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Abstract: In this paper, molecular dynamics simulations are performed to study the annealing process
of γ-TiAl alloy with different parameters after introducing residual stress into prepressing. By mainly
focusing on the dynamic evolution process of microdefects during annealing and the distribution of
residual stress, the relationship between microstructure and residual stress is investigated. The results
show that there is no phase transition during annealing, but atom distortion occurs with the change
of temperature, and the average grain size slightly increases after annealing. There are some atom
clusters in the grains, with a few point defects, and the point defect concentration increases with
the rise in temperature, and vice versa; the higher the annealing temperature, the fewer the point
defects in the grain after annealing. Due to the grain boundary volume shrinkage and and an
increase in the plastic deformation of the grain boundaries during cooling, stress is released, and
the average residual stress along Y and Z directions after annealing is less than the average residual
stress after prepressing.

Keywords: residual stress; molecular dynamics; γ-TiAl alloy; anneal

1. Introduction

Due to its low density, high specific strength, excellent high-temperature properties,
good oxidation resistance and creep resistance, γ-TiAl alloy is considered to be the high-temperature
structural material with the most potential. It has wide application prospects in many fields, such as
aerospace and so on [1–4]. However, poor ductility at room temperature greatly restricts the application
of γ-TiAl alloy, and introduces residual stress during its forming and processing; the main problems of
γ-TiAl alloy are surface deformation, higher surface roughness and residual stress, defects that will
become initial crack-extension points, leading to workpiece failure [5,6]. Residual stress is also the
root cause of workpiece deformation during the manufacture–service process. The magnitude and
distribution of residual stresses have played a major role in the stability of the workpiece, which directly
affects its service life and mechanical properties [7].

Lots of work has been done to obtain the ideal residual stress distribution and improve the service
life of the workpiece, especially on the relationship among process parameters and the generation
mechanism of residual stress and the method of eliminating that stress. Pawade et al. [8] proved the
effects of cutting speed, cutting depth, feed rate and tool geometry parameters on residual stress by
an experimental method; a residual compressive stress could be produced on a machined surface
by adjusting cutting parameters and tool shape properly. Cheng et al. [9] combined the cutting
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experiment results with finite element analysis methods, and found that the combination of cutting
force and cutting heat produced high temperature and high pressure when acting on the rake face
of the cutting tool, and inhomogeneous plastic deformation were introduced which led to residual
stress. The effect of cutting force and temperature on residual stress in the milling process has been
investigated by Jiang et al. [10], and the results show that the cutting force plays a leading role in
the residual stress, and the tangential residual stress was mainly caused by the tangential force and
temperature. Szczepan et al. [11] has studied the residual stresses in a hot-rolled steel strip during
cooling in coils, and found that the phase transformations have a significant influence on the level
of residual stress. Xiao et al. [12] analyzed the thermal residual stress in glass/glass laser bonding,
and the results show that the scale of the temperature field control is closely related to the residual
stress, and that by combining the point, line and surface-scaled control, the thermal residual stress
can be reduced. A new multistage aging method has been exploited in reducing residual stresses in
the quenching process by Sun et al. [13]. Laser shock peening of austenitic stainless steel has been
researched by Prabhakaran et al. [14], who found that the residual compressive stress of the material
can be increased by adjusting the pulse parameters. R Sola et al. [15,16] used the experimental methods
to study the application of the cryogenic treatment and post-tempering cryogenic treatment of AISI M2,
AISI D2, X105CrCoMo18 steels. The results show that the precipitation of carbides that occurs during
heating from the cryogenic treatment temperature is responsible for the residual stress relaxation,
and the precipitation of more hard carbides in the cryogenically treated samples can reduce residual
stresses and also enhance the steel fracture toughness. Shao H et al. [17] has investigated joule-induced
microstructure evolution and residual stress in a Ti–Al–4V U-shaped screw by an experimental method,
and the results show that dislocation density decreases with increasing heated time; joule heating
at 900 ◦C is sufficiently high to enhance the dislocation mobility and the rearrangement, causing
the recrystallization of the alpha phase and the change of residual stress. The effect of annealing on
the microstructure and residual stress of zirconium has been researched by Zhang C H et al. [18],
who found that grain size increases after annealing, and that the decrease of dislocation density and
the rearrangement of dislocation after annealing are closely related to the release of residual stress.

