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Abstract: The buckling behavior of functionally graded graphene platelet-reinforced composite
(FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is
investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch
with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai
micromechanics model and the principle of virtual work, from which the critical buckling load of
FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special
attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and
the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC
shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity
compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling
load among four distribution patterns. When the GPL weight fraction is constant, the thinner and
larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when
the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of
GPL’s dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition,
the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the
GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the
results that are presented in this paper will be useful as a reference for the stability design of this type
of arch in the future.

Keywords: functionally graded; graphene; elastic rotational constraints; uniform radial load; buckling;
circular arch

1. Introduction

Graphene-related research and application development are hot topics today, and graphene-based
composites have become an important direction in application field of graphene [1–4]. Graphene and
its derivatives have many advantageous material properties, such as high strength, lightweight, and
high chemical stability. The tensile strength of graphene can reach 130 GPa and its theoretical elastic
modulus is as high as 1 TPa [5]. As a result, graphene and its derivatives can enhance the special
properties of a variety of composites. Rafiee et al. [6,7] added 0.1 wt % graphene nanoplatelets (GPLs)
and carbon nanotubes (CNTs) into two composites with epoxy matrices. By comparing the mechanical
properties of the two reinforced composites, they found that the GPL-reinforced composite had a higher
tensile strength and fracture toughness than the CNT-reinforced composite. By thoroughly analyzing
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the mechanical properties of a graphene-reinforced composite with an alumina ceramic matrix,
Liu et al. [8,9] found that graphene could significantly enhance the flexural strength of the composite.
Based on the Mori–Tanaka micromechanical model of graphene, Ji et al. [10,11] studied the effective
stiffness of graphene-reinforced materials and found that graphene could significantly enhance the
effective stiffness of composites, even at a very low content. Moreover, Shen et al. [12] introduced the
concept of functional grading to reinforced composites, and noted that adding a reinforcing material
non-uniformly at a certain gradient significantly enhanced the properties of a composite. Using this
concept, Yang et al. [13] examined the post-buckling behavior of a functionally graded multilayer
graphene-reinforced nanocomposite beam. Feng et al. [14] investigated the nonlinear flexural behavior
of a functionally graded graphene-reinforced composite beam. Furthering this investigation, Song and
Kitipornchai et al. [15–17] thoroughly studied the dynamic stability of functionally graded multilayer
graphene-reinforced composite beams and plates.

Due to their advantageous properties, the application of structural units that are composed of
graphene-reinforced materials is of great importance in weight-sensitive engineering projects, such as
aerospace engineering and long-span buildings. However, most existing studies on graphene-reinforced
composite structures focus on such structural units as beams, plates, and columns; few studies have
reported on graphene-reinforced arch structures. To date, only Bateni et al. [18,19] have, to some
extent, investigated the nonlinear static stability of multi-functionally graded arch structures. However,
they only examined arches with clamped and hinged boundaries. In practical engineering, it is
difficult to realize completely clamped or completely hinged boundary constraints. The boundary
constraints of arch structures have a certain rotational stiffness and are elastically constrained.
Pi and Bradford et al. [20–23] performed detailed studies on the in-plane nonlinear failure of elastically
constrained homogeneous circular arches and determined the critical loads that are required for them
to undergo static failure under various constraint stiffness conditions. Liu [24–28] and Pi et al. [29–31]
examined the out-of-plane buckling behavior of elastically constrained homogenous arches and found
that the results were consistent with those of the finite element (FE) analysis.

Hence, this study examines a functionally graded graphene platelets (GPLs) reinforced composite
(FG-GPLRC) shallow arch and establishes a nonlinear stable equilibrium equation for the elastically
constrained FG-GPLRC shallow arch under a uniformly distributed radial load, using the Halpin-Tsai
micromechanical model of graphene and the principle of virtual work. The equation is then solved
to determine the critical loads of the elastically constrained FG-GPLRC shallow arch to undergo
symmetric limit point buckling and antisymmetric bifurcation buckling. Finally, this study investigates
the effects of the distribution pattern, mass fraction, and geometric dimensions of GPLs, as well as
constraint stiffness, on the buckling behavior of elastically constrained FG-GPLRC shallow arches.

