

Elucidating the Photocatalytic Behavior of TiO₂-SnS₂ Composites Based on Their Energy Band Structure

4 Marin Kovacic, Jozefina Katic, Hrvoje Kusic *, Ana Loncaric Bozic, and

5 Mirjana Metikos Hukovic *

Supplementary

6 Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, Zagreb 10000,

7 Croatia; mkovacic1@fkit.hr (M.K.); jkatic@fkit.hr (J.K.); abozic@fkit.hr (A.L.B.)

8 * Correspondence: hkusic@fkit.hr (H.K.); mmetik@fkit.hr (M.M.H.); Tel.: +385-1-4597-123 (H.K.); +385-1-4597-

9 140 (M.M.H.); Fax: +385-1-4597-142 (H.K.); +385-1-4597-139 (M.M.H.)

10 Received: 29 May 2018; Accepted: 14 June 2018; Published: 19 June 2018

11**Table S1.** FFD matrix for removal (M1) and conversion (M2) of diclofenac by solar/TiO2-SnS2-COMM12process after 60 min exposure.

	Vari	ables	Experime	ntal results	Respo	onse, Y
Exp.	X_1	X_3	ΔDO	CF, %	Y_1	Y2
#	coded	coded	removal	conversion	ΔDCF, % removal	ΔDCF, % conversion
1	-1	-1	68.68	53.89	72.61	57.63
2	0	-1	12.89	11.27	6.84	5.41
3	1	-1	2.01	1.36	4.14	3.47
4	-1	0	80.98	66.06	78.06	63.40
5	0	0	6.42	5.34	8.68	7.40
6	1	0	1.71	1.07	2.38	1.67
7	-1	1	82.18	68.10	81.17	67.02
8	0	1	4.39	3.44	8.19	7.24
9	1	1	1.07	0.44	-1.73	-2.27

13 14

1

Table S2. BBD matrix for removal (M3) and conversion (M4) of diclofenac by solar/TiO₂-SnS₂-COMM/H₂O₂ process after 60 min exposure.

	Variables			Experime	ntal results	Respo	Response, Y		
Exp.	X_1	X_2	X_3	ΔD	CF, %	Y_1	Y_2		
#	andad	andod	andod	nom orral	convion	ΔDCF , %	ΔDCF , %		
	coded	coueu	coueu	removal	conversion	removal	conversion		
1	-1	-1	0	79.41	68.04	77.37	64.93		
2	1	-1	0	1.80	1.17	5.26	6.50		
3	-1	1	0	90.11	85.78	86.65	80.44		
4	1	1	0	3.19	2.93	5.23	6.05		
5	-1	0	-1	71.99	56.34	76.50	63.47		
6	1	0	-1	5.13	4.92	4.14	3.61		
7	-1	0	1	78.05	66.77	79.04	68.08		
8	1	0	1	2.37	2.26	-2.13	-4.87		
9	0	-1	-1	11.45	11.27	8.98	7.25		
10	0	1	-1	15.56	15.31	14.52	13.51		
11	0	-1	1	6.99	2.24	8.03	4.04		
12	0	1	1	9.27	8.82	11.74	12.84		
13	0	0	0	6.64	4.55	6.65	4.55		
14	0	0	0	6.64	4.52	6.65	4.55		
15	0	0	0	6.66	4.58	6.65	4.55		

	Vari	ables	Experime	ntal results	Response, Y		
Exp.	X_1	X_3	ΔDO	CF, %	Y_1	Y ₂	
#	codod	coded	romoval	conversion	ΔDCF , %	ΔDCF , %	
	coueu	coueu	Temoval	conversion	removal	conversion	
1	-1	-1	71.78	58.26	69.18	58.85	
2	0	-1	48.04	45.00	54.95	45.73	
3	1	-1	9.98	8.33	5.67	7.01	
4	-1	0	88.04	75.35	87.79	73.56	
5	0	0	73.47	57.70	70.56	57.44	
6	1	0	15.11	13.67	18.28	15.71	
7	-1	1	89.71	76.21	92.56	77.41	
8	0	1	76.32	58.76	72.33	58.28	
9	1	1	15.93	14.27	17.07	13.55	

15**Table S3.** FFD matrix for removal (M4) and conversion (M5) of diclofenac by solar/TiO₂-SnS₂-HT16process after 60 min exposure.

