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Abstract: Recently, lithium-sulfur (Li-S) batteries have been greeted by a huge ovation owing
to their very high theoretical specific capacity (1675 mAh·g−1) and theoretical energy density
(2600 Wh·kg−1). However, the full commercialization of Li-S batteries is still hindered by dramatic
capacity fading resulting from the notorious “shuttle effect” of polysulfides. Herein, we first
describe the development of a facile, inexpensive, and high-producing strategy for the fabrication of
N-, O-, and S-tri-doped porous carbon (NOSPC) via pyrolysis of natural wheat straw, followed by
KOH activation. The as-obtained NOSPC shows characteristic features of a highly porous carbon
frame, ultrahigh specific surface area (3101.8 m2·g−1), large pore volume (1.92 cm3·g−1), good
electrical conductivity, and in situ nitrogen (1.36 at %), oxygen (7.43 at %), and sulfur (0.7 at %)
tri-doping. The NOSPC is afterwards selected to fabricate the NOSPC-sulfur (NOSPC/S) composite
for the Li-S batteries cathode material. The as-prepared NOSPC/S cathode delivers a large initial
discharge capacity (1049.2 mAh·g−1 at 0.2 C), good cycling stability (retains a reversible capacity of
454.7 mAh·g−1 over 500 cycles at 1 C with a low capacity decay of 0.088% per cycle), and superior rate
performance (619.2 mAh·g−1 at 2 C). The excellent electrochemical performance is mainly attributed
to the synergistic effects of structural restriction and multidimensional chemical adsorptions for
cooperatively repressing the polysulfides shuttle.

Keywords: wheat straw; ultrahigh specific surface area; polysulfides shuttle; tri-doped porous carbon;
Li-S batteries

1. Introduction

Lithium-sulfur (Li-S) batteries have attracted a lot of fashionable attention in various technology
applications, ranging from portable electronic apparatuses to electric automobiles, because of their
very high theoretical specific capacity (1675 mAh·g−1), large nominal energy density (2600 Wh·kg−1),
low material cost, natural abundance, and environmental benignity [1,2]. Whereas the full
commercialization of Li-S batteries is still hindered by several chronic issues involving inferior
electroconductivity of elemental sulfur and its solid-state discharge products (i.e., Li2S2 and Li2S),
over 80% volumetric expansion during discharge/charge processes, and dissolution of lithium
polysulfides (Li2Sx, 4 ≤ x ≤ 8), along with the notorious “shuttle effect” [3,4]. These issues give
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rise to low sulfur utilization, inferior rate capability, anode corrosion, as well as poor coulombic
efficiency and integral energy efficiency [5,6].

Over decades, intense efforts have been advanced to circumvent the hurdles outlined
above, such as the fabrication of various carbon-based substrate materials [3,6–9], lithium anode
modification [10], developing new electrolytes or additives [11,12], and the design of novel cell
configurations [13,14]. Among these procedures, a porous carbon matrix is considered one of the
most promising candidates because not merely can they markedly improve the utilization of sulfur by
maintaining the electrical connection, but they can also restrain the dissolution of lithium polysulfides
by their abundant narrow pores and large internal surfaces [7,15]. Unfortunately, the weak physical
adsorption through van der Waals’ force between the nonpolar hydrophobic carbon-based substrates
and highly polar hydrophilic Li2Sx (4 ≤ x ≤ 8) obstructs the efficient trapping of dissolved polysulfides,
and thus, leads to rapid capacity degradation in the long term [3,14,15].

Recently, sole oxygen-doped, nitrogen-doped, boron-doped, and sulfur-doped porous carbons
have been widely explored to suppress the shuttle effect of Li-S batteries due to their strong chemical
interaction with the migrated polysulfides, except for the physical adsorption [4,16–18]. With the
introduction of doped atoms with various electronegativity (e.g., O: 3.44, N: 3.04, B: 2.04, S: 2.58),
defects and active sites can incorporate into carbon-based materials, which causes the increasing of
charge densities on the adjacent C atoms, in other words, improving the electronic conductivity of
carbon-based materials [19–21]. What is more, Zhang’s group [22] proposed that these heteroatom
dopants can bind polysulfides via Li-X bonds, revealing a “lithiophilic” interaction, and thus enhancing
the electrochemical performance of Li-S batteries. Of late years, both experiment results and Density
Functional Theory (DFT) calculation demonstrated that co-doping of carbon-based materials with
two heteroatoms was found to further enhance the chemical adsorption capabilities toward lithium
polysulfides by a cooperative effect with respect to sole heteroatom-doped counterparts [23,24].
Until now, much research is available related to encapsulating sulfur with heteroatom-co-doped
carbon-based materials, such as hierarchical O/N-functionalized carbon [25], B- and O-dually-doped
multi-walled carbon nanotubes [21], graphene-supported N- and B-rich carbon [15], O and S
dual-doped 3D interconnected hierarchical porous carbons [26], and 3D coral-like N and S co-doped
mesoporous carbon [27]. As reviewed above, co-doping of two heteroatoms can bring about synergistic
enhancement of the sulfur immobilization. Therefore, if triple heteroatoms are simultaneously
introduced into the carbon-based materials, multidimensional chemical interactions may exist between
carbon substrates and lithium polysulfides, which could further improve the cycling durability of Li-S
batteries. Besides, some heteroatom ternary-doped porous carbons have been successfully applied
in the fields of oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen
evolution reaction (HER) [28–30].