2. Materials Model of FG-GPLRC Shallow Arches

The FG-GPLRC shallow arch with elastic rotational constraints (shown in Figure 1) is composed
of perfectly bonded GPLRC layers of equal thickness hL, which are made from a mixture of polymer
matrices and GPLs. The total thickness and width of the cross-section are h and b, respectively. It is
assumed that GPLs are uniformly dispersed and are randomly oriented in each layer. However,
the weight fraction of GPLs varies from layer to layer. Accordingly, there are four types of GPLs
distribution patterns, including U-GPLRC, X-GPLRC, O-GPLRC, and A-GPLRC, as shown in Figure 2.
U-GPLRC represents that the weight fraction of GPLs in each layer is the same. X-GPLRC represents
that the weight fraction of GPLs is decrease from the outer surface to the central gradually while
O-GPLRC represents that the weight fraction of GPLs is increase from the outer surface to the center
gradually. A-GPLRC represents that the weight fraction of GPLs is increase from the top surface to the
bottom surface gradually.
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Figure 1. Configuration and coordinate system of the functionally graded graphene platelet-reinforced
composite (FG-GPLRC) shallow arch with elastic rotational constraints.
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Figure 2. Different graphene nanoplatelets (GPL) distribution patterns in a multilayer FG-GPLRC
shallow arch.

The FG-GPLRC shallow arch with an even number of layers is studied in this paper. The volume
fractions VGPL of the kth layer for the four distribution patterns that are shown in Figure 2 are given by

U: Vn
GPL = V∗GPL (1)

X: Vn
GPL = 2V∗GPL|2k− NL − 1|/NL (2)

O: Vn
GPL = 2V∗GPL(1− |2k− NL − 1|/NL) (3)

A: Vn
GPL = V∗GPL(2k− 1)/NL (4)

where NL is the total number of GPLRC layers and V∗GPL is the total volume fraction of the GPLRC,
which is defined as

V∗GPL =
WGPL

WGPL + (ρGPL/ρm)(1−WGPL)
(5)

where WGPL is the GPL weight fraction and ρGPL and ρm are the mass densities of GPLs and polymer
matrices, respectively.

The elastic modulus of composites with randomly oriented fillers can be calculated by the
Halpin-Tsai model [32,33]

E =
3Em

(
1− ξLηLVn

GPL
)

8
(
1− ηLVn

GPL
) +

5Em
(
1 + ξTηTVn

GPL
)

8
(
1− ηTVn

GPL
) (6)

in which the parameters ηL and ηT are defined as

ηL =
(EGPL/Em)− 1
(EGPL/Em) + ξL

, ηT =
(EGPL/Em)− 1
(EGPL/Em) + ξT

(7)

and ξL and ξT are the filler geometry factors defined as

ξL = 2(aGPL/bGPL)× ξT/2, ξT = 2(bGPL/tGPL) (8)
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where aGPL, bGPL, and tGPL are the length, width and thickness of GPLs, respectively. aGPL/bGPL,
bGPL/tGPL are the width-to-length ratio and width-to-thickness ratio of GPLs, respectively.

