizontal
Strain (µε)

Mr
(MPa)

B100 64.95 99.925 2718.7 50.01 5613
B75 68.225 99.95 3252.7 51.52 6205

B75-G10 68.025 99.975 3302.6 49.08 6632

As presented in Table 11, the resilient modulus obtained for the sample containing 10% glass is
about 15% higher than the measured values for the conventional asphalt mixtures. These results show
that the utilization of waste glass and RCA in asphalt mixtures combine the advantages of producing a
better asphalt pavement as well as the waste management problem, which subsequently provides a
reduction in cost and resources demand.

It should be mentioned that the coefficient of variation is used as an indication to measure the
heterogeneity of test results. The results of calculation of standard deviation (SD) and coefficient
of variation (COV) for test results provided in Table 11, has shown that the coefficient of variation
and standard deviation for the data sets were in an acceptable range of 1.05 to 2.02 (for coefficient of
variation) and 0.023 to 0.134 (for standard deviation), revealing that the test results dispersion is low
and the tests are conducted consistently.

5. Further Research

Although many laboratory and field investigations have been already performed on the
performance of asphalt mixtures made with recycled materials such as RCA and recycled glass,
more studies are still required to deal with the challenges of this sustainable approach for further use.
In this regard, a set of recommendations are provided for researching the engineering properties and
other aspects of this technology, as follows:

The incorporation of waste glass in asphalt mixtures affects the bitumen absorption of mixtures,
and therefore can compensate for the high bitumen-absorbing RCA. This research investigated the
effect of glass on asphalt mixtures containing RCA considering three different percentages. However,
it is recommended to investigate the effect of glass size, colours of glass and the glass content in
asphalt mixtures.

Further investigation is required on the fatigue behaviour and also the ageing of asphalt mixtures
containing RCA and glass.

6. Conclusions

This research project was aimed at investigating the feasibility of using recycled glass for
compensation of high bitumen absorption of asphalt mixtures containing RCA. The test results on
aggregates and asphalt mixtures containing RCA with/without glass indicate that:

(1) RCA has lower flakiness index and misshapen particles compared to basalt implying that
asphalt mixtures with a certain amount of RCA can provide better workability, compaction
and rutting resistance.

(2) RCA has considerably higher water absorption and wet/dry strength variation in comparison
with the virgin aggregate. The results of tests conducted on RCA showed that RCA still meets the
standards requirements for aggregates in asphalt mixtures. However, the high water absorption
of RCA should be compensated.

(3) Asphalt mixtures containing RCA have a lower bulk density, VMA, VFB and BFI than control
mixes, whereas the air voids are higher for mixtures containing RCA. Lower bulk density of RCA
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will result in cost reduction, as asphalt jobs are mostly measured in cubic meter and materials are
purchased in tonnes.

(4) The results of tests on different asphalt mixtures containing different percentages of RCA indicated
that RCA increase results in an increase in the optimum bitumen content of the mixtures. Hence,
the selection of a proper combination of RCA and other aggregates is required for satisfying the
relevant standard requirements.

(5) Utilization of recycled glass with very low water absorption in asphalt mixtures with different
combinations of RCA were observed to reduce the bitumen absorption of these asphalt mixtures.

(6) The results of tests on different asphalt mixtures containing RCA and glass indicate that the
bitumen absorption decreases with glass increase in asphalt mixtures. In other words, asphalt
mixtures containing glass have a lower optimum bitumen content in comparison with asphalt
mixtures without glass. So that, as presented in Table 8, asphalt mixtures containing 75% RCA
with 10% and 20% glass have optimum bitumen content very close to the optimum content of
control samples (asphalt mixtures without any recycled materials).

(7) The results of tests on asphalt mixtures containing RCA and glass at different rate of bitumen
content reveals that air void, VMA and bulk density are lower than the corresponding values
for asphalt mixtures containing RCA without glass, whereas introducing glass in the asphalt
mixtures increases VFB in asphalt mixtures containing both RCA and glass than asphalt mixtures
containing only RCA.

(8) The results of volumetric properties of all asphalt mixtures at their optimum bitumen content,
as shown in Table 9, indicates that asphalt mixtures made by combining 25% RCA and 10%
glass is the most comparable mixture to control samples in terms of volumetric properties and
optimum bitumen content requirements.

(9) The results of the resilient modulus test on selected asphalt mixtures reveals that asphalt mixtures
made of 25% RCA and 10% glass have about 15% more stiffness than conventional mixtures.

(10) Since the resilient moduli of asphalt mixtures is an important parameter in characterization
of the entire structural performance of pavement affecting the layer thickness, the service life
and the overall cost of pavement construction, the result of the resilient modulus test indicates
that asphalt mixtures made of a combination of 25% RCA and 10% glass will result in the
improvement of the structural performance of asphalt pavements as well as the environmental
and economic advantages.
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