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Abstract: The present contribution deals with the experimental investigation of the time-dependent
behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete overlays,
which are placed on existing concrete structures as a strengthening measure, due to the shrinkage of
the young overlay concrete, which is restrained by the substrate concrete. Since the tensile stresses
are reduced by creep, creep in tension is investigated on sealed and unsealed specimens, loaded at
different concrete ages. The creep tests as well as the companion shrinkage tests are performed in
a climatic chamber at constant temperature and constant relative humidity. Since shrinkage depends
on the change of moisture content, the evolution of the mass water content is determined at the center
of each specimen by means of an electrolytic resistivity-based system. Together with the experimental
results for compressive creep from a previous study, a consistent set of time-dependent material data,
determined for the same composition of the concrete mixture and on identical specimens, is now
available. It consists of the hygral and mechanical properties, creep and shrinkage strains for both
sealed and drying conditions, the respective compliance functions, and the mass water contents in
sealed and unsealed, loaded and load-free specimens.
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1. Introduction

Strengthening measures of existing concrete structures by adding concrete overlays (Figure 1) are
becoming more and more important. The primary reasons are the age of existing concrete bridges [1,2],
the fast increase of the traffic volume during the last decades, particularly with respect to heavy
traffic [3,4], the increasing permissible gross vehicle weights [3,5] and the increasing numbers of
authorized heavy goods transports [3–5].

existing bridge deck

concrete overlay

Figure 1. Schematic illustration of strengthening an existing concrete bridge deck by adding
a concrete overlay.

The behavior of a concrete structure strengthened by an overlay is mainly characterized by overlay
volume changes, related restraint effects in both the overlay and substrate concrete as well as the
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relaxation of the restraint stresses due to the viscoelastic material behavior of concrete. During the
curing process, the early age overlay volume changes result from the exothermic process of cement
hydration and related temperature changes. The macroscopic volume reduction of concrete caused by
cement hydration after initial setting without moisture exchange between concrete and surrounding
environment is referred to as autogenous shrinkage [6]. At later ages, when the curing process
is completed, the overlay volume changes are mainly caused by a combination of autogenous shrinkage
and drying shrinkage. The latter refers to the volume reduction due to loss of moisture to the
environment [7]. The restraint of overlay shrinkage deformations by the substrate concrete causes
tensile stresses in the overlay at an early age, shear stresses at the interface, and compressive stresses
in the substrate concrete [8]. The tensile stresses in the overlay are most critical and may result in
extensive cracking, if the tensile strength is exceeded [8,9] or they remain as residual stresses in the
overlay [9]. In addition to cracking, debonding is another overlay failure mechanism leading to
local delamination and spalling [8]. In an intact concrete overlay tensile creep strains counteract the
shrinkage strains [9,10]. Furthermore, the compressive stresses in the adjacent substrate concrete result
in compressive creep strains, and, hence, they further reduce tensile stresses in the overlay [8]. Restraint
shrinkage of the overlay, resulting in tensile stresses, which may cause cracking, the simultaneously
acting compressive stresses in the substrate concrete together with the moisture distribution in both
the overlay and the substrate concrete are schematically depicted in Figure 2. For ensuring good
bond properties between the substrate and the overlay concrete, according to the Austrian guideline
RVS 15.02.34 [11] for the design and detailing of concrete overlays, the concrete surface of the existing
structure must be prepared by high-pressure water jetting. Furthermore, for preventing early drying
of the overlay, the substrate concrete must be wetted thoroughly before placing the concrete overlay.
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Figure 2. Schematic view of the moisture distribution through the depth of a strengthened structure
together with the restraint effects due to drying and the related stresses.

It is generally accepted that creep of concrete is composed of basic and drying creep. Basic creep
is defined as the creep of concrete occurring under sealed conditions, i.e., no moisture exchange with
the environment, whereas drying creep is defined as the creep component additionally developing to
basic creep in a loaded specimen exposed to drying [7]. Mechanisms of compressive creep of concrete
under sealed and drying conditions have extensively been investigated for many decades. Hence,
a large amount of test data is available in the open literature. For instance, a database comprising
1400 compressive creep tests was assembled under the guidance of Z. P. Bažant at Northwestern
University [12]. Contrary to the large body of literature on compressive creep, the literature regarding
creep tests in tension is rather scarce, amongst other reasons, because such tests are much more
complicated to perform [13–15]. According to Ranaivomanana et al. [16,17], previous research
on tensile creep has mainly been focused on the viscoelastic behavior of young concrete, i.e.,
when simultaneous physical and chemical changes of hardening concrete make the measurement and
interpretation of creep in tension difficult [13].