With the above discussions in mind, in this study, we for the first time describe the development
of an efficient, low-cost, and high-yielding strategy for the fabrication of N-, O-, and S-tri-doped
porous carbon (NOSPC) via pyrolysis of wheat straw, followed by KOH activation. Wheat straw,
a natural subsidiary product of wheat, is readily available, widespread, and generally cheap, which is
a fascinating starting material for fabricating high value-added nano-materials, such as hierarchically
porous N-rich carbon for lithium ion batteries, nano-silica, activated carbon for supercapacitors,
and wheat straw carbon-matrix-wrapped sulfur composites [31–34]. The resultant NOSPC shows
characteristic features of in situ tri-doped heteroatoms of nitrogen, oxygen, and sulfur, good electrical
conductivity, ultrahigh specific surface area, and highly porous structure. The ultrahigh specific surface
area and highly porous structure not only can ensure uniform dispersion of elemental sulfur even with
high mass loading, thereby enhancing the sulfur utilization, but also can provide enormous physical
adsorption sites for polysulfides [1,35]. The ternary N/O/S dopants in the carbon substrates can
further enhance the polysulfides-anchoring capability via multidimensional chemisorptions [16,27,36].
Taking advantage of the synergistic effects of structural restriction and multidimensional chemical
adsorptions for cooperatively repressing the polysulfides shuttle, the as-obtained NOSPC-sulfur
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(NOSPC/S) composite delivers prominently enhanced electrochemical properties involving large
initial discharge capacity, superior cycling life, and good rate performance.

2. Materials and Methods

2.1. Materials Preparation

The N-, O-, and S-tri-doped porous carbon (NOSPC) was produced via directly pyrolysis of wheat
straw followed by KOH activation. In detail, the wheat straw was first cut into small segments with
shears (about 3 cm), washed by deionized water and afterwards dried at 60 ◦C for 12 h. Twenty g of
wheat straw was put in the plumbago crucible and pyrolyzed in a sealed box-type furnace at 400 ◦C
for 90 min under N2 atmosphere with a heating-up velocity of 5 ◦C·min−1. Then, the activation was
carried out by calcinating a mixture of the above obtained product and KOH with a weight ratio of 1:5
at 800 ◦C for 120 min in a sealed box-type furnace under N2 flow at a heating-up velocity of 5 ◦C min−1.
After cooling to the ambient temperature spontaneously, the activated carbon was collected, neutralized
with 0.5 M HCl solution, washed by DI water until a pH equaling to 7.0, and afterwards dried at
105 ◦C in an oven for 24 h, and the consequent samples were named as NOSPC. As a comparison,
the unactivated wheat straw carbon (marked as WSC) was also produced via pyrolysis of wheat straw
at 400 ◦C for 90 min, and followed by at 800 ◦C for 120 min under N2 atmosphere in a sealed box-type
furnace except with KOH activation (the other steps are the same as that of NOSPC).

The NOSPC-sulfur (NOSPC/S) composite was fabricated via the representative melt-diffusion
strategy. In detail, the above NOSPC and sulfur powder with a weight ratio of 35:65 were ground in
a mortar for 30 min to ensure uniform mixing. This mixture was placed in a small glass bottle, and
then transferred into 80 mL Teflon-lined stainless steel autoclave filled with Ar protection in a glove
box. The stainless steel autoclave was fetched out from the glove box and put in a drying oven, finally
heated at 155 ◦C for 12 h, and subsequently for an extra 2 h at 220 ◦C. As a comparison, the WSC/S
composite containing the same sulfur mass ratio was also produced by the above technique.