3. Nonlinear Equilibrium Equation

The configuration and the coordinate system of the FG-GPLRC shallow arch are shown in Figure 1.
The origin o of the axis system oxy is located at the centroidal axes of the arch. The axis oz coincides
with a principle axis of the cross-section, its direction changes along the circumference of the arch and
it is always towards the center of the arch, and the axis ox coincides with the centroidal axis. S, Θ, and
R are the axial length, half-included angle, and radius of the arch, respectively. The stiffness of the
elastic rotational constraints at both ends is k. The longitudinal strain of an arbitrary point Po at the
cross-section can be expressed as

ε = εm + εb (9)

where εm is the membrane strain and εb is the bending strain of the FG-GPLRC shallow arch. According
to Donnell’s shallow arch theory [18,22], the relationship between the strain and displacement are

εm = w̃′ − ṽ +
ṽ′2

2
(10)

εb = −z
ṽ′′

R
(11)

where ( )′ ≡ d( )/dθ, ṽ = v/R and w̃ = w/R are the dimensionless axial and radial displacements,
respectively. z is the coordinate of the point P at the cross-section of the axis oz.

According to the virtual work principle, the virtual work of the FG-GPLRC shallow arch with
elastic rotational constraints under uniform radial load can be expressed as

δW =
∫ Θ
−Θ Rb

∫ h/2
−h/2 Eεδεdzdθ

−
∫ Θ
−Θ qR2δṽdθ + kṽ′−Θδṽ′−Θ + kṽ′Θδṽ′Θ = 0

(12)

Substituting Equations (9)–(11) into Equation (12) leads to

δW =
∫ Θ
−Θ[−NR(δw̃′ − δṽ + ṽ′δṽ′)−Mδṽ′′ ]dθ

−
∫ Θ
−Θ qR2δṽdθ + kṽ′−Θδṽ′−Θ + kṽ′Θδṽ′Θ = 0

(13)

where N and M are the axial force and bending moment of the arch, which can be expressed as

N = −A11

(
w̃′ − ṽ +

ṽ′2

2

)
+

B11

R
ṽ′′ (14)

M = B11

(
w̃′ − ṽ +

ṽ
2

)
− D11

R
ṽ′′ (15)

in which, A11, B11, and D11 are the stiffness components of the FG-GPLRC shallow arch, which are
defined as

{A11 B11 D11} = b
NL

∑
n=1

zn+1∫
zn

E(n)
{

1 z z2
}

dz (16)

where zn and zn+1 are the coordinates of the bottom and upper surfaces of the kth GPLRC layer,
respectively.

Integrating Equation (13) by parts leads∫ Θ
−Θ

{
(NR)′δw̃ +

[
NR + (NRṽ)′ −M′′ − qR2

]
δṽ
}

dθ

−[NRδw̃ + (NRṽ′ −M′)δṽ]Θ−Θ + [(−M± kṽ′)δṽ′]Θ−Θ = 0
(17)
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At the same time, the following essential kinematic boundary conditions

δṽ = 0 and δw̃ = 0 at θ = ±Θ
−M ± kṽ ′ = 0 at θ = ±Θ

(18)

need to be satisfied. Hence, the last two terms of Equation (17) vanish.
Because δṽ = 0 and δw̃ = 0 are arbitrary by definition, to hold Equation (17), the differential

equations of equilibrium have to be satisfied

(NR)′ = 0 (19)

NR +
(

NRṽ′
)′ −M′′ − qR2 = 0 (20)

The essential kinematic boundary conditions are

ṽ(Θ) = ṽ(−Θ) = w̃(Θ) = w̃(−Θ) = 0
−M(Θ) + kṽ′Θ = −M(Θ)− kṽ′−Θ = 0

(21)

Substituting Equation (14) into Equation (15) leads to the bending moment of the FG-GPLRC elastic
rotational constraint arch, as

M = −
(

D11 −
B2

11
A11

)
ṽ′′

R
− B11

A11
N (22)

Substituting Equations (19) and (22) into Equation (20), the differential equation of equilibrium in the
radial direction can be rewritten as

ṽiv

µ2 + ṽ′′ = P (23)

where, P is a dimensionless load, which is defined as

P =
qR− N

N
(24)

µ is dimensionless axial force parameter, which is defined as

µ2 =
NR2

κ
, κ = D11 −

B2
11

A11
(25)

where κ is the equivalent stiffness of the FG-GPLRC shallow arch.
The dimensionless radial displacement ṽ can be obtained by solving Equation (23) under the

boundary conditions given by Equation (21)