The conclusions drawn from comparative investigations of compressive and tensile creep are not
consistent [18–20]. For instance, several researchers reported that creep strains in tension are larger
than the ones in compression [21–25]. On the contrary, other researchers presented either opposite
results [16–18,26,27] or similar strain magnitudes for creep in tension and compression [19,20,26,28].
Moreover, the conclusions should be treated with caution, especially since the experimental procedures,
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like the sealing procedure, test conditions, load level and loading age, and the measurement systems
used for recording the very small arising displacements, are quite different [16,27]. For instance,
time-dependent deformations were detected by means of linear variable differential transformer
(LVDT) transducers [16,18–20,26,27], embedded acoustic or vibrated-wire strain gauges [23,24],
demountable mechanical strain gauges (e.g., Whittemore gauge) [21,22,25] or electrical resistance
strain gauges (quarter-bridge [16,17] or full-bridge arrangement [28,29]). High demands are required
for the measurement accuracy since the applied tensile stress is low with correspondingly small
strains [22]. Regarding sealing procedures and test conditions, basic creep in tension was determined
on specimens either sealed with several layers of adhesive aluminum foils [16,18,19,25–27,30] or kept
wet through immersion in water [23,24] or by means of water jackets [22].

Several authors [23,25,31–33] have tried to explain the mechanisms of tensile creep in terms of
a combination of the mechanisms involved in compressive creep, i.e., water seepage [34], viscous
shear [35], and microcracking [36]. Bažant and Chern [37] introduced the concept of stress-induced
shrinkage and concluded that some sort of both water seepage and viscous shear appear to be involved.
This conclusion follows from the idea of microdiffusion of water between gel pores and adjacent
capillary pores, and from the dependence of creep viscosity on the time rate of change of pore
humidity [37]. Altoubat and Lange [38] developed a technique to separate the different mechanisms
of tensile drying creep and showed that in plain concrete the Pickett effect has two sources,
namely stress-induced shrinkage and microcracking. The latter was successfully monitored by means
of the acoustic emission technique during creep tests in compression [18,39] and flexure [40].

Concerning the non-linearity of tensile creep, it is usually accepted that up to a certain stress/strength
ratio the creep strains are proportional to the applied stress, and, above that limit the creep
strains disproportionately increase as a result of progressing microcracking. The results of several
researchers [26,32,41,42] indicate linear viscoelastic behavior in tension up to a stress/strength ratio
of 60–78%, depending on the concrete composition and the test conditions, whereas in [22,33] the
proportionality of stress and tensile creep strain was only observed up to a stress/strength ratio of 50%.

Although several researchers investigated the influence of the moisture content on the creep
behavior of concrete, there is hardly any information in the literature about the evolution of the
moisture content in sealed or unsealed loaded specimens. Wyrzykowski and Lura [43,44] provided
test data on the evolution of internal relative humidity during basic creep tests in compression
and short-term loading tests in both compression and tension. Thereby, the relative humidity was
determined by means of miniature sensors, which were placed in precast holes at central parts of the
specimens and the remaining openings were sealed with paraffin film.

In summary, in concrete overlays (i) tensile stresses due to restrained autogenous and drying
shrinkage strains develop already at early ages; (ii) the evolution of drying shrinkage strains
depends on the decrease of the water content in the overlay due to hydration and migration of
moisture between the overlay and the substrate concrete and (iii) the tensile stresses are reduced by
tensile creep. In order to capture the described phenomena in the present experimental study on
small-scale specimens, the shrinkage and tensile creep behavior of overlay concrete is determined
on sealed and unsealed specimens, exposed to drying and/or loaded at concrete ages of 2, 7,
and 28 days. All specimens are equipped with multi-ring sensors, embedded in the cement paste
matrix, for measuring the evolution of the mass water content. Hence, the impact of the concrete
age at load application on the moisture content and the influence of the moisture exchange between
specimens and ambient air of lower ambient humidity on the shrinkage and tensile creep behavior of
overlay concrete are studied in detail.

The present study is connected to a recent study [45], in which the compressive creep behavior and
the respective evolution of the moisture content have been investigated for the same concrete mixture.
These results are available in the database assembled at Northwestern University [12]. The specimen
shape and size, the age of concrete at loading, the sealing technique, the measurement device as well
as the load level are the same as in the present study. Hence, any size effect due to different specimen



Materials 2018, 11, 993 4 of 17

sizes, as observed in [26], or any influence of different sealing techniques and measurement devices
can be excluded.