2.2. Structural Characterization

The structures and morphologies of the as-prepared materials were characterized by scanning
electron microscope (SEM) (JSM-6360LV, Tokyo, Japan) provided with an X-ray energy dispersive
spectrometer (EDS), X-ray diffractometer (XRD, Rigaku-TTRIII, Tokyo, Japan), and Raman spectra
(LabRAM Hr800, HORIBA Jobin Yvon, Tokyo, Japan). The sulfur contents in NOSPC/S and
WSC/S composites were gauged by a thermogravimetric analyzer (TGA, SDTQ600, TA Instruments,
New Castle, DE, USA) in a N2 atmosphere from indoor temperature to 800 ◦C with a heating-up
velocity of 10 ◦C·min−1. The specific surface area, pore volume, and pore size distribution of the
samples were determined by N2 gas adsorption at 77 K, with a self-propelled adsorption apparatus
(ASAP 2020 HD88, Micromeritics, Norcross, GA, USA). To study surface chemical ingredients and
function groups of the samples, X-ray photoelectron spectroscopy (XPS) tests were carried out on
a K-Alpha 1063 Ultra spectrometer (Thermo Fisher Scientific, Cambridge, MA, USA). Elemental
analysis was done using a EuroEA3000 (Leeman, Capitol Heights, MD, USA) analyzer.

2.3. Electrochemical Measurements

The cathode electrodes were prepared by mixing the carbon/sulfur composites, acetylene black,
and PVDF binder with a weight ratio of 8:1:1, and the mixture was dispersed into NMP solvent
to form the electrode slurry. The slurry was uniformly casted on the Al foil with a scraper blade.
Then, the Al foil was dried at 50 ◦C overnight under the vacuum. The Al foil was chopped into
round pieces with a diameter of 1 cm for use as the working electrode. The sulfur areal mass
loading of the cathode electrodes was about 1.0–1.2 mg·cm−2. CR2025 coin cells were assembled
in an Ar-filled glove box (Super 1220/750, MIKROUNA, Shanghai, China), with H2O and O2

levels below 0.1 ppm. The electrolyte was 1 mol·L−1 lithium bis-(trifluoromethanesulfonyl)imide
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(LiTFSI) in a mixture of equivalent volumes of 1,3-dioxolane (DOL) and dimethoxyethane (DME)
with 0.1 mol·L−1 LiNO3 additives, and the related amount of electrolyte was 25 µL for a coil cell.
The separator was a Celgard 2400 membrane and the anode was lithium foil. The galvanostatic
discharge/charge tests were implemented within the voltage scope of 1.7–2.8 V versus Li+/Li at
indoor temperature by employing a cell testing system (LAND CT-2001A, Wuhan LAND ekectronics
Limited by Share, Wuhan, China). The specific capacity of the cell was based on active sulfur
(1 C = 1675 mA·g−1). The cyclic voltammogram (CV) test was carried out at the sweep speed of
0.2 mV·S−1 within the voltage scope of 1.6–3.0 V by a PARSTAT 4000 electrochemistry workstation
(AMETEK, San Diego, CA, USA). The electrochemical impedance spectroscopy (EIS) measurement
was performed via PARSTAT 4000 electrochemistry workstation between the frequency ranges from
100 kHz to10 mHz with a 5 mV response excursion.

3. Results and Discussion

Wheat straw, a subsidiary product of mature wheat, has a natural multilayer structure composed
of three different kinds of polymers, namely, cellulose, hemicellulose, and lignin. These polymers
cross-link mutually and constitute the stem of wheat straw [37,38]. The SEM images of a single
wheat straw stem are shown in Figure S1, we can see that the stem is mainly formed as coaxial
circles leaving a lumen at the center (Figure S1a,b). The outer surface of the stem is a hydrophobic
waxy layer to provide extra mechanical strength of the stem and inhibit the erosion of external
moisture (Figure S1c). The interior of the outer surface owns many loose layers, which cross-linked
each other to form a network structure (Figure S1d). Moreover, wheat straw primarily consists of
C atoms, O atoms, and some other nonmetal and mineral elements [31,32]. In view of its lamellar
microstructure and chemical composition, it will be easily transformed from wheat straw into highly
valuable heteroatom-doped porous carbon via facile carbonization and KOH activation. The KOH
activation can also adjust the specific surface area and pore volume of carbon, which is beneficial
for enhancing the sulfur content and ensuring the uniform dispersion of sulfur. In addition, the raw
material (i.e., wheat straw) is readily available, widespread, generally cheap, and renewable. Therefore,
our strategy for the fabrication of NOSPC/S is efficient, low-cost, and high-yielding, which is suitable
for the commercialized applications of Li-S batteries.