ṽ =
P
µ2

[
cos(µθ)− cos β

cos β
Γ +

µ2θ2 − β2

2

]
+

cos(µθ)− cos β

(1 + 2α) cos β

2αB11Γ
A11R

(26)

in which, β = µΘ and α is the ratio of the bending stiffness per unit length of the equivalent stiffness
κ/S to the stiffness of elastic rotational end constraints k, which can be expressed as

α =
κ

kS
(27)

Substituting Equations (25) and (26) into (14), and integrating the function over the entire arch,
leads to the nonlinear equilibrium equation between the axial force parameter µ and the dimensionless
load P, expressed as

A1P2 + B1P + C1 = 0 (28)
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where

A1 =
1

4β2

(
tan β

β
− 1

cos2 β

)
Γ2 − 1

β2

(
1− tan β

β

)
Γ− 1

6
(29)

B1 =
1
β2

(
1− tan β

β

)
Γ +

1
3
− α sin 2β + 2αβ

2β(1 + 2α) cos2 β

BΓ2

λh
+

2αβ− tan β− 4α tan β

β(1 + 2α)

BΓ
λh

+
B

λh
(30)

C1 =

[
α2β sin 2β− 2α2β2

2 cos2 β(1 + 2α)2 −
2αβ tan β

Γ(1 + 2α)

](
BΓ
λh

)2
+

2α(tan β− β)

β(1 + 2α)

BΓ
λh
− β2κ

A11λ2h2 (31)

in which
Γ =

1 + 2α

2α + tan β/β
(32)

λ is the geometric parameter of FG-GPLRC shallow arch defined as

λ =
RΘ2

h
=

SΘ
2h

(33)

which increases as the arch length and the half-included angle increase but decreases as the thickness
of cross section increases.

Thus, Equation (28) establishes the relationship between the external load P and the axial
compressive force parameter β. By solving Equation (28), the axial compressive force β under a
different load P can be obtained. Then, by substituting β into Equation (26), the dimensionless radial
displacement ṽ can be obtained. Thus, the P-ṽ curve can be drawn, and the nonlinear buckling behavior
can be analyzed.

4. Buckling Analysis

4.1. Limit Instability Buckling

The limit instability points are local maximum and minimum points on the nonlinear equilibrium
path of an FG-GPLRC shallow arch, which can be determined by routing calculus. The localized load
P can be expressed as an implicit function of the parameter β using Equation (28) as F(P, β) = 0. Hence,
the limit loads can be obtained by setting

dP
dβ

= − ∂F(P, β)/∂β

∂F(P, β)/∂P
= 0 (34)

which leads to the equation of equilibrium between the dimensionless load P and the axial force
parameter β at the limit points, which is expressed as

A2P2 + B2P + C2 = 0 (35)

where
A2 =

β∂A1

∂β
− 4A1, B2 = −4A1 +

β∂B1

∂β
− 2B1, C2 = −2B1 +

β∂C1

∂β
(36)

Solving Equations (28) and (35) simultaneously can yield the axial force parameter β and the limit
point instability load P. Then, by substituting β and P into Equation (26), the dimensionless radial
displacement ṽ, corresponding to the limit instability loads P can be obtained.

4.2. Bifurcation Buckling

The FG-GPLRC shallow arches with elastic rotational constraints may also buckle in a bifurcation
mode. The critical condition for buckling may be stated that the second variation of the total potential
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of the arch and load system is equal to zero for any admissible infinitesimal deformation variations.
Thus, the differential equation for bifurcation buckling is [22].