2. Experimental Procedures

2.1. Material Characterization and Specimen Preparation

The composition of the investigated concrete mixture is given in Table 1. It has been used for the
strengthening of an existing reinforced concrete bridge deck by adding a concrete overlay [46].

Table 1. Composition of the concrete mixture.

Components Quantity Unit

Cement CEM II A-M (S-L) 42.5N, Lafarge 375 kg/m3

Added water 165 kg/m3

Limestone sand 0/4 mm 810 kg/m3

Limestone aggregate 4/8 mm 183 kg/m3

Limestone aggregate 8/16 mm 457 kg/m3

Limestone aggregate 16/32 mm 367 kg/m3

Plasticizer Proplast 200 0.6 % a

Air-entraining agent Proair NVX 0.045 % a

a percent of cement mass.

The air-entraining agent based on synthetic tensides was used to meet the high demands concerning
the frost resistance of a concrete overlay (exposure class XF3 according to [47]). The lignosulfonate-
based plasticizer was added to the concrete mixture for increasing the flowability of concrete to ensure
good bond properties with the substrate concrete [47].

The mixing procedure was as follows: Coarse aggregates, sand, and cement were first mixed
dry in a rotary pan mixer for a period of 1 minute. Then the solution of air-entraining agent and
mixing water was gradually added during the next minute, followed by adding the plasticizer and
continuing the mixing for another 3 min. The concrete age at t = 0 is referred to the time when cement
and water come in contact during mixing. Fresh concrete properties were determined according to the
ONR 23303 [48] and revealed a flow spread of 493 mm, a unit weight of 2320 kg/m3, an air content
of 6.0%, and a total water content of 7.2% of concrete mass.

Immediately after determining the properties of fresh concrete and a further short mixing,
the following specimens were cast:

• Cubes with an edge length of 150 mm for determining the average cube compressive strength,
• Prisms with dimensions of 100 × 100 × 400 mm for determining the average Young’s modulus,
• Prisms with dimensions of 110 × 110 × 400 mm for determining the water desorption isotherm,

recently published in [45],
• Cylinders with 150 mm diameter and 300 mm height for determining the average splitting

tensile strength,
• Cylinders with 150 mm diameter and 450 mm height for determining both the average uniaxial

tensile strength and compressive strength,
• Cylinders with 150 mm diameter and 450 mm height for the compressive creep tests, recently

published in [45], the tensile creep tests, and the companion shrinkage tests.

All specimens were cast in steel molds, except for the cylindrical specimens of 450 mm height,
which were cast in longitudinally slotted PVC molds. After casting, all specimens were covered with
polyethylene sheets and stored in a climatic chamber at (20 ± 1) ◦C and (65.0 ± 2.5)% relative humidity.
They were demolded at the concrete age of 24 h. After demolding, all specimens were immediately
sealed by one layer of cling film, covered by one layer of bitumen-coated aluminum foil, except for
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the cylindrical specimens, which were used for determining the uniaxial tensile strength and for
investigating the tensile creep behavior. These specimens were first sealed by several layers of
cling film and then, approximately 10 mm thick slices were removed at both ends using a disk saw.
In order to obtain cuts perpendicular to the specimen axis, an apparatus similar to a roller type chassis
dynamometer was used. The ends were cleaned with compressed air before being glued to 30 mm
thick steel plates using the adhesive SikaDur®-31. About 7 h later, the specimens were additionally
sealed by one layer of bitumen-coated aluminum foil. After sealing, all specimens were stored again in
the climatic chamber.

The average cylinder compressive strength fcm and the average Young’s modulus Ecm were
determined according to the ONR 23303 [48], and the average splitting tensile strength fctm,sp was
determined according to the Austrian standard ÖNORM EN 12390-6 [49], however, all those specimens
were sealed until testing. In order to classify the investigated overlay concrete according to its
strength class, 3 cubes were cured for one week in water followed by storing the specimens in the
climatic chamber at (20 ± 1) ◦C and (65.0 ± 2.5)% relative humidity until testing at the concrete age of
28 days. According to the average cube compressive strength of 45.2 MPa, the concrete is classified
as C30/37 [50]. Similar to the tests performed by Van Mier et al. [51], the uniaxial tension tests for
determining the average uniaxial tensile strength fctm were performed on cylindrical specimens (sealed
until testing) with a circumferential notch of 5 mm width and 16 mm depth at half-height. The depth
of the notch corresponds to half of the maximum aggregate size of 32 mm (cf. Table 1). The tests were
conducted in a Shimadzu Autograph 100 kN universal testing machine at a constant displacement
rate of 0.12 mm/min. Two identical loading fixtures were used containing a ball joint to ensure centric
loading of the specimen. The steel plates at both ends of the notched specimens were connected to
the fixtures by using a 18 mm pin. In Table 2, the mean mechanical properties of the investigated
concrete and the corresponding standard deviation (in brackets) are given at the concrete ages of 2, 7,
and 28 days. Each mean value was obtained from 3 specimens.