The structures and morphologies of as-prepared WSC, NOSPC, WSC/S, and NOSPC/S were first
characterized by SEM. As illustrated in Figure 1a,b, the WSC displays a typical sheet structure with
a diameter ranging from dozens to one hundred micrometers. Moreover, most of the WSC surface
is relatively smooth except for some small voids, which maybe derive from the release of pyrolysis
gases during the carbonization process [39]. Figure 1c,d exhibit the SEM images of NOSPC that did
not undergo grinding; it can be clearly noticed that the KOH activation did not influence its lamellar
nanostructure, but plenty of macropores are observed and mesopores have formed on the surface of
NOSPC. Such a highly porous structure of NOSPC can not merely promote the rapid transport of
lithium ions and electrons, but also can be beneficial for the active sulfur encapsulation [3,17].

After the sulfur encapsulation process, the SEM images of WSC/S and NOSPC/S composites
are displayed in Figure 2a–d, respectively. Compared with the original WSC, it is obvious that there
are plenty of sulfur granules attached to the surface of WSC, which is mainly due to the lack of
sufficient pores for WSC to accommodate active sulfur. Nevertheless, no aggregation of sulfur crystals
is easily observed on the surface of NOSPC, which manifests the complete permeation of sulfur into the
porous carbon substrate through a lateral capillary force in the melt-diffusion process [1]. Moreover,
in contrast to NOSPC, some macropores/mesopores of the NOSPC/S are destroyed and micron-sized
particles are acquired (approximately several to several ten micrometers), which could be caused by
the grinding operation during the mixing process. To further survey the constituents of the NOSPC/S
composite, the EDS mapping was implemented. As shown in Figure S2, the NOSPC/S composite
contains multifarious elements including carbon, oxygen, nitrogen, and sulfur. We can see that oxygen
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and nitrogen were uniformly doped in the NOSPC, as well as that sulfur homogeneously infiltrated
into the porous carbon framework.
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In order to quantify the sulfur amount in the WSC/S and NOSPC/S composites,
TGA measurements were performed in an N2 atmosphere from indoor temperature to 800 ◦C.
As displayed in Figure 3, both the composites began to lose weight at about 160 ◦C, and the
curves reached stabilization when the composites were heated to exceeding 420 ◦C due to the sulfur
evaporation. The sulfur contents in the WSC/S and NOSPC/S composites were 63.6 and 62.8 wt %,
respectively, almost closing to the theoretical design sulfur contents. Furthermore, the TGA curve
of the NOSPC/S sample exhibited a much higher evaporated temperature (470 ◦C) than that of the
WSC/S composite (420 ◦C). This gives strong evidence that the NOSPC/S composite showed a stronger
interaction between NOSPC and sulfur, which could be because of the retarding effect of the abundant
porosity on the NOSPC framework [3,40].
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The Raman spectroscopy was also used to examine the structures of the WSC, NOSPC, WSC/S,
and NOSPC/S, as shown in Figure 4a. It can be seen that Raman spectra of the WSC and NOSPC
showed a representative graph of partially graphitized carbon with two bands at about 1330 cm−1 and
1590 cm−1 (D and G bands), respectively, which implies their good electrical conductivity. The D band
usually represents disordered carbon structure associated with the edge sites, defects, and holes,
while the G band is a typical character of crystalline graphite structure corresponding to sp2 bonding.
Moreover, the relative intensity of D band (ID) and G band (IG) can indicate the disorder degree of
carbon materials [40,41]. The Raman spectrum of NOSPC offered larger ID/IG (1.08) than that of WSC
(1.01), on account of the heteroatomic functional groups on the surface of NOSPC, as well as more
defects and highly porous structure caused by KOH activation [41]. As for WSC/S and NOSPC/S,
Raman spectroscopy of WSC/S shows a sequence of characteristic peaks below 500 cm−1 which can be
assigned to the S-S bond [42], while that of NOSPC/S cannot detect any sulfur peaks. This phenomenon
further confirms that sulfur is mainly covered on the WSC surface, while sulfur is successfully
embedded into the pores of the NOSPC.