Table S4. BBD matrix for removal (M7) and conversion (M8) of diclofenac by solar/TiO₂-SnS₂-HT/H₂O₂ process after 60 min exposure.

		Variables		Experime	ntal results	Response, Y		
Exp.	X_1	X_1 X_2		ΔD	CF, %	Y_1	γ_2	
#	لممامم	لملمه	لممامم			ΔDCF , %	ΔDCF, %	
	coded	coded	coded	removal	conversion	removal	conversion	
1	-1	-1	0	91.50	82.29	95.15	79.54	
2	1	-1	0	10.73	7.94	8.15	7.30	
3	-1	1	0	94.57	91.02	97.15	91.66	
4	1	1	0	41.40	16.52	37.74	19.27	
5	-1	0	-1	89.40	69.85	84.86	70.07	
6	1	0	-1	12.82	7.57	14.51	5.68	
7	-1	0	1	91.02	79.89	89.33	81.78	
8	1	0	1	8.73	1.77	13.27	1.54	
9	0	-1	-1	37.53	24.54	38.42	27.07	
10	0	1	-1	50.98	41.23	52.94	40.36	
11	0	-1	1	40.73	31.23	38.77	32.10	
12	0	1	1	56.71	45.43	55.82	42.90	
13	0	0	0	53.33	39.38	53.47	39.70	
14	0	0	0	53.32	39.44	53.47	39.70	
15	0	0	0	53.77	40.28	53.47	39.70	

¹⁹

Table S5. Specific surface area of constituents of studied TiO₂-SnS₂ composites.

Material	BET surface area, m ² g ⁻¹
TiO ₂ P25	50 ± 15 [1]
SnS2 MKN-900	0.83 ± 0.01
TiO ₂ -HT	128.39 ± 1.87
SnS ₂ -HT	22.62 ± 0.29

Table S6. Model equations of derived RSM models for DCF removal and conversion by solar/TiO₂ SnS₂ without and with an oxidant H₂O₂.

Process	Catalyst type	Model #	Model equation
solar/TiO2-SnS2	COMM	M1	$Y_1 = 8.68 - 37.84 \times X_1 + 31.54 \times X_{1^2} + 0.68 \times X_3 - 1.17 \times X_{3^2} - 3.61 \times X_1 \times X_3$

		M2	$Y_2 = 7.40 - 30.86 \times X_1 + 25.14 \times X_{1^2} + 0.91 \times X_3 - 1.07 \times X_{3^2} -$
		IVIZ	$3.78 \times X_1 \times X_3$
			$Y_3 = 6.65 - 38.38 \times X_1 + 32.78 \times X_{1^2} + 2.31 \times X_2 + 4.21 \times X_{2^2} -$
		M3	$0.93 \times X_3 - 0.037 \times X_{3^2} - 2.33 \times X_1 \times X_2 - 2.20 \times X_1 \times X_3 - 0.46 \times$
solar/TiO2-	COMM		$X_2 \times X_3$
SnS_2/H_2O_2	COMM		$Y_4 = 4.55 - 33.20 \times X_1 + 29.05 \times X_{1^2} + 3.76 \times X_2 + 5.88 \times X_{2^2} -$
		M4	$0.97 \times X_3 - 1.02 \times X_{3^2} - 3.99 \times X_1 \times X_2 - 3.27 \times X_1 \times X_3 + 0.64 \times$
			$X_2 \times X_3$
		M5	$Y_5 = 70.56 - 34.75 \times X_1 - 17.52 \times X_{1^2} + 8.69 \times X_3 - 6.91 \times X_{3^2} - $
color/TiOs SpSs	UТ		$3.00 \times X_1 \times X_3$
S01a1/1102-31132	111	M6	$Y_6 = 57.44 - 28.93 \times X_1 - 12.80 \times X_{1^2} + 6.27 \times X_3 - 5.43 \times X_{3^2} -$
			$3.00 \times X_1 \times X_3$
			$Y_7 = 53.47 - 36.60 \times X_1 + 5.04 \times X_{1^2} + 7.90 \times X_2 + 1.03 \times X_{2^2} +$
		M7	$0.81 \times X_3 - 8.02 \times X_{3^2} + 6.90 \times X_1 \times X_2 - 1.43 \times X_1 \times X_3 + 0.63 \times X_1 \times X_2 - 1.43 \times X_2 \times X_3 + 0.63 \times X_2 \times X_2 \times X_3 + 0.63 \times X_2 \times X_3 \times X_3 + 0.63 \times X_2 \times X_3 \times X_3 \times X_3 \times X_3 + 0.63 \times X_3 \times X_$
solar/TiO2-	ЦΤ		$X_2 \times X_3$
SnS_2/H_2O_2	111		$Y_8 = 39.70 - 36.16 \times X_1 + 6.95 \times X_{1^2} + 6.02 \times X_2 + 2.79 \times X_{2^2} +$
		M8	$1.89 \times X_3 - 6.88 \times X_{3^2} - 0.036 \times X_1 \times X_2 - 3.96 \times X_1 \times X_3 - 0.62 \times X_1 \times X_2 - 0.02 \times X_2 \times X_2 - 0.026 \times X_2 \times X_2 \times X_2 - 0.026 \times X_2 \times X$
			$X_2 \times X_3$