Table 2. Mechanical properties of the concrete determined on specimens sealed until testing.

Concrete Age fcm Ecm fctm,sp fctm
(Days) (MPa) (MPa) (MPa) (MPa)

2 18.3 (0.2) 25,780 (660) 2.22 (0.06) 2.22 (0.12)
7 29.0 (2.0) 29,120 (370) 2.92 (0.09) 3.18 (0.06)

28 35.9 (0.7) 33,853 (630) 3.25 (0.29) 3.39 (0.05)

The normalized uniaxial tensile strength at concrete ages of 2 and 7 days amounts to about 65% and
94% of the respective strength at 28 days, whereas the respective normalized splitting tensile strength
amounts to about 68% and 90% of the respective strength at 28 days. The respective normalized
compressive strength amounts to about 51% and 81% of the respective strength at 28 days [45].
These findings are confirmed by the experiments of De Schutter and Taerwe [52]. Furthermore,
the ratio between uniaxial tensile strength and splitting tensile strength at concrete ages of 2, 7,
and 28 days amounts to 1.00, 1.09, and 1.05, respectively. The latter is in agreement with results
reported by Kanstad et al. [53] and Malárics and Müller [54]. The Young’s modulus at concrete
ages of 2 and 7 days normalized to the corresponding 28-day value amounts to 76% and 86% [45].
Hence, at early ages, the material stiffness evolves faster than the tensile strength or the compressive
strength [52,55].

In addition, the water desorption isotherm, characterizing the relationship between pore relative
humidity and mass water content at constant temperature, was determined on thin concrete slices for
5 different values of ambient relative humidity. The thin concrete slices were obtained from the prisms
with dimensions of 110 × 110 × 400 mm by wet sawing.
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2.2. Test Program

Immediately after demolding, sealing, and installing displacement transducers, autogenous
shrinkage was recorded for one specimen from the concrete age of 24 h.

Six specimens each were used for the investigation of basic creep and drying creep in tension
and in compression. The specimens were loaded at concrete ages of 2, 7, and 28 days to the load level
of 30% of the average uniaxial tensile strength or cylinder compressive strength [45], respectively,
determined at the concrete age at loading. In addition, companion specimens were used for measuring
combined autogenous and drying shrinkage. They were unsealed and the measurements were started
at the same ages as for the loaded specimens.

Similarly to Wyrzykowski and Lura [44], the impact of tensile loading on the moisture content was
examined by subjecting specimens to a short term cycle of unloading and reloading to the previously
applied tensile stress. These unloading/reloading cycles were not applied to the specimens loaded at
the age of 2 days because of the small magnitude of the applied tensile stress.

The tensile creep specimens were unloaded at the age of 216 days and the measurements were
finished at the age of 232 days.

At the respective concrete ages at loading, creep and companion shrinkage specimens were
equipped with displacement transducers and the creep specimens were mounted on top of each
other either in the hydro-pneumatic compressive creep devices (described in detail in [45]) or in the
electromechanical tensile creep devices (walter+bai ag Testing Machines, shown in Figure 3).

1

2

3

4

5

6

Figure 3. Experimental setup for determining tensile creep strains of sealed and unsealed specimens:
À linear actuator, Á digital controller, Â load cell, Ã and Ä spherical calottes, and Å two-sided
spherical calotte.

After removing the sealing of the specimens for investigating combined autogenous and drying
shrinkage and drying creep in tension and compression, the recording of measurement data was
started and the creep specimens were loaded up to the prescribed load. The tensile load was applied at
a constant loading rate of 1.0 kN s−1 by means of a linear actuator driven by a servo motor. Each tensile
creep device was controlled via a digital controller. The actual tensile load applied to the specimens was
measured with a load cell arranged between the linear actuator and the upper connection point of the
specimens. Both the upper and lower connection points were designed as spherical calottes. Moreover,
the specimens were connected to each other with an adapter, which was designed as a two-sided
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spherical calotte. Hence, proper alignment of the central axes of the specimens is ensured and possible
bending effects in the specimens due to eccentric tensile load application were minimized.