Through a large number of experiments, it has been found that the generation and elimination of
residual stress in a workpiece, and the mechanical properties of workpiece material, are closely related
to the microstructure of the material. Yang et al. [19] puts forward the concept of “making materials
plain” that considers that the material properties can be improved by regulating the defects of materials
at different scales. Wawszczak et al. [20] has studied the evolution of microstructure and residual stress
during annealing at different temperatures. The results show that the stress in the samples would be
relaxed subjected to heat treatment, and the stress in the samples was correlated with the progress
of recovery process which depends on the value of stacking fault energy. Marzbanrad et al. [21] has
found grain refinement on the substrate surface results in higher residual compressive stress during a
cold spray process. The evolution of microstructure and residual stress during rapid thermal annealing
is observed by Hsiao et al. [22]. It is considered that the tensile stress of the film originates from the
annihilation of L10 grain boundaries in single-layered FePt films. Zhao et al. [23], has found that the
lattice strain caused by thermal expansion mismatch between perovskite and substrate is an important
factor affecting the stability of perovskite solar cells. This residual strain is caused by the annealing
process in the preparation of perovskite thin films. Nakano et al. [24] has explained the relationship
between dislocation density and residual stress in a GaN single crystal during the cooling process
by numerical analysis, with the results showing that the residual stress increases with the rise of
dislocation density during cooling.

As a powerful supplement to the experiment and the verification of theoretical model,
molecular dynamics (MD) methods are used to simulate the relationship among microdefects’
evolution, processing parameters and the mechanical properties of the processed materials [25–28].
Although ample research has been conducted on the evolution of microstructure and residual stress,
there is little research on the distribution of residual stress in annealing of γ-TiAl alloys. In this
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paper, we seek to better understand: the effects of annealing on residual stress and improve the
annealing process of γ-TiAl alloy; and investigate the distribution of residual stress after annealing,
the microdefects evolution during annealing, and the relationship between microstructure and residual
stress with MD simulations. In Section 2, the simulation model and details will be introduced.
In Section 3, the simulation results will be obtained and the corresponding analysis undertaken. Finally,
some conclusions will be drawn in Section 4.

2. Simulation Details

2.1. Interatomic Potential

The effects of vacancy concentration and temperature on mechanical properties of single-crystal
γ-TiAl have been carried out by using the Large Scale Atomic/Molecular Massively Parallel Simulator
(Sandia National Laboratories, Albuquerque, NM, USA) (LAMMPS) [29]. It is widely believed that
interatomic potentials are important for MD simulations, and the selection of them critically affects the
accuracy of the MD simulation. For example, the embedded atom method (EAM) has been used to
study phase transformation of Ti–Al alloy and the defects and their evolution on crack propagation
behavior [30,31]. In this paper, EAM is employed to describe the interaction of atoms between materials.

2.2. Molecular Dynamics (MD) Model

The crystal structure of γ-TiAl alloy is L10 [32,33] which is shown in Figure 1; the lattice constants
are a = 4.001, b = 4.001, c = 4.181, respectively.
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Figure 1. The crystal structure of γ-TiAl alloy.

The initial model is created using the ATOMSK package by means of a Voronoi tesselation to
construct polycrystals, which is shown in Figure 2, where the green area is the grain and the white
area is the grain boundary.
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The model contains 239,084 atoms and has a size of 200a × 200b × 100c which contains eight unit
cells with different random directions; all three directions are periodic boundary conditions.