22 23

Table S7. Analysis of variance (ANOVA) of RSM models M1 and M2 predicting removal and conversion of diclofenac by solar/TiO₂-SnS₂-COMM process after 60 min exposure (transformed and non-transformed response values).

With non-transformed values												
Eastor	Statistical analysis											
ractor	SS		df		Μ	MSS		F		1		
(coded)	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2		
Model	10638.661	7044.065	5	5	2127.732	1408.813	67.919	48.417	0.0028*	0.0045*		
X_1	8591.707	5715.815	1	1	8591.707	5715.815	274.255	196.438	0.0005*	0.0008*		
X_{1^2}	2.737	1263.719	1	1	2.737	1263.719	0.087	43.431	0.7868	0.0071*		
X_2	52.105	4.977	1	1	52.105	4.977	1.663	0.171	0.2876	0.7070		
X_{2^2}	1989.379	2.297	1	1	1989.379	2.297	63.503	0.079	0.0041*	0.7970		
$X_1 \times X_2$	2.732	57.258	1	1	2.732	57.258	0.087	1.968	0.7870	0.2553		
Residual	93.982	87.292	3	3	31.327	29.097						
Total	10732.643	7131.357	8	8								
				T 4								

With	transformed values
	Statistical analysi

Easter	Statistical analysis											
(coded)	SS		df		MSS		F		р			
	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2		
Model	0.796	28.833	5	5	0.159	5.767	103.142	67.386	0.0015*	0.0028*		
X_1	0.731	27.534	1	1	0.731	27.534	473.293	321.747	0.0002*	0.0004*		
X_{1^2}	0.013	0.091	1	1	0.013	0.091	8.181	1.059	0.0646	0.3791		
X_2	0.034	0.725	1	1	0.034	0.725	21.817	8.478	0.0185*	0.0619		
X_{2^2}	0.001	0.015	1	1	0.001	0.015	0.505	0.172	0.5287	0.7058		
$X_1 \times X_2$	0.018	0.469	1	1	0.018	0.469	11.915	5.476	0.0409*	0.1012		
Residual	0.005	0.257	3	3	0.002	0.086						
Total	0.801	29.090	8	8								

25

p<0.05 means that model or model term is significant

Materials 2018, 11, 1041 FOR PEER REVIEW

27	
28	

Table S8. Analysis of variance (ANOVA) of RSM models M3 and M4 predicting removal and ersion of diclofenac by solar/TiO2-SnS2-COMM/H2O2 process after 60 min exposure (transformed

	-
29	а

conversion of diciofenaci	y solar/1102-51	152-COIVIIVI/H2	O ₂ process and	er 60 min exp	osure (trar
and non-transformed resp	oonse values).				