ṽiv

µ2 + ṽ′′ = 0 (37)

The general solution of Equation (37) is

ṽb = E1 + E2θ + E3 sin(µθ) + E4 cos(µθ) (38)

where E1, E2, E3, and E4 are the undetermined coefficients.
The boundary conditions for deformations are{

ṽb = w̃b = 0
κṽ′′b

R ± kṽ′b = 0
, θ = ±Θ (39)

Substituting Equation (38) into Equation (39) obtains
1 −Θ − sin β cos β

1 Θ sin β cos β

0 −1 2µ2Θα sin β− µ cos β −2µ2Θα cos β− µ sin β

0 1 −2µ2Θα sin β + µ cos β −2µ2Θα cos β− µ sin β




E1

E2

E3

E4

 =


0
0
0
0

 (40)

The existence of a nontrivial solution to Equation (40) for E1–E4 requires that their determinant of
the coefficient matrix vanishes, which leads to the characteristic equation:[

sin β

2α
+ β2

(
sin β− cos β

2αβ

)](
cos β +

sin β

2αβ

)
= 0 (41)

When the first term of Equation (41) is equal to zero, there is

tan β =
β

1 + 2αβ2 (42)

Solving Equation (42) leads to

β = µbΘ = ηbπ (43)

Substituting Equation (43) into Equation (25), the axial compressive force Nb of the FG-GPLRC
shallow arch with elastic rotational constraints corresponding to an antisymmetric buckling is
obtained as

Nb =
µ2

bκ

R2 =
(ηbπ)2κ

(S/2)2 (44)

Substituting Equation (43) into Equation (28), the critical load Pb of the FG-GPLRC shallow arch
with elastic rotational constraints corresponding to an antisymmetric buckling is obtained, as

Pb =
−Bb ±

√
B2

b − 4AbCb

2Ab
(45)

The existence of real solutions for Pb require that expressions in the square root of Equation (45) is
non-negative, i.e.,

B2
b − 4AbCb ≥ 0 (46)
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From Equations (29)–(31), it can be seen that, when β = ηbπ and the GPL distribution model is
given, the Equation (45) is a function of λ and α. By solving Equation (46), the minimum geometric
parameter λb of the FG-GPLRC shallow arch, at which antisymmetric buckling is possible can be solved.

When the second factor of Equation (41) is equal to zero, there is

tan β = −2αβ (47)

From Equation (47), the solution for β can be obtained as

β = µsΘ = ηsπ (48)

which is a parameter related to the value of α. Substituting Equation (48) into Equation (25), the axial
compressive force Ns of the FG-GPLRC shallow arch with elastic rotational constraints is obtained as

Ns =
(ηsπ)2κ

(S/2)2 (49)

Substituting the solution given by Equation (47) into Equation (28) leads to

P = 0 (50)

By solving Equations (24), (49) and (50), the lowest buckling load qR can be obtained as

qR = Ns =
(ηsπ)2κ

(S/2)2 (51)

which indicates that the normal axial compressive force qR during buckling is equal to the axial
compressive force Ns.

5. Comparison and Discussion

In order to meet the requirement of Donnell’s shallow shell theory, in the following numerical
FG-GPLRC shallow arch models, the width of section is chosen as b = 0.3 m, the total thickness is
chosen as h = 0.25 m, and the axial length of the arch is chosen as S = 20 m. The geometric parameters
of GPL are aGPL = 2.5 µm, bGPL = 1.5 µm and tGPL = 1.5 nm. Young’s modulus of polymer matrix and
GPL are 3 GPa and 1010 GPa, respectively. The density of the polymer matrix and GPL are 1200 kg/m3

and 1062.5 kg/m3, respectively. The material properties of GPLs that are used in this paper are referred
from Ref. [6].

5.1. Effect of the Number of Nanocomposite Layers on the Numerical Results

When a multilayer graphene-reinforced nanocomposite is used to simulate functionally graded
properties, the number of layers of the nanocomposite (NL) will significantly affect the simulation
results. Hence, the elastically constrained FG-GPLRC shallow arch was simulated using GPLRCs
with varying numbers of layers to examine the effect of the number of nanocomposite layers on the
critical buckling load of the arch. The calculated results are summarized in Table 1. Note that the limit
point buckling loads of FG-GPLRC shallow arches are obtained by solving Equations (28) and (35)
simultaneously, while the bifurcation loads are obtained by solving Equation (45).