The longitudinal deformations of both creep and companion shrinkage specimens were measured
by means of 3 displacement transducers fixed along the perimeter of each specimen at distances
of 120°. The total strain of each specimen was calculated as the average ratio of the 3 measured length
changes over the measurement length of 200 mm. The arrangement of the displacement transducers
allowed verifying whether the creep specimens were loaded uniformly. For both loading in tension and
compression, at the end of load application, only a small variation of the instantaneous deformation at
the 3 measuring points was noticed. Moreover, during load application, the longitudinal deformations
were recorded with a measuring rate of 5 Hz, and then recorded at intervals of 10 to 20 min.

At the center of each cylindrical specimen (Figure 4a), the evolution of the mass water content was
determined by means of a multi-ring-sensor (MRS), which was developed at the Institute for Building
Materials Research of the RWTH Aachen University (ibac) [56–58]. The sensor used in this study
consists of 8 stainless steel rings, separated by insulating polymer rings. Its dimensions are similar
to the maximum grain size of 16/32 mm. The electrolytic resistance is determined between each pair
of adjoining stainless steel rings by impedance measurements [57]. The 7 measuring points (MP) are
shown in Figure 4b. The respective mass water contents were determined by means of a calibration
curve for hardened concrete. The latter characterizes the relationship between electrolytic resistance
and mass water content of the respective concrete. It is determined by measuring the 2-electrode
resistances on small specimens [58], when moisture equilibrium at a given relative humidity is reached.
Hence, for young concrete the values of the mass water content can be compared only qualitatively.
The measuring accuracy of the MRS is about 0.3% of water content [45].

(a)

MP1
MP2
MP3
MP4
MP5
MP6
MP7

43
 m

m

20 mm

(b)

Figure 4. (a) Section through the concrete specimen with embedded multi-ring-sensor (MRS) and
(b) MRS with the respective measuring points (MP) and dimensions.

Preliminary tensile and compressive tests were performed on specimens with and without
embedded MRSs. The results confirmed that the sensor does not influence the measured longitudinal
deformations. Moreover, even when the applied tensile load was increased until failure of the specimens,
neither preferred failure in the vicinity of the sensor nor a significantly reduced uniaxial tensile strength
was observed. Hence, the small reduction of the cross-sectional area due to the MRS was not taken
into account.
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3. Results and Discussion

3.1. Strain Evolution

Figure 5 depicts the measured evolution of the total strain εt
s and εt

us, determined on sealed and
unsealed specimens, respectively, loaded at the concrete ages of t0 = 2, 7, and 28 days to 30% of the
respective average uniaxial tensile strength at the concrete age at loading (schematically shown at
the top of each figure), and the measured evolution of the respective autogenous shrinkage strain εsh

s
and combined autogenous and drying shrinkage strain εsh

us. The results of the shrinkage tests for both
sealed and drying conditions have been recently published in [45] and are provided again in Figure 5
for completeness.

The total strain in sealed loaded specimens consists of the instantaneous elastic strain due
to load application, the basic creep strain, and the autogenous shrinkage strain. The total strain in
unsealed loaded specimens consists of the instantaneous elastic strain, the basic creep strain, the drying
creep strain, and the combined autogenous and drying shrinkage strain.

For the sealed specimens, loaded at concrete ages of 2, 7, and 28 days, according to Figure 5,
depending on the concrete age at loading the instantaneous total strain is followed by an increase of the
total strain for a few hours, about one day and about 105 days, respectively. Subsequently, it decreases
until unloading at the concrete age of 216 days. For the unsealed loaded specimens immediately after
loading, the total strain decreases with progressing time.

This behavior can be explained as follows: The sealed and unsealed specimens of the creep tests
are subjected to low tensile stresses corresponding to 30% of the average uniaxial tensile strength at
the respective concrete age at loading, resulting in a positive instantaneous strain. In sealed specimens,
the internal relative humidity of concrete decreases with progressing time due to cement hydration
and the associated self-desiccation [59], resulting in internal uniform drying, whereas particularly in
the surface zone of unsealed specimens, the decrease of the internal moisture content is the result of the
interplay between self-desiccation and evaporation [59,60]. A decrease of moisture content results in
an increase of the capillary pressure, acting on the solid skeleton of the concrete, which in turn results
in negative strains [61]. Consequently, the instantaneous elastic strain and the increasing tensile creep
strain are more than counteracted by the autogenous shrinkage strain or the combined autogenous
and drying shrinkage strain, as also confirmed by other researchers [15,62]. Similar to the findings of
Ji et al. [15], the results of the early age creep tests are characterized by a relatively large uncertainty
since the total strain in the sealed and unsealed loaded specimens is of the same order of magnitude as
the shrinkage strain in the respective load-free specimens.