2.3. Definition of Residual Stress

The stress at any point in the model is completely defined by nine stresses, and can be expressed
as a second-order tensor as follows [34]:

σij =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

, (1)

In this paper, the stress after fully relaxing is defined as residual stress which is calculated by
virial theory [35]. Moreover, the residual stress is obtained for each atom by averaging the output data
of the standard LAMMPS command “compute stress/atom” over the region within a range of 2 Å
along the corresponding directions. Define σxrs, σyrs, σzrs are the residual stress in the X, Y, Z directions.
The residual tensile stress was introduced into the model by a 2% prepressing deformation in the Z
direction before annealing. The distribution of σxrs, σyrs, σzrs after prepressing is shown in Figure 3.
The maximum residual tensile stress in the X, Y, Z directions is 443.75 MPa, 447.25 MPa, 489.875 MPa,
respectively, and the corresponding depths are 54 Å, 28 Å, 40 Å.
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Figure 3. The residual stress in the X, Y, Z directions after prepressing.

The MD using a constant-pressure, constant-temperature ensemble (NPT ensemble), firstly relaxes
at 30 ps, and the annealing simulation is carried out after reaching equilibrium, using the Nose–Hoover
thermostat for the temperature control. The annealing processes are divided into four cases, and the
annealing parameters are shown in Table 1. The timestep is 0.001 ps; kinetic energy, potential energy
and total energy are recorded every 500 steps during annealing.

Table 1. Annealing parameters.

Case Annealing
Temperature (K)

Heating Rate
(K/ps)

Cooling Rate
(K/ps)

Holding
Temperature (K)

1 700 2 2 700
2 700 2 1 700
3 900 2 2 700, 900
4 1100 2 2 700, 1100
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3. Results

3.1. Structural Evolution in Annealing

Taking Case 1 as an example, the atomic number of the structure during annealing is shown
in Figure 4. In this paper, common neighbor analysis (CNA) is employed to analyze the atoms’
distortion. The γ-TiAl alloy atoms with L10-type structure belong to the recognizable FCC lattice
structure, while the lattice structures corresponding to the atoms at the grain boundary are atypical
other lattice structures. In order to avoid the interference of surface atoms, the surface atoms were
selected and then eliminated by centrosymmetric parameters. The number of FCC atoms decreases
gradually while the other type atoms increase during heating, which means that the grain boundary
volume expands when the temperature rises, and the grains are compressed. By observing the output
of the internal energy diagram and the radial distribution functions (RDF) curve as shown in Figure 5,
it can found that the internal energies persistently and smoothly increase with the rise of temperature.
The RDF curves illustrate that the structure is a classic crystal state shape at elevated temperature,
there are four independent peaks, and the value of curves between peaks is zero, which indicates
that the lattice structure of the grain has good long-term order. There is a certain phenomenon of
broadening of the peaks during heating, which means that the crystal atoms are not exactly in the ideal
lattice position, and the lattice order is reduced. The FCC atoms increase and the other atoms decrease
when cooling; also, the internal energies persistently decrease with the drop of temperature, the RDF
curve peak width decreases gradually, and the lattice order increases gradually when the temperature
drops. After cooling down to 300 K and fully relaxing, the average grain size slightly increased from
4.639 nm to 4.643 nm. In combination with the variation of internal energy, the RDF curve and the
atomic number of the structure, it is found that there is no phase transition during annealing, but the
atoms’ distortion occurs with the change of temperature.
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Figure 4. The atomic number of the structure during annealing: (a) the atomic number of the structure 

during heating; (b) the atomic number of the structure during cooling. 
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Figure 4. The atomic number of the structure during annealing: (a) the atomic number of the structure
during heating; (b) the atomic number of the structure during cooling.