As demonstrated in Table 1, there is a relatively insignificant difference between the buckling
loads of the elastically constrained functionally graded X-GPLRC arch, with NL = 20 and NL = 1000.
This suggests that the layers number of the nanocomposite NL = 20 is sufficient to facilitate an accurate
simulation of functionally graded property, whose thickness is continuously changing. Therefore,
NL = 20 was used in the subsequent numerical simulation and analysis.
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Additionally, the proposed analytical solutions of the stable equilibrium path and the buckling
load of the elastically constrained FG-GPLRC shallow arch are validated by finite element (FE)
solutions, which were obtained using the commercial FE software ANSYS. The FG-GPLRC shallow
arch model was constructed using SHELL181 layered elements and the elastic constraints at the
ends were established using COMBIN14 elements. The circular arch was meshed into 100 SHELL181
elements and six COMBIN14 elements. A comparison of the analytical and FE solutions is shown in
Figure 3.

Table 1. Effect of layers number NL on critical buckling load (X-GPLRC, α = 1.5, S/h = 80, WGPL = 0.5%,
λ = 8).

NL Limit Point Buckling Bifurcation Buckling

4 13.823 7.776
6 14.218 8.138

10 14.419 8.175
20 14.503 8.228

1000 14.531 8.247
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In Figure 3, vc and f are the radial displacement and rise of the FG-GPLRC shallow arch.
The analytical solutions are highly consistent with the FE simulation results, which indicates that
the analytical method proposed in this study can be used to obtain a sufficiently accurate stable
equilibrium path and critical buckling load of the elastically constrained FG-GPLRC shallow arch.

5.2. Limit Point Buckling Analysis

The limit point buckling loads of the elastically constrained arch when reinforced with GPLs in
various distribution patterns are compared in Table 2. GPLs of various distribution patterns (U-, X-,
O-, and A-types) significantly increase the critical buckling load of the elastically constrained pure
epoxy resin arch, as demonstrated in Table 2. In addition, GPLs of the X-type distribution pattern
increase the critical buckling load of the elastically constrained pure epoxy resin arch to the highest
extent, followed by GPLs of the U-, A-, and O-type distribution patterns, in that order. This is because
the elastically constrained composite arch reinforced with GPLs of the X-type distribution pattern
contains a relatively large amount of reinforcing GPL filler in the top and bottom layers and is capable
of resisting a relatively high bending stress; consequently, the critical buckling load of this type of
reinforced composite arch is relatively high. GPLs with the O-type distribution pattern, the opposite
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of the X-type distribution pattern, increase the critical buckling load of the elastically constrained
composite arch relatively insignificant. This is because most of the GPL fillers in the O-type distribution
are concentrated near the neutral axis of the section, leading to a minor increase in cross sectional
bending stiffness.

Table 2. Effect of graphene nanoplatelets (GPL) distribution patterns on buckling load (S/h = 80,
WGPL = 0.5%, λ = 12).

α U X O A Pure

0 22.836 28.202 16.941 20.406 8.584
1.5 18.952 24.110 13.580 16.873 7.124
∞ 18.764 23.913 13.418 16.158 7.053