However, with increasing concrete age at exposure to drying, the part of water chemically
bound in the hydration products increases. Consequently, the capillary pressure acts on a stiffer solid
skeleton [61], resulting in a smaller combined autogenous and drying shrinkage strain (cf. Figure 5).
As recording of measurement data was started immediately after removing the sealing of the specimens,
the portion of measured autogenous shrinkage is greater the earlier the specimen is exposed to drying.
Similarly, the portion of measured autogenous shrinkage in the total strain determined on the sealed
loaded specimens is greater the earlier the creep tests are started (cf. Figure 5). Hence, in both
the sealed and unsealed loaded specimens, with increasing concrete age at loading, the respective
measured shrinkage strain counteracts the instantaneous elastic strain and the tensile creep strain to
a smaller extent. In addition, in the present study, the applied tensile stress is larger at higher concrete
ages at loading. Thus, the difference between the measured total strain in the sealed loaded specimens
and the measured autogenous shrinkage strain in the load-free companion specimen increases with
increasing concrete age at loading. Similarly, the difference between the measured total strain in the
unsealed loaded specimens and the measured combined autogenous and drying shrinkage strain in
the load-free companion specimen increases with increasing concrete age at loading.
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Figure 5. Evolution of the shrinkage strain and the total strain in sealed and unsealed specimens,
both measured from the concrete age at loading of (a) t0 = 2 days; (b) t0 = 7 days; and (c) t0 = 28 days
to 30% of the average uniaxial tensile strength at the respective concrete age at loading.
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The creep recovery in tension is also shown in Figure 5 for the short term cycle of unloading and
reloading of the specimens, loaded initially at the ages of 7 and 28 days, as well as after unloading
all creep specimens at the concrete age of 216 days. The respective diagrams do not show any rapid
recovery after removal of the tensile load and the recovery is nearly the same for both sealed and
unsealed specimens (cf. Figure 5). These findings are consistent with the observations made by
Illston [22].

Since it is common practice in the literature and in standards to express creep in terms of
the compliance function, the respective compliance function for tensile creep will be determined
subsequently. For this purpose, the autogenous shrinkage strain is subtracted from the total
strain of the sealed loaded specimens, i.e., εt

s − εsh
s , whereas the combined autogenous and drying

shrinkage strain is subtracted from the total strain of the unsealed loaded specimens, i.e., εt
us − εsh

us.
The so-obtained load-induced strains are divided by the tensile stress applied in the respective
creep test. This decomposition is based on the assumption of the additive composition of the
strain components. Consequently, the combined autogenous and drying shrinkage strain in a loaded
specimen is assumed to be equal to the one in a load-free specimen. Although controversially
discussed [16,38,63,64], without the latter assumption, creep tests would have to be performed for all
load levels planned in service, as explained in [63].

Figure 6 shows the calculated compliance functions for the sealed and unsealed specimens,
loaded at the concrete ages of t0 = 2, 7, and 28 days to 30% of the respective average uniaxial
tensile strength. Moreover, the results of creep recovery in tension after unloading the specimens are
included. For comparison, the compliance functions obtained from the creep tests in compression [45]
for the same concrete, the same load level, and the same concrete ages at loading, are shown. In contrast
to Figure 6, the total strains, determined in the compressive creep tests, were not included in Figure 5,
since they are of an order of magnitude larger than the total strains in tension.

The scatter of the compliance functions for creep in tension, depicted in Figure 6, is the consequence
of calculating the differences εt