Figure 4b displays the XRD curves of WSC, NOSPC, WSC/S, NOSPC/S, and the straightforward
mixture of NOSPC/S powder. The XRD spectrum of WSC and NOSPC show a wide specific
diffraction peak between 20◦ and 30◦, indicating that the synthesized WSC and NOSPC have a typical
amorphous structure. The XRD pattern of the simple mixture of NOSPC/S powder normally exhibits
a sequence of strong and sharp peaks with a well-defined Fddd orthorhombic structure of sulfur
(JCPDS#: 08-0247) [7,43]. After sulfur infiltrating into the carbon substrate, the XRD pattern of WSC/S
shows similar diffraction peaks to that of orthorhombic sulfur except their intensities become slightly
weaker, manifesting that the majority of sulfur particles coat on the surface of WSC, which agrees well
with the investigate in the SEM tests (Figure 2a,b). However, the XRD curve of NOSPC/S displays
no characteristic diffraction peaks of sulfur, which means that elemental sulfur has triumphantly
infiltrated into the pores of NOSPC and presented in a remarkably dispersed state [3], which is
consistent with the SEM (Figure 2c,d) and EDS (Figure S2) analysis results.
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The N2 adsorption/desorption isotherms derived from BET tests were obtained to quantitatively
confirm the porous structure of WSC, NOSPC, and NOSPC/S. As illustrated in Figure 4c,
the N2 adsorption/desorption isotherms for original WSC and NOSPC exhibit a high adsorption
uptake in the relative pressure of P/P0 < 0.1, and a hysteresis loop within the scope of 0.5–0.99 P/P0,
indicating that both the WSC and NOSPC are typically hybrid micro/mesoporous carbon. It is worth
noting that the micropores of NOSPC are more luxuriant than those of WSC (Figure 4d and Figure S3).
Moreover, the pore size distribution curve of NOSPC has a distinctive peak around 2.12 nm, indicative
of the presence of partial mesopores, further strongly proving its hierarchical microporous/small-
mesoporous structure. The apertures of NOSPC are mainly distributed in the area of less than 6 nm,
this small size pore structure is reported to potentially limit the soluble polysulfides effectively through
physical adsorption, thus decreasing the “polysulfides shuttle” and enhancing the sulfur utilization
rate [44]. The specific surface area, total pore volumes, micropore volumes, and mean pore sizes of
WSC, NOSPC, and NOSPC/S are then presented in Table 1. It was found that the specific surface area
and total pore volume of WSC were 656.53 m2·g−1 and 0.309 cm3·g−1, respectively, while NOSPC
had a higher specific surface area (3101.8 m2·g−1) and larger pore volume (1.92 cm3·g−1), which was
caused by the KOH activation. In addition, the micropore volume of WSC (0.221 cm3·g−1) was also
much less than that of NOSPC (1.457 cm3·g−1), which is consistent with the results of Figure 4d and
Figure S3. The ultrahigh surface area of NOSPC favors the sulfur distribution in the carbon framework,
the molten sulfur thus can easily permeate into the NOSPC by capillary force, the specific surface
area and pore volume of the obtained NOSPC/S composites then decreased seriously (17.4 m2·g−1

and 0.026 cm3·g−1, respectively). Meanwhile, from Table 1 and the inset of Figure 4d, we can see that
almost all micropores vanished and mesopores only partially reserved for NOSPC/S, which not only
can endure the volume expansion during the charge/discharge process, and thus improve the cycling
durability, but also can promote the full impregnation of electrolyte and the rapid transfer of lithium
ions [2,16,45].
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Figure 4. (a) Raman spectra of WSC, NOSPC, WSC/S, and NOSPC/S; (b) XRD curves of WSC, NOSPC,
WSC/S, NOSPC/S, and the simple mixture of NOSPC/S powder; (c) N2 adsorption/desorption
isotherms of WSC, NOSPC, and NOSPC/S; (d) pore size distribution curves of WSC, NOSPC,
and NOSPC/S.
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Table 1. The main pore parameters of WSC, NOSPC, and NOSPC/S.