Figure 4 shows the nonlinear equilibrium paths and buckling loads for the elastically constrained
FG-GPLRC shallow arch with various mass fractions of GPLs in the X-type distribution pattern
(WGPL = 0.0% signifies the pure epoxy resin arch). As shown in Figure 4, as the mass fraction of GPLs
increases, the critical load for the elastically constrained FG-GPLRC shallow arch to undergo limit point
buckling increases, and the stability of the elastically constrained FG-GPLRC shallow arch increases.
In addition, when compared to the elastically constrained pure epoxy resin arch, the enhancing effects
of GPLs increase significantly as the GPL content increases.
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Figure 5 shows the effects of the geometric dimensions of GPLs on the limit point buckling
load of the elastically constrained X-type FG-GPLRC shallow arch when the GPL content is fixed.
As demonstrated in Figure 5, when the height/width (aGPL/bGPL) ratio of GPLs is fixed, the buckling
load for the elastically constrained X-type FG-GPLRC shallow arch increases as the width/thickness
(bGPL/tGPL) ratio increases. When the bGPL/tGPL ratio is greater than 103, the effect of the bGPL/tGPL

ratio on the buckling load is no longer significant. When the bGPL/tGPL ratio is fixed, the buckling
load increases as the aGPL/bGPL ratio increases. However, when the aGPL/bGPL ratio is greater than 4,
the effect of the aGPL/bGPL ratio on the buckling load gradually decreases as the aGPL/bGPL ratio
increases. Specifically, the greater the aGPL/bGPL and bGPL/tGPL ratios of GPLs, the larger the surface
area of GPLs, and the smaller the thickness of GPLs. Therefore, within a certain range, the larger and
thinner GPLs have more significant enhancing effect on the stable bearing capacity of the elastically
constrained composite shallow arch.
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Figure 5. Effect of GPLs geometric dimensions on the limit point buckling load.

Figure 6a shows the limit point buckling loads for the elastically constrained X-type FG-GPLRC
shallow arch under various constraint stiffness conditions. The geometric parameter λ of the elastically
constrained FG-GPLRC shallow arch varies between 4 and 60. Specifically, the constraint stiffness
parameters α = 0 and α = ∞ signify a completely clamped FG-GPLRC shallow arch and a completely
hinged FG-GPLRC shallow arch, respectively. As shown in Figure 6a, as α gradually increases from
0 to ∞, the FG-GPLRC shallow arch gradually transitions from being a completely clamped arch to
being a completely hinged arch, and the buckling load of the arch gradually decreases. When α = 1,
the critical buckling load of the elastically constrained FG-GPLRC shallow arch is very close to that of
a completely hinged FG-GPLRC shallow arch, thus suggesting that a certain low stiffness can facilitate
a relatively satisfactory simulation of a completely hinged FG-GPLRC shallow arch.
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In addition, the limit point buckling load of the elastically constrained X-type FG-GPLRC shallow
arch increases as the geometric parameter λ increases. When λ is relatively low, the elastically
constrained FG-GPLRC shallow arch is equivalent to a curved beam that undergoes nonlinear bending
under loading; it has no extreme points for limit point buckling, and thus will not undergo buckling
failure, as shown in Figure 6b.
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5.3. Bifurcation Buckling Analysis

According to Equation (46), when the elastically constrained FG-GPLRC shallow arch undergoes
antisymmetric bifurcation buckling, its geometric parameter must meet the following condition:
λ ≥ λb. The values of the critical geometric parameter λb required for the arch to undergo bifurcation
buckling of the FG-GPLRC arches under a α = 1.5 elastic constraint condition are summarized Table 3.

Table 3. Critical geometrical parameter λb (S/h = 80, aGPL/bGPL = 4, bGPL/tGPL = 103, WGPL = 0.5%).

Patterns U X O A

λb 2.3584 2.6912 1.9702 2.4167

As demonstrated in Table 3, when α is fixed, the value of λb for the O-type FG-GPLRC shallow arch
to undergo bifurcation buckling is the smallest, suggesting that the elastically constrained FG-GPLRC
shallow arch with GPLs in the O-type distribution pattern is the most prone to bifurcation buckling,
followed by the FG-GPLRC shallow arches with GPLs of the U-, A-, and X-type distribution patterns,
in that order.
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Figure 7. Effect of constraint stiffness and GPLs distribution patterns on buckling model: (a) Load
displacement curve (X-GPLRC, α = 1.5); (b) load displacement curve (O-GPLRC, α = 1.5); and, (c) load
displacement curve (O-GPLRC, α = 0.1).