s − εsh
s and εt

us − εsh
us from very small measured strains of about the same

magnitude. Despite those problems, the following trends can be observed: The evolution of the
compliance of the sealed and unsealed specimens loaded in tension depends on the concrete age at
loading and the test conditions. For example, the compliance of the sealed specimen, loaded at the
age of two days, starts to decrease continuously about three days after loading, while the one of the
unsealed specimen decreases quite sharply about 30 h after loading, and remains almost constant from
the age of seven days until unloading at the age of 216 days with values close to zero. The compliance
of the sealed specimen, loaded in tension at the age of seven days, remains almost constant until
unloading, whereas the respective compliance of the unsealed specimen initially evolves quite similar
to the one of the sealed specimen. However, at the age of about 50 days, the compliance of the
unsealed specimen starts to increase slightly. The compliance of the sealed and unsealed specimens,
loaded at the age of 28 days, is continuously increasing until unloading. Hence, for sealed and unsealed
specimens loaded at the age of 28 days, the compliance increases due to an increase of the tensile
creep strain. The latter is in line with the usual definition of the creep strain as the time-dependent
increase of strain under sustained constant load [7]. On the contrary, for specimens loaded at the
ages of seven days and two days, the compliance remains almost constant or even decreases, which is
physically unreasonable. However, a review of the relevant literature shows that similar results were
reported by researchers for basic tensile creep [13,15–17,26,27,64,65] and for drying tensile creep [66,67].
Several authors [16,17,26,27,64,65] concluded that negative or vanishing tensile creep strains are the
consequence of the incorrect assumption of the additive decomposition of creep and shrinkage strain,
i.e., the actual shrinkage strain of a loaded specimen is different from that of the load-free companion
specimen. Hence, subtracting the autogenous shrinkage strain from the total strain of a sealed loaded
specimen or the combined autogenous and drying shrinkage strain from the total strain of an unsealed
specimen will not reflect the load-induced strain, as explained in [17].
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Figure 6. Compliance functions of sealed and unsealed specimens, loaded at the concrete ages of
(a) t0 = 2 days; (b) t0 = 7 days; and (c) t0 = 28 days to 30% of the respective average uniaxial tensile
strength (colored curves) or 30% of the cylinder compressive strength (black curves).

Measuring of drying shrinkage strains at early concrete ages is associated with additional difficulties,
as hydration and drying occur simultaneously and may interact [59]. Moreover, eigenstresses
due to nonuniform drying arise and may induce additional microcracks at the specimen surface.
These microcracks may relax parts of the eigenstresses (tensile stresses in the near-surface area and
compressive stresses in the core) and decrease the potential for drying shrinkage [26,38]. In the case
of tensile loading, more microcracks may be created on the surface of the unsealed loaded specimen
compared to the load-free specimen [26], especially at early concrete ages at loading, when tensile
strength is low. With progressing time, crack lengths and crack widths increase and, hence, the kinetics
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of drying shrinkage may be accelerated [26]. The latter is supported by the findings in [68,69],
according to which cracking accelerates moisture diffusion in concrete.

Figure 6 shows that the compliance in tension under drying conditions is higher than the one
under sealed conditions, as confirmed by other researchers [23,25,33]. At least for the sealed and
unsealed specimens, loaded in tension at the age of 28 days, the compliance for tensile loading is greater
than the compliance for compressive loading (cf. Figure 6), as confirmed by other researchers [21–25].
A comparison of the compliance functions for specimens loaded at the concrete ages of two and seven
days cannot be made because of the physically questionable results of the respective compliance
functions for creep in tension. For this reason, the Pickett effect for tensile and compressive creep is
only evaluated for the concrete age of loading of 28 days: At the age of 216 days, the difference of the
compliance in tension between sealed and unsealed specimens amounts to 32%, whereas it is only 15%
for the compliance in compression. Hence, at least for the load level of 30% of the average uniaxial
tensile strength or cylinder compressive strength, respectively, the Pickett effect in tension is more
pronounced than in compression.

3.2. Moisture Content Evolution

Figure 7 displays the evolution of the mass water content for the sealed and unsealed specimens,
loaded in tension at the concrete ages of t0 = 2, 7, and 28 days. Moreover, the evolution of the mass
water content for the sealed load-free specimen and for the load-free specimens, exposed to drying
at the concrete ages of ts = 2, 7, and 28 days, recently published in [45], is shown for comparison.
The depicted mass water content, measured by means of an MRS at the center of each specimen,
represents the mean value of seven measuring points of a single MRS.
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Figure 7. Evolution of the mass water content (a) for the sealed load-free specimen and sealed specimens,
loaded in tension at t0 = 2, 7, and 28 days; and (b) for unsealed load-free specimens and unsealed
specimens, loaded in tension at t0 = 2, 7, and 28 days, exposed to drying at the respective concrete ages
ts or t0, respectively.

According to Figure 7a, the mass water content of the sealed load-free specimen decreases
slightly slower than the ones of the sealed specimens loaded in tension. This finding is in accordance
with the observations made by Reinhardt and Rinder [65]. Nevertheless, the differences are small
and within the measuring accuracy of the MRS of about 0.3% of water content, indicating a similar
evolution of the mass water content for the sealed load-free specimen and the sealed loaded specimens.
Similar to the results obtained on sealed specimens, under drying conditions the mass water content
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of the load-free specimens decreases slightly slower than the ones of the specimens loaded in tension
(cf. Figure 7b). However, again the differences are within the measuring accuracy of the MRS and,
hence, under drying conditions, the evolution of the mass water content for the load-free specimens
and the loaded specimens is also quite similar.