Samples Specific Surface
Area (m2/g)

Total Pore Volume
(cm3/g)

Micropore
Volume (cm3/g) Mean Pore Size (nm)

WSC 656.53 0.309 0.221 1.88
NOSPC 3101.8 1.92 1.457 2.48

NOSPC/S 17.40 0.026 0.00 5.95

The XPS was utilized to analyze the chemical constituents and functional groups of NOSPC and
NOSPC/S, and the corresponding outcomes were displayed in Figure 5. The XPS spectrum of NOSPC
(Figure 5a) exhibited three obvious peaks corresponding to C 1s (284.8 eV), N 1s (400.9 eV), and O 1s
(532.96 eV) electrons, as well as a minor peak related to S 2p (164.24 eV) electron, demonstrating the
presence of N, O, and S heteroatoms. As calculated from the XPS results, the atomic percentages of C,
O, N, and S in the NOSPC were 88.57, 7.43, 1.36, and 0.7 at %, respectively. The combustion elemental
analysis of NOSPC also confirms the existence of C, O, N, and S elements (Table S1), which is consistent
with the XPS measurements. However, the XPS spectrum of WSC (Figure S4) reveals the existence of C,
O, and S elements, and the absence of N element. The difference in element compositions and contents
between NOSPC and WSC may lead to the distinction of the electrochemical results when using as the
sulfur substrates. As shown in Figure 5b, the C 1s XPS spectrum of NOSPC presents four prominent
peaks at 284.8, 286.0, 287.1, and 289.5 eV, which correspond to C–C/C=C, C–O/C–N/C–S, C=O, and
O–C=O, respectively [2,23,24], indicating that there were some oxygen-containing functional groups in
the NOSPC matrix. The O 1s XPS spectrum of NOSPC also confirms the presence of oxygen functional
groups (Figure S5). The high-resolution N 1s spectrum of NOSPC in Figure 5c presents a broad
peak ranging from 396 to 407 eV. It can be fitted by three peaks allotted to pyridinic N (398.4 eV),
pyrrolic N (400.8 eV), and graphitic N (402.5 eV), which is very common in the N-doped carbon
materials [15,27]. The high-resolution S 2p spectrum of NOSPC can be deconvoluted into two peaks
(Figure S6), which correspond to S–S/S–C bonds at 164.2 and 165.3 eV [4]. In addition, the survey
spectrum of NOSPC/S (Figure 5a) obviously illustrates two classic peaks of sulfur (S 2s and S 2p),
which are allotted to S8 [17]. In the S 2p XPS spectrum of NOSPC/S (Figure 5d), two fitted peaks
situated at 164.1 and 165.2 eV are equivalent to S-S/S-C bonds. The wide peak at 169.0 eV corresponds
to the sulfate, which may be caused by the oxygenation of elemental sulfur in the air [23,24]. The XPS
test indicates that we have successfully prepared the N-, O-, and S-tri-doped porous carbon (NOSPC).
Furthermore, these N/O/S- containing functional groups are believed to not only be able to improve
the electronic conductivity of NOSPC [19–21], but can also further enhance the polysulfides anchoring
capability via multidimensional chemisorptions, thus observably improving the cycling durability and
rate capability of Li-S batteries [16,27,36].

The electrochemical properties of CR2025 coin cells assembled with lithium foils as the anodes
and NOSPC/S and WSC/S composites as the cathodes were then studied. Figure 6a first displays the
CV graphs of NOSPC/S at a sweep speed of 0.2 mV·S−1 within the voltage scope of 1.6–3.0 V. During
the cathodic scan, there are two noteworthy reduction peaks roughly at 2.3 and 2.0 V, relating to the
conversion of elemental sulfur to dissoluble lithium polysulfides (Li2Sx, 4 ≤ x ≤ 8) and further from
polysulfides to indissoluble Li2S2/Li2S, respectively [17,18]. In the succeeding anodic scan process,
we can observe two partially overlapping oxidation peaks in the potential of approximately 2.3–2.4
and 2.4–2.5 V, which possibly corresponds to the transformation of Li2S2/Li2S to low-order lithium
polysulfides and afterwards to high-order lithium polysulfides, respectively [7,46]. Remarkably, there
was no evident difference in the redox peak currents and voltages in the next four cycles, confirming
the high reactive invertibility and good electrochemical stability of the NOSPC/S composite electrode.
In addition, it also indicated that the synergistic effects of NOSPC by structural restriction and
multidimensional chemisorptions were extremely effectual in confining the diffusion of polysulfides
and sustaining high active sulfur utilization in the redox reactions.
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The initial galvanostatic charge/discharge profiles and cycling behaviors of the WSC/S and
NOSPC/S composites at 0.2 C are presented in Figure 6b,c, respectively. Clearly, there are two classic
voltage platforms roughly at 2.3 and 2.1 V, and only one broad voltage platform at 2.2–2.4 V in the
both initial discharge/charge graphs, which is in much agreement with the outcomes of CV analyses
(Figure 6a). Compared to the WSC/S cathode, the NOSPC/S cathode shows higher discharge plateau
potential and lower charge plateau potential, that is, a smaller voltage gap, demonstrating a good
invertibility and superior redox reaction kinetics of the NOSPC/S cathode [3,47]. The large electrode
polarization of the WSC/S cathode may be caused by the insulative sulfur layer on the surface of
WSC, which increases the resistance of the WSC/S electrode (Figure 2a,b). Furthermore, the initial
discharge capacity of the NOSPC/S cathode at 0.2 C reaches up to 1049.2 mAh·g−1 (with a coulombic
efficiency of 98.1%), contrasting to the 435.6 mAh·g−1 of the WSC/S cathode (with a coulombic
efficiency of 92.5%). The higher active material utilization of the NOSPC/S cathode mainly results
from the highly homogeneous decentralization of elemental sulfur in the pores of NOSPC, thus leading
to a preferable electric contact between carbon and sulfur. At the same time, as illustrated in Figure 6c,
the discharge capacity of the NOSPC/S cathode still remains 695.3 mAh·g−1 after 100 cycles at 0.2 C,
while a pretty inferior discharge capacity of 326.3 mAh·g−1 is delivered for the WSC/S cathode.
All in all, in comparison with the WSC/S cathode, the NOSPC/S cathode exhibits improved reversible
capacity and cycling performance, which could be ascribed to the highly porous structure and in situ
N-, O-, and S-tri-doping of NOSPC.
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Figure 5. (a) XPS spectra of NOSPC and NOSPC/S; (b) high-resolution XPS spectrum of C 1s for
NOSPC; (c) high-resolution XPS spectrum of N 1s for NOSPC; (d) high-resolution XPS spectrum of S
2p for NOSPC/S.