Figure 7 shows the buckling behavior of the FG-GPLRC shallow arch with GPLs in various
distribution patterns under various constraint stiffness conditions. As shown in Figure 7a, when
α = 1.5, the bifurcation buckling point of the X-type FG-GPLRC shallow arch occurs after its limit
point buckling point, indicating that limit point buckling will occur before bifurcation buckling for



Materials 2018, 11, 910 13 of 15

this type of arch. Under the same condition, the bifurcation buckling point of the O-type FG-GPLRC
shallow arch occurs before its limit point buckling point, indicating that bifurcation buckling will occur
before limit point buckling for this type arch (Figure 7b). This suggests that the distribution pattern of
GPLs can alter the buckling mode of elastically constrained FG-GPLRC shallow arches. In addition, the
stable equilibrium path for the O-type FG-GPLRC shallow arch when α = 0.1 was analysed, as shown
in Figure 7c. A comparison of Figure 7b,c shows that, under the same conditions, altering the constraint
stiffness can result in a change in the buckling mode of the FG-GPLRC shallow arch.

Figure 8 shows the critical bifurcation buckling loads for the FG-GPLRC shallow arch under
various constraint stiffness conditions (i.e., various values of α). As demonstrated in Figure 8, as α

gradually increases, the constraint at the ends of the FG-GPLRC shallow arch gradually transitions
from being a clamp constraint to being a hinge constraint, and the critical bifurcation buckling load
gradually decreases. In addition, for the FG-GPLRC shallow arch with GPLs of various distribution
patterns, the critical bifurcation buckling load of the FG-GPLRC shallow arch with GPLs of the X-type
distribution pattern is the largest, followed by those of the FG-GPLRC shallow arch with GPLs of the
U-, A-, and O-type distribution patterns, in that order. This finding is consistent with the conclusion
that is derived from Table 2.
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6. Conclusions

To investigate the buckling behavior of an elastically constrained FG-GPLRC shallow arch under
uniform radial load, this study establishes the nonlinear stable equilibrium equation for this type of
arch while using the Halpin-Tsai micromechanical model of graphene and the principle of virtual work.
The equation is then solved to determine the critical load of the elastically constrained FG-GPLRC
shallow arch to undergo symmetric limit point buckling and antisymmetric bifurcation buckling under
uniform radial load. Next, the proposed method that is employed in this study is validated through
a finite element analysis. A parametric analysis was also carried out using the proposed theoretical
method, and the results show that GPLs in various distribution patterns (U-, X-, O-, and A-types)
all increase to some extent the critical buckling load of the elastically constrained pure epoxy resin
arch. The critical buckling load of the elastically FG-GPLRC shallow arch reinforced with GPLs of
the X-type distribution pattern, is the highest, so this type arch is the most stable. When the total
graphene content is fixed, the enhancing effects increase as the aGPL/bGPL and bGPL/tGPL ratios of
graphene increase. When the aGPL/bGPL ratio is greater than 4 and the bGPL/tGPL ratio is greater
than 103, the enhancing effects of the geometric shape of graphene on the buckling load of the arch are
no longer significant. As α gradually increases, the constraint at the ends of the FG-GPLRC shallow



Materials 2018, 11, 910 14 of 15

arch gradually transitions from a clamp constraint to a hinge constraint, and the critical buckling load
decreases. Altering the distribution pattern of graphene or the stiffness of the constraint at the ends
of the FG-GPLRC shallow arch can result in a change in the buckling mode of the arch. Functionally
graded graphene-reinforced composites have advantageous material properties, and one can therefore
expect that it will be more and more commonly applied in engineering as the development of material
manufacturing technology. The method and results that are presented in this paper would be useful as
a reference for the stability design of the FG-GPLRC shallow arches in the future.
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