Furthermore, the short term cycle of unloading and reloading of the specimens does not show any
effect on the evolution of the mass water content for both the sealed and unsealed loaded specimens
(cf. Figure 7a,b).

4. Summary and Conclusions

The present contribution focused on the experimental investigation of the time-dependent
behavior of a typical overlay concrete subjected to tensile stresses. The latter develop in concrete
overlays due to shrinkage of the young overlay concrete, which is restrained by the substrate concrete.
Since the tensile stresses are reduced by creep, creep in tension was investigated for sealed and drying
conditions for different concrete ages at loading. Because of the dependence of shrinkage on the change
of moisture content, in addition, the evolution of the mass water content was determined at the center
of each specimen. Together with the experimental results for compressive creep from a previous study,
a consistent set of time-dependent material data is now available. It has been determined for the
same concrete mixture with the same shape and size of the specimens, the same sealing technique,
the same measurement device, the same concrete age at loading and the same load level. Hence,
any size effect due to different specimen sizes or any influence of different sealing techniques and
measurement devices can be excluded. The set of measurement data consists of the autogenous
shrinkage strain, the combined autogenous and drying shrinkage strain, the total strain, determined
in tensile and compressive creep tests on sealed and unsealed specimens, loaded at concrete ages of
2, 7, and 28 days to 30% of the respective average uniaxial tensile strength or cylinder compressive
strength, the respective compliance functions for creep in tension and compression and the evolution
of the mass water content in sealed and unsealed specimens subjected to shrinkage and sustained
tensile loading.

The following conclusions can be drawn from the present study:

• For early concrete ages at loading, the evolution of the total strain in specimens loaded to 30%
of the respective tensile strength of concrete at loading is mainly governed by shrinkage due to
hydration and drying. Consequently, the total strain in the sealed and unsealed loaded specimens
and the respective shrinkage strain in the load-free companion specimens evolve quite similarly.

• For early concrete ages at loading, the compliance function indicates a vanishing or even negative
tensile creep strain, which was also observed by other researchers. Hence, the usual assumption
of the additive decomposition of creep and shrinkage strains is questionable, especially for early
concrete ages at loading.

• At least for the concrete age at loading of 28 days, for both sealed and drying specimens,
the compliance for tensile loading is higher than the one for compressive loading. Similarly,
the Pickett effect is more pronounced in tension than in compression.

• Creep recovery in tension is nearly the same for both sealed and drying conditions.
• The evolution of the mass water content for both sealed and drying conditions does not show any

noticeable impact of load-application on the moisture content and, in the long range the results
for both sealed and drying specimens, loaded in tension, are within the measuring accuracy of
the MRS.

The comprehensive set of material data for the investigated overlay concrete serves as valuable
basis for calibrating models for the numerical simulation of the placement of concrete overlays.
Appropriately calibrated numerical models will be used in parameter studies for optimizing
the placement procedure of concrete overlays, starting from high-pressure water jetting of the
substrate surface to the placement of the asphalt layers on the concrete overlay of the strengthened
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structure. Since the mechanical behavior of a concrete overlay is strongly influenced by additional
physical phenomena, like thermal, hygral and chemical processes, a multiphase concrete model
provides an appropriate description of the material behavior. In the latter, concrete is considered
as a porous material, consisting of a solid skeleton and voids, filled by liquid water, dry air and
water vapor. The multiphase model, available for this purpose, is based on the model proposed
by Gawin et al. [61]. Recently, it has successfully been applied to model the material behavior of
shotcrete [70] by considering interactions between the mechanical behavior and chemical, thermal and
hygral processes, related to hydration and influenced by the ambient conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

t concrete age, in days/hours
ts concrete age at exposure to drying, in days
t0 concrete age at loading, in days
fcm average cylinder compressive strength, in MPa
fctm,sp average splitting tensile strength, in MPa
fctm average uniaxial tensile strength, in MPa
Ecm average Young’s modulus, in MPa
εt

s total strain in sealed loaded specimens, in ‰
εt

us total strain in unsealed loaded specimens, in ‰
εsh

s autogenous shrinkage strain in the sealed load-free specimen, in ‰
εsh

us combined autogenous and drying shrinkage strain in unsealed load-free specimens, in ‰
LVDT linear variable differential transformer
MRS multi-ring-sensor
MP measuring point
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