As shown in Figure 6d, the rate performances of the WSC/S and NOSPC/S cathodes were also
investigated by augmenting the current density every 10 cycles from 0.2 to 2 C. Not surprisingly,
the NOSPC/S cathode delivers much larger discharging specific capacities and superior rate
capabilities at disparate current densities than the WSC/S cathode. After 10 cycles cycling at 0.2 C,
the NOSPC/S cathode delivers the reversible capacities of 780.7, 700.5, and 619.2 mAh·g−1 at 0.5,
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1.0, and 2 C, respectively. Importantly, a reversible capacity of 799.5 mAh·g−1 for the NOSPC/S
cathode is recovered when the current is switched back to 0.2 C, indicating a favorable high-rate
performance. Besides, Figure S7 displays the charge and discharge voltage graphs of WSC/S and
NOSPC/S at different current densities from 0.2 to 2 C. We can see that both the WSC/S and NOSPC/S
cathodes present the typical characteristic of two plateaus in the discharge and charge voltage graphs
as the current densities increase gradually from 0.2 to 2 C. However, the charge and discharge voltage
platforms of the NOSPC/S cathode are more obvious, and the corresponding voltage gaps are smaller,
which further indicates that the NOSPC/S cathode has superior rate capability. The good rate capability
of the NOSPC/S electrode mainly benefit from both high conductivity of the hierarchical porous
structure and homogeneous distribution of N/O/S-containing functional groups, which synergistically
expedite kinetic redox of polysulfides and repress shuttle effect of polysulfides.
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Figure 6. (a) CV curves of NOSPC/S at a scan rate of 0.2 mV·S−1; (b) the initial charge/discharge
profiles of WSC/S and NOSPC/S at 0.2 C; (c) the cycling performances of WSC/S and NOSPC/S for
100 cycles at 0.2 C; (d) the rate performances of WSC/S and NOSPC/S at different current densities
from 0.2 to 2 C; (e) the long cycling performance of NOSPC/S at 1 C.
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The long-range cycling performance of the NOSPC/S cathode was also tested at a high rate of 1 C,
as shown in Figure 6e. A discharge capacity of 810.1 mAh·g−1 was obtained at 1 C after the activation
in the first two charged/discharged cycles at 0.05 C. Notably, the NOSPC/S cathode exhibited
a distinguished cyclability by maintaining the high discharge capacities of about 585.9 mAh·g−1