With non-transformed values											
Easton	Statistical analysis										
ractor (coded)	, SS		df		MSS		F		р		
(coueu)	M3	M 4	M3	M 4	M3	M4	M3	M4	M3	M 4	
Model	15881.136	12260.441	9	9	1764.571	1362.271	98.879	30.899	< 0.0001*	0.0007*	
X_1	11785.644	8820.169	1	1	11785.644	8820.169	660.420	200.058	< 0.0001*	< 0.0001*	
X_{1^2}	3966.537	3115.435	1	1	3966.537	3115.435	222.269	70.664	< 0.0001*	0.0004^{*}	
X_2	42.769	113.390	1	1	42.769	113.390	2.397	2.572	0.1823	0.1697	
X_{2^2}	65.323	127.863	1	1	65.323	127.863	3.660	2.900	0.1139	0.1493	
X_3	6.956	7.515	1	1	6.956	7.515	0.390	0.170	0.5598	0.6968	
X_{3^2}	0.005	3.854	1	1	0.005	3.854	0.000	0.087	0.9874	0.7794	
$X_1 \times X_2$	21.655	63.776	1	1	21.655	63.776	1.213	1.447	0.3208	0.2829	
$X_1 \times X_3$	19.409	42.870	1	1	19.409	42.870	1.088	0.972	0.3448	0.3694	
$X_2 \times X_3$	0.844	1.618	1	1	0.844	1.618	0.047	0.037	0.8364	0.8556	
Residual	89.228	220.440	5	5	17.846	44.088					
Total	15970.365	12480.881	14	14							
				W	ith transform	med values					
Factor					Statis	stical analys	sis				
(coded)	SS		df		MSS		1	F	p	,	
(coucu)	M3	M4	M3	M4	M3	M4	M3	M4	M3	M 4	
Model	24.376	27.235	9	9	2.708	3.026	98.253	22.738	< 0.0001*	0.0015*	
X_1	21.982	21.975	1	1	21.982	21.975	797.443	165.123	< 0.0001*	< 0.0001*	
X_{1^2}	1.345	2.331	1	1	1.345	2.331	48.806	17.514	0.0009*	0.0086*	
X_2	0.208	0.999	1	1	0.208	0.999	7.555	7.510	0.0404*	0.0408*	
X_{2^2}	0.093	0.103	1	1	0.093	0.103	3.362	0.776	0.1262	0.4188	
X_3	0.362	0.963	1	1	0.362	0.963	13.138	7.235	0.0151*	0.0433*	
X_{3^2}	0.302	0.456	1	1	0.302	0.456	10.939	3.430	0.0213*	0.1232	
$X_1 \times X_2$	0.050	0.118	1	1	0.050	0.118	1.821	0.888	0.2351	0.3893	
$X_1 \times X_3$	0.181	0.224	1	1	0.181	0.224	6.570	1.686	0.0505	0.2508	
$X_2 \times X_3$	0.000	0.283	1	1	0.000	0.283	0.006	2.130	0.9433	0.2043	
Residual	0.138	0.665	5	5	0.028	0.133					
Total	24.513	27.901	14	14							

30 31

Table S9. Analysis of variance (ANOVA) of RSM models M5 and M6 predicting removal and conversion of diclofenac by solar/TiO2-SnS2-HT process after 60 min exposure.

Factor	Statistical analysis											
(code	SS		df		MSS		F		р			
d)	M5	M6	M5	M6	M5	M6	M5	M6	M5	M6		
Model	8444.841	5679.537	5	5	1688.968	1135.907	43.308	279.397	0.0054*	0.0003*		
X_1	7245.976	5020.347	1	1	7245.976	5020.347	185.799	1234.84 6	0.0009*	<0.0001*		
X_{1^2}	614.018	327.830	1	1	614.018	327.830	15.744	80.636	0.0286*	0.0029*		
X_2	453.327	236.213	1	1	453.327	236.213	11.624	58.101	0.0422*	0.0047*		
X_{2^2}	95.634	59.073	1	1	95.634	59.073	2.452	14.530	0.2153	0.0317*		
$X_1 \times X_2$	35.886	36.074	1	1	35.886	36.074	0.920	8.873	0.4082	0.0587		
Resid ual	116.997	12.197	3	3	38.999	4.066						
Total	8561.837	5691.734	8	8								
$\frac{1}{2}$ * $v < 0.05$ means that model or model term is significant												

5 of 14

34 35

Table S10. Analysis of variance (ANOVA) of RSM models **M7** and **M8** predicting removal and conversion of diclofenac by solar/TiO₂-SnS₂-HT/H₂O₂ process after 60 min exposure .

