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Abstract: Improving the performance of loess is of significant importance for lowering its
collapsibility and water sensitivity to construction requirements and for geohazard mitigation.
The present paper studies the changes in mechanical, structural, and mineralogical properties of
nano-SiO2-treated loess with different contents and curing days. The mechanical behavior was
examined by unconfined compressive strength (UCS) of untreated and treated loess. To better
understand the mechanisms of stabilization, particle size distributions, scanning electron microscope
(SEM) images, and X-ray diffraction (XRD) analyses were carried out. The results show that the
UCS increase with increasing contents and curing days due to nano-SiO2 addition produced coarser
particles, denser packing, and smaller pores in treated loess. The changes in the properties can
be attributed to the formation of aggregation and agglomeration, with greater particle sizes and
more interparticle contact. In addition, the results from mineralogical component analysis further
confirm that physical structure modification controls the changes in mechanical and fabric properties,
rather than chemical component alteration. Even small nano-SiO2 additions can also provide great
improvement when curing days are enough for the treated loess. These findings reveal that nano-SiO2

has the potential to serve as a cost-effective stabilized additive that treats the universal loess.

Keywords: loess; nano-SiO2; strength enhancement; structure modification

1. Introduction

Loess is a widespread surface deposit in many parts of the world. It is an important engineering
material, for example as the material in a filled embankment. It is a typically problematic soil due to
its propensity to collapse and subsidence after loading and wetting. It is also a typically hazardous
material due to landslide and erosion prevalence. Therefore, it has a need for improvement by various
stabilization methods, such as construction requirements and geohazard mitigation.

There has been considerable research into using various stabilizing agents to improve the
performance of loess but much of this effort has focused on traditional chemical additives. Lime, fly ash,
and cement are commonly used materials to reach more durable loess in infrastructure construction
and geological barriers [1–6]. Overall, these chemical additives cause short-term physiochemical
modification with a decrease in water content and an increase in density. The chemical reactivity
then causes long-term pozzolanic stabilization with mineralogical and structural changes [2,6]. As a
result, these chemical additives produce stronger and more applicative loess in mechanics and physics
terms. However, they also produce some chemical changes in treated loess [6]. Typically, these
chemical additives cause much greater alkaline and saline environments, due to an increase in pH
and salinity [1,4,6]. In the soil improvement field, greater and more urgent attention has been paid to
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carbon emissions and treatment costs regarding various industries which involve lime, cement, and fly
ash [7,8]. Hence, there has been great interest in replacing the generally-used chemical additives in soil
improvement with alternative materials.

The interest in alternative materials has increased greatly in soil improvement works [9,10].
Nano-particles have also received special attention due to their unique properties [11,12]. Previous
research has shown that nano-particles result in changes to physical, mechanical, and chemical
properties. Taha and Taha [13] investigated the effect of nano-particles on clay properties. They found
that nano-clay, nano-alumina, and nano-copper additives strikingly restrain the expansive and
shrinkage behaviors of clays and do not change its mineralogical properties. Research on nano-copper
oxide and gamma-aluminum oxide powder on clay properties showed lower conductivity and
higher shrinkage due to smaller pores and more flocculated fabric [14,15]. The addition of the
nano-particles can reduce the development of desiccation cracks in clays [13,14]. At the same time,
the addition of nano-clay causes a decrease in Atterberg limits of clays [13,16,17]. Furthermore,
a small amount of nano-SiO2 addition can produce an obvious increase in the strength of treated
clay [17]. The aforementioned research work has focused on clays, even though silty and sandy soils
are also often used in civil engineering. For these soils, increasing interest in the modification of
their various properties following nano-particles addition has been conducted by several researchers.
Gallagher and Mitchell showed that colloidal silica clearly decreases the risk of liquefaction of loose
sand under seismic loading [18]. Huang and Wang [19] studied the impact of laponite on the strength
of silty sand to mitigate liquefaction occurrence. Ren and Hu [20] investigated the effect of nano-SiO2

on silty soil properties. Tabarsa, Latifi [21] evaluated the feasibility of loess improvement using
nano-clay based on laboratory and field investigations. On the whole, the addition of nano-particles
results in higher strength and density and lower conductivity, shrinkage, and Atterberg limit in various
treated soils.

Nano-particles have been investigated as alternative additives for soil improvement purposes
in replacing traditional stabilization agents. To some extent, their high cost limits their widespread
application. However, nano-particles may generate lower total cost in practical engineering than
traditional chemical additives, such as concrete and lime [20]. Therefore, nano-particles have more
advantages and greater potential to become cost-effective additives. In addition, the potential
advantages in nano-particles would be a promising additive in soil improvement. Nevertheless,
the use of nano-particles as a soil stabilizer is still uncommon [15]. Until now, there have been very
few attempts at using a nano-particle additive to treat loess [21].

The present paper shows results from the addition of nano-SiO2 into loess by examining changes in
mechanical, mineralogical, and structural properties with different nano-SiO2 contents and curing days.
A series of tests were conducted on unconfined compressive strength, particle size distributions, SEM
images, and XRD analyses. This study aims to understand the improvement of nano-SiO2 treated loess
along with the complicated relations between macroscopic behaviors and microscopic characteristics.
It is important for the improvement mechanisms and practical applications of treated loess.

2. Materials and Methods

2.1. Tested Materials

The sample examined in this study was deposited on Malan loess from the Quaternary age,
which was taken from Lanzhou, China. This kind of loess is widely distributed in the Chinese Loess
Plateau, of which it is a representative sample. The particle size curve of the loess is shown in Figure 1.
The loess consisted of predominantly silt (about 91.3%) with a small amount of clay and sand (about
8.7%). The mean particle diameter was 0.034 mm and the coefficient of uniformity was 3.5. The loess
had low plasticity. Some physical properties and chemical compositions are listed in Table 1.
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The nano-SiO2 used in this study is commercially available, and came from the manufacturing 
industry (Changsha, China). Figure 2 shows the SEM images of nano-SiO2. As shown in Figure 2, the 
nano-SiO2 were isolated particles and agglomerated particles. The average size of the agglomerated 
particles was about 30 μm, although the average diameter of the isolated particle was 30 nm. The 
basic properties of nano-SiO2 are shown in Table 2. 

Figure 1. Particle size distribution of raw loess.

Table 1. Physical properties and chemical compositions of loess used in this study.

Physical Properties Value

Specific gravity (Gs) 