3.2. Microdefects Evolution during the Annealing

To observe the evolution of the microdefects, their distribution after prepressing is shown in
Figure 6, with use of the CNA analysis to identify the defect atoms and then delete the non-defective
normal atoms. After prepressing plastic deformation, there are some atom clusters in the crystal grains,
some atom clusters are neatly arranged in a ring, some atom clusters are gathered together disorderly
with few dislocations, and there are a few point defects in the crystal grains. There are different types
of dislocations at the grain boundaries after prepressing.
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Figure 5. The radial distribution functions (RDF) curve during annealing: (a) the RDF curve during
heating; (b) the internal energy curve during heating.
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The change of temperature has a great influence on the point defect concentration of Ti–Al
alloy [36]. In general the energy of the point defect formation is based on the Arrhenius equation
which can be given as follows:

C = Aexp
(
− Q

RT

)
, (2)

where C is point defect concentration, A is the equilibrium constant, Q is the point defect formation
activation energy, R is the molar constant, and T is the temperature. According to Equation (2), it can be
derived that the point defect concentration increases with the rise of temperature. The variation trend
of the point defect concentration in the simulation results is consistent with the theoretical calculation.
We found that the grain boundaries precipitate atoms to form the atom clusters when the temperature
rises by tracing the atomic trajectory, as shown in Figure 7a. The atom which precipitated from the
grain boundaries firstly tends to move to the atom cluster (Figure 7b); this phenomenon is similar
to [37]. It was found that small vacancy clusters have the ability to capture vacancies. The atom
clusters decompose during cooling and the atoms enter the grain boundaries. Figure 7c–f represents
the distribution of point defects of Case 1, Case 2, Case 3, Case 4 after annealing, respectively. It can be
seen that the higher the annealing temperature, the fewer the point defects in the grain after annealing.
Due to insufficient cooling time, after annealing at 1100 K a vacancy cluster still exists in the grain
which cannot decompose completely, and the difference in the distribution of point defects between
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Case 1 and Case 2 after annealing is very small. According to [36,37], the enthalpy of formation and the
formation energy of the anti-site defect is less than that of the vacancy defect, suggesting the anti-site
defect can be seen in the grain after annealing.
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Figure 7. The distribution of the point defect after annealing. (a) the precipitate atoms from which from
grain boundaries comes when temperature rises, and the gray lines are the atomic trajectory; (b) the
white atoms adsorb on the atom clusters which are precipitated from the grain boundaries; (c–f) is the
distribution of the point defects in the grain after annealing in Case 1, Case 2, Case 3, Case 4.

3.3. Residual Stress Distribution after Annealing with Different Parameters

The distribution of σxrs, σyrs, σzrs after annealing with different parameters is shown in
Figures 8–10. To observe the distribution of residual stress in three directions more intuitively,
non-linear fitting of the data is carried out by using rational functions. In Figure 8, the fitting average
value of the residual stress along the X-direction after annealing is 184 to 212 MPa, and the σxrs curve
after prepressing almost overlapped with Case 3. The distribution of σxrs with different annealing
parameters in the specific position is different, and the residual stress fluctuation is small in other
positions. The difference in residual stress distribution is larger at 50–72 Å in Case 1, and the σxrs shows
a sharp drop in Case 2 at 110 Å to 116 Å. In Case 3 and Case 4, the residual stress decreases first and
then increases at 112–116 Å and 150–160 Å. In Figure 9, the average residual stress along the Y direction
after annealing in all four cases is less than the average residual stress after prepressing. The higher the
annealing temperature, the smaller the average residual stress and at the same annealing temperature
it can obtain smaller average residual stress after annealing at a slower cooling rate. The σyrs increases
sharply at 82 Å to 90 Å, 108–112 Å in Case 1 and Case 4, respectively. The residual stress of Case 3
decreases in the range of 174 Å to 178 Å; the difference of σyrs distribution in Case 2 before 184 Å is
small, and it increases first and then decreases from the range of 184 Å to 200 Å. In the Z direction,
the average residual stress after annealing is almost lower than the average residual stress after
prepressing. In Case 1 and Case 4, the residual stress decreases first and then increases at 52 Å to 60 Å
and 72 Å to 80 Å. The σzrs in Case 3 increases first and then decreases at 12–26 Å. In Case 2, there are
large difference in σzrs before 14 Å and these then tend to 300 MPa which is lower than the average
residual stress after prepressing. The smaller the cooling rate at the same annealing temperature,
the lower the average residual stress after annealing.
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From Figure 7c–f, it can be seen that after annealing, the point defect concentration in thermal
equilibrium is small, but the residual stress distribution is very different. Therefore, the point defect
concentration is not the main factor affecting the residual stress distribution. Hammer et al. [38]
investigated the residual stress gradient in W/TiN-stack on Si(100). They found that stress profiles can
be related to grain size distribution by a Hall–Petch mechanism: in order to avoid extreme residual
stress in metallic films, an increase the grain size can hence be suggested, as this decreases the yield
strength and effectively limits the maximum possible stress level. The yield stress is related to the
grain size by the Hall–Petch law equation which can be given as follows [39]:

σy = σ0 +
k√
d

, (3)

where σy is the yield stress, σ0 is approximately the yield stress of a very coarsegrained, untextured
polycrystal, k is the strength coefficient, d is the average grain size, and σ0 and k are constants. For γ
structure, σy = 175 + 0.615/d MPa [40]. However, an “inverse Hall–Petch” phenomenon occurs when
the grain size is less than 10 nm because the plastic deformation of the grain boundaries replaces
the dislocation plasticity mechanism within the grain when the grain boundary is excessive [41,42].
The average grain size in four cases after annealing is 4.643 nm, 4.655 nm, 4.658 nm, 4.657 nm,
respectively, and more than 4.639 nm after prepressing; the average grain size increases slightly after
annealing. In general, according to the “inverse Hall–Petch” phenomenon the yield stress has been
increased after annealing and the residual stress may be increased after annealing. However, the fitting
average residual stress in Y and Z directions show that the average residual stress after annealing in
all four cases is less than the average residual stress after prepressing. The reason for this phenomenon
is that the plastic deformation of the grain boundaries influences the distribution of residual stress.
The simulation results show that during the annealing process, the grain boundary dislocation density
decreases when heating; similar results are found in [17] when joule heating a Ti-Al-4V U-shaped
screw. The dislocation increases during cooling with few dislocations in the grain. The decrease
of dislocation density after annealing is closely related to the release of residual stress [18]. Table 2
shows the dislocation density after annealing with different parameters and, taking Case 1 as an
example, the tend of dislocation density is shown in Figure 11. The grain boundary dislocation density
after annealing is slightly larger than that after prepressing. The volume of grains increases and the
grain boundary volume shrinks during cooling, the dislocation density at grain boundaries increases
gradually which causes the grain boundary plastic deformation to increase, and stress is released.
This finally causes the fitting average residual stress in the Y/Z direction after annealing to decrease.

Table 2. Dislocation density at grain boundaries after annealing.

Case Annealing
Temperature (K)

Dislocation
Density (Å−2)

1 700 0.0031
2 700 0.00278
3 900 0.0031
4 1100 0.00281

prepressing / 0.00248
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4. Conclusions

In this paper, annealing processes of γ-TiAl alloy after introducing residual stress into prepressing
are simulated, and the dynamic evolution process of microdefects and the distribution of residual
stress before and after annealing are investigated. The conclusions are as follows:

(1) The grain boundary volume expands when the temperature rises, and the grains are compressed.
The volume of the grain boundary shrinks when the temperature is dropped, and the grain size
slightly increases after annealing. There is no phase transition during annealing, but the atoms’
distortion occurs with the change of temperature.

(2) There are some atom clusters in the grains, with a few point defect and dislocations, and the main
defects at the grain boundaries are different types of dislocation after prepressing. The point
defect concentration increases with the rise of temperature and vice versa. The atom clusters have
a certain adsorption effect on the atoms that precipitated from the grain boundaries. The higher
the annealing temperature, the less the point defects in the grain after annealing.

(3) The distribution of residual stress in the X direction fluctuates slightly. In the Y direction,
the higher the annealing temperature, the smaller the average residual stress, and the same
annealing temperature can obtain smaller average residual stress after annealing at a slower
cooling rate. In the Y and Z directions, the average residual stress after annealing in all four cases
is less than the average residual stress after prepressing; the reason for this phenomenon is the
grain boundary volume shrinkage and plastic deformation of the grain boundaries increases
during cooling, and stress is released.
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