Lester	Statistical analysis											
Factor	SS		df		MSS		F		р			
(coded)	M7	M 8	M 7	M8	M 7	M 8	M 7	M8	M7	M8		
Model	11783.8 82	11252.799	9	9	1309.320	1250.311	67.906	164.620	0.0001*	<0.0001*		
X_1	10717.6 58	10457.913	1	1	10717.66	10457.913	555.855	1376.92 3	<0.0001*	<0.0001*		
X_{1^2}	93.846	178.300	1	1	93.846	178.300	4.867	23.476	0.0785	0.0047*		
X_2	498.655	290.338	1	1	498.655	290.338	25.862	38.227	0.0038*	0.0016*		
X_{2^2}	3.943	28.701	1	1	3.943	28.701	0.205	3.779	0.6700	0.1095		
X_3	5.201	28.624	1	1	5.201	28.624	0.270	3.769	0.6257	0.1099		
X_{3^2}	237.463	174.949	1	1	237.463	174.949	12.316	23.034	0.0171*	0.0049*		
$X_1 \times X_2$	190.432	0.005	1	1	190.432	0.005	9.876	0.001	0.0256*	0.9801		
$X_1 \times X_3$	8.156	62.772	1	1	8.156	62.772	0.423	8.265	0.5441	0.0348*		
$X_2 \times X_3$	1.598	1.540	1	1	1.598	1.540	0.083	0.203	0.7850	0.6714		
Residua l	96.407	37.976	5	5	19.281	7.595						
Total	11880.2 89	11290.775	14	14								

36

*p<0.05 means that model or model term is significant

Figure S1. Diffuse reflectance spectra of immobilized TiO₂-SnS₂ composites with different SnS₂ wt%;
 commercial (COMM) (A) and hydrothermal (HT) (B)

41 Figure S2. Determination of pHpzc values TiO₂-SnS₂-COMM (A) and TiO₂-SnS₂-HT (B) composites.

42

Figure S3. Kinetics of DCF removal by solar/TiO₂-SnS₂-COMM process; TiO₂-SnS₂-COMM prepared
 by immobilization using AEROXIDE TIO₂ P25 and SnS₂ MKN-900 (Experimental conditions listed in
 Table 1, and experimental matrix provided by FFD, Table S1, Supplementary material).

49 Figure S4. Kinetics of DCF removal by solar/TiO₂-SnS₂-COMM/H₂O₂ process; TiO₂-SnS₂-COMM
 50 prepared by immobilization using AEROXIDE TIO₂ P25 and SnS₂ MKN-900 (Experimental conditions 1 listed in Table 1, and experimental matrix provided by BBD, Table S2, Supplementary material).

- 52
- 53

55 **Figure S5.** Kinetics of DCF removal by solar/TiO₂-SnS₂-HT process; TiO₂-SnS₂-HT prepared by 56 hydrothermal method (Experimental conditions listed in Table 1, and experimental matrix provided 57 by FFD, Table S3, Supplementary material).

Figure S6. Kinetics of DCF removal by solar/TiO₂-SnS₂-HT/H₂O₂ process; TiO₂-SnS₂-HT prepared by
 hydrothermal method (Experimental conditions listed in Table 1, and experimental matrix provided
 by BBD, Table S4, Supplementary material).

- 63
- 64

Figure S7. Comparison of DCF conversion using TiO₂-SnS₂-COMM and TiO₂-SnS₂-HT without H₂O₂ (**A**) and with H₂O₂ addition (**B**) under solar radiation at conditions set by FFD (Tables 1, and S1 and S3, Supplementary material) and BBD (Tables 1, and S2 and S4, Supplementary material), respectively.

Figure S8. Residual diagnostics of model M6 for the prediction of the conversion of DCF by solar/TiO₂-SnS₂-HT/H₂O₂ process: (A) observed *vs.* predicted plot, (B) normal probability plot, and (C) internally studentized residuals *vs.* predicted values plot.

Detailed Experimental section related to (1) Determination of semiconducting properties by electrochemical measurements, and (2) Calculations and procedure used in RSM modeling

77 1. .Determination of semiconducting properties by electrochemical measurements

Circular shaped titanium samples (Alfa Aesar, 99.9 wt.% Ti) were abraded with 1000 grit SiC
 papers, ultrasonically cleaned with ethanol and redistilled water and served as solid substrates for

80 TiO₂-HT and SnS₂-HT pure components, as well as for TiO₂-SnS₂-COMM and TiO₂-SnS₂-HT

81 composites immobilization as was described in the Experimental section, subsection 2.2. 82 Photocatalysts synthesis and immobilization (main text). As prepared substrates were embedded in a 83 Teflon holder, with an area, A=1 cm² exposed to the solution and were used as working electrodes.

84 All electrochemical measurements were performed in a conventional three-electrode cell: the 85 working electrode was Ti coated electrode, the counter electrode was a large area platinum electrode 86 and the reference electrode, to which all potentials in the paper are referred, was Ag | AgCl in 3.0 mol 87 dm^{-3} KCl (E = 0.208 V vs. standard hydrogen electrode). The electrolyte was 3% NaCl solution, pure 88 or spiked with DCF (0.1 mM). A Solartron potentiostat/galvanostat 1287 with FRA 1260 controlled 89 by CorrWare® and ZView® softwares was used in these measurements.

90 The structure of the solid liquid interface, i.e., the structure of the TiO₂-SnS₂ catalysts electrolyte 91 solution interface (TiO₂-SnS₂-COMM and TiO₂-SnS₂-HT composite films on titanium substrate) was 92 investigated at the open circuit potential (E_{ocp}) using electrochemical impedance spectroscopy (EIS) 93 performed in the frequency range from 100 kHz to 5 mHz at an *ac* voltage amplitude of ±5 mV. The 94 experimental data were fitted using the complex non-linear least squares (CNLS) fit analysis software 95 [2] and values of the elements of the proposed electric equivalent circuit (EEC) were derived with χ^2 96 values less than 5 \times 10⁻³ (errors in parameter values of 1–3%).

97 Due to the frequency dispersion (mostly attributed to the "capacitance dispersion"), the 98 capacitor in EECs was replaced with the constant phase element (CPE). The impedance of CPE is 99 defined as $Z(CPE)=[Q(j\omega)^n]^{-1}$, where $j\omega$ is the complex variable for sinusoidal perturbations with 100 $\omega = 2\pi f$, and *n* is the exponent of CPE, while *Q* is the frequency–independent parameter of CPE, which 101 represents a pure capacitance when n = 1 [3]. Values of 0.70 < n < 1 indicate inhomogeneities at the 102 microscopic level at the metal electrolyte interface (surface roughness, adsorbed species, etc.) [4,5]. 103 The numerical values of interfacial capacitances, C were calculated using the Brug's relation, valid 104

when the ohmic (electrolyte) resistance, R_{Ω} is much smaller than the charge–transfer resistance [3]:

$$C = \left(Q \cdot R_{\Omega}^{1-n} \right)^{1/n} \tag{1}$$

105 The electronic-semiconducting properties of TiO2-HT, SnS2-HT, TiO2-SnS2-COMM and TiO2-106 SnS2-HT catalyst films were investigated by Mott–Schottky method [6]. The capacitance values of the 107 titanium | composite film | solution interface, required for Mott–Schottky analysis, were obtained from 108 EIS measurements. The imaginary part of impedance (Z_{imag}) was recorded as a function of the 109 electrode potential and the frequency (ranging from 3000-30 Hz). The potential was swept in the 110 negative direction from 0 V at a sweep rate of 50 mV s⁻¹. The rapid cathodic scan of 50 mV s⁻¹ was 111 used to avoid the change in the film thickness during measurements [7]. From the measured Zimag 112 values, it was possible to calculate CPE parameter $Q = -1/\omega Z_{imag}$ taking into account the angular 113 frequency, $\omega = 2\pi f$. From Q value and CPE exponent n and R_Ω, the effective interfacial capacitance, C, 114 was calculated using the expression developed by Brug et al. [3]; eq. (1). The C values consist of the 115 series combination of Helmholtz double layer capacitance (CH) with the parallel combination of the

116 space–charge capacitance (C_{sc}) and is equal to:

$$C^{-1} = C_{\rm H}^{-1} + C_{\rm sc}^{-1} \tag{2}$$

117 All capacitance values were corrected taking Helmholtz capacitance to be 50 μ F cm⁻² [8].

118 To avoid the frequency dispersion of the effective interfacial capacitance in MS tests and 119 eliminate the contribution of the surface states, the data obtained at seven frequencies (ranging from 120 3000-30 Hz) were analyzed according to the procedure proposed by Harrington et al. [8,9]. Detailed 121 description of Devine-Harrington procedure can be found in literature [10-12]. By applying 122 Devine-Harrington procedure, the characteristic frequency was determined to be 1000 Hz. Hence the

123 results provided refer to this frequency.

124 2. .Calculations and procedure used in RSM modeling

125 The influence of pH, [H₂O₂] and SnS₂ wt % within TiO₂-SnS₂ composites, on DCF removal and 126 conversion was correlated by means of response surface modeling (RSM). The values of process 127 parameters are represented by independent variables: X1, X2 and X3 (Table 1, main text), and 128 according to the number of parameters to be varied within solar driven photocatalytic treatment, 129 experimental matrices were expressed by 3² FFD for solar/TiO₂-SnS₂ (Tables S1 and S3, respectively) 130 and BBD for solar/TiO₂-SnS₂/H₂O₂ processes (Tables S2 and S4, respectively). DCF removal and 131 conversion extents after 60 min exposure to solar irradiation were chosen as processes responses (Y). 132 The combined influence of studied parameters on processes performance is described by quadratic 133 polynomial equations, i.e. RSM models [13], and evaluated by the (i) analysis of variance (ANOVA) 134 considering following statistical parameters: Fisher F-test value (F), its probability value (p), 135 regression coefficients (pure; R^2 , adjusted; R_{adl}^2 , predicted; R_{pre^2}), *t*-test value, and (ii) graphical based 136 analysis, so-called "residual diagnostic" (RD): including normal probability test, Levene's test, and 137 constant variance test. The calculations were performed by STATISTICA 12.7, StatSoft&Dell; and 138 Design-Expert 10.0, StatEase, software packages.

139 References

- Evonik Industries, AEROXIDE®, AERODISP® and AEROPERL® Titanium Dioxide as photocatalyst,
 Technical information 1243. Available on line: http://www.aerosil.com/sites/lists/RE/DocumentsSI/TI 1243-Titanium-Dioxide-as-Photocatalyst-EN.pdf. (Accessed on May 02, 2018)
- 143 2. Boukamp, A. A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems, Solid State Ion. 1986, 20, 31–44.
- Brug, G.J.; Van der Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances
 complicated by the presence of a constant phase element. *J. Electroanal. Chem.* 1984, 176 275–295.
- 147 4. Jorcin, J.B.; Orazem, M.E.; Pebere, N.; Tribollet, B. CPE analysis by local electrochemical impedance
 148 spectroscopy. *Electrochim. Acta* 2006, *51*, 1473–1479.
- 149 5. Lasia, A. Electrochemical Impedance Spectroscopy and its Applications, in *Modern Aspects of Electrochemistry*; Conway, B.E.; Bockris, J.; White, R.E.; Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999; Volume 32, p. 143–248.
- Orazem, M.E.; Tribollet, B. *Electrochemical Impedance Spectroscopy*, John Wiley & Sons: New York, NY, USA, 2008.
- 154 7. Harrington, S.P.; Devine, T.M.; Analysis of electrodes displaying frequency dispersion in Mott-Shottky
 155 tests. J. Electrochem. Soc. 2008, 155, C381–C386.
- 156 8. Katić, J.; Metikoš-Huković, M.; Šarić, I.; Petravić, M. Semiconducting properties of the oxide films formed
 157 on tin: Capacitive and XPS studies. J. Electrochem. Soc. 2016, 163, C221–C227.
- Harrington, S.P.; Wang, F.; Devine, T.M. The structure and electronic properties of passive and prepassive films of iron in borate buffer. *Electrochim. Acta* 2010, 55, 4092–4102.
- 160 10. Katić, J.; Metikoš-Huković, M. Correlation between electronic and corrosion properties of the passive oxide
 161 film on Nitinol. *Acta Chim. Slov.* 2014, *61*, 350–356.
- 162 11. Katić, J.; Metikoš-Huković, M.; Milošev, I. Ionic and electronic conductivity of the anodic films on nickel. *J.* 163 *Electrochem. Soc.* 2015, *162*, C767–C774.
- 164 12. Katić, J.; Metikoš-Huković, M.; Šarić, I.; Petravić, M. Electronic structure and redox behavior of tin sulfide
 films potentiostatically formed on tin. *J. Electrochem. Soc.* 2017, *164*, C383–C389.
- 166 13. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. *Response Surface Methodology: Process and Product* 167 *Optimization Using Designed Experiments*, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).