after 200 cycles and 454.7 mAh·g−1 after 500 cycles at 1 C, respectively. Compared with the initial
discharge capacity, the fading rate is only 0.088% over 500 cycles at 1 C, and the corresponding
average coulombic efficiency is about 95.6%. Moreover, after 500 cycles, the decrease in coulombic
efficiency is probably due to the consumption of a small amount of LiNO3 additive after prolonged
cycling [48]. Besides, we have compared the electrochemical performances of NOSPC/S to some
biomass-derived carbon materials in Li-S batteries (Table 2). We can see that the NOSPC/S cathode
shows better cycle stabilities and rate capabilities when compared to previous reported biochar
carbons [34,49–51]. The excellent electrochemical performances of the NOSPC/S electrode can be
ascribed to the following merits of the NOSPC: (1) the conductive NOSPC can afford rapid electron
transfer to accelerate the kinetic redox and thus enhance the sulfur utilization [52]; (2) the ultrahigh
specific surface area and highly porous structure not only can ensure uniform dispersion of elemental
sulfur and endure the volume expansion during the cycling, but can also promote the full impregnation
of electrolyte to transfer the lithium ions rapidly and furnish enormous physical adsorption sites for
polysulfides [1,2,6,35,45]; and (3) the in situ ternary N/O/S dopants in the NOSPC can further
observably improve the conductivity of carbon materials and enhance the polysulfides-anchoring
capability via multidimensional chemisorptions [16,27,36].

Table 2. Electrochemical performances of Li-S batteries basing on different biomass-derived carbons.

Samples S in the
Cathode (%) Rate (C) Initial Capacity

(mAh·g−1)
Cycle Capacity

(mAh·g−1) References

Wheat straw carbon 51.8 1 582 445(200th) [34]
Chery pits carbon 45.6 1 550 410(200th) [49]
Rice husk carbon 44.8 0.5 834 ~600(200th) [50]

Olive stones carbon 64 0.06 930 670(50th) [51]
NOSPC 50.2 0.2 1049.2 766.9(50th) This

1 810.1 585.9(200th) work

In order to further comprehend the interfacial charge transfer and ion diffusion process of
the WSC/S and NOSPC/S electrodes, the EIS tests were implemented with button cells before
discharge, as displayed in Figure 7 (the inset is the correlative equivalent circuit model). It can
be perceived that both EIS curves are compose of a typical depressed semicircle at high frequency and
a diagonal line in the low-frequency region. The intercept of the first semicircular in the solid axis Z’
is related to the combination impedance Ro, which includes the interface impedance between active
materials and current collector, the active materials’ intrinsic resistance, as well as the electrolytes’
ionic resistance [3,4]. The semicircle in the high-frequency region is the charge transfer resistance Rct,
which corresponds to the kinetic resistance of electrochemical reaction at the electrode-electrolyte
interface [53]. Depending on the correlative equivalent circuit model, we fitted the EIS curves and
obtained the values of the corresponding impedances, as shown in Table 3. It can be seen that the Ro

(1.88 Ω) value of the NOSPC/S electrode is much lower than that of the WSC/S electrode (9.82 Ω).
It is because sulfur in the WSC/S electrode mainly exists on the surface of the WSC, while most of the
sulfur permeates the pores of the NOSPC. Moreover, compared with the WSC/S electrode, the Rct of
the NOSPC/S electrode markedly decreases from 46.36 to 18.63 Ω. This is due to the conductive
NOSPC can lower the resistance for electrons transport throughout the electrode, and the highly
porous structure can facilitate ion transfer, thus leading to the decrease of Rct.
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Table 3. The fitting results of the electrochemical impedance.

Samples Ro (Ω) Rct (Ω)

WSC/S 9.82 46.36
NOSPC/S 1.88 18.63
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4. Conclusions

In summary, a novel N-, O-, and S-tri-doped porous carbon (NOSPC) has been triumphantly
synthesized by pyrolyzing of natural wheat straw followed by KOH activation for the first time.
Various test analyses demonstrate that the resulting NOSPC possesses a highly porous carbon
framework, ultrahigh specific surface area, large pore volume, good electrical conductivity, and in situ
N-, O-, and S-tri-doping. Due to the synergistic effects of physical confinement and multidimensional
chemical adsorptions for repressing the polysulfides shuttle, the as-obtained NOSPC/S composite for
the Li-S batteries delivers dramatically enhanced electrochemical properties including large initial
discharge capacity (1049.2 mAh·g−1 at 0.2 C), good cycling stability (retains a reversible capacity
of 454.7 mAh·g−1 over 500 cycles at 1 C with 0.088% capacity decay per cycle), and superior
rate performance (619.2 mAh·g−1 at 2 C). This work will shed light on the reasonable design of
carbon/sulfur composite materials with unique physical properties and surface chemistries, offering
priceless guidance for the progress of advanced Li-S batteries for the practical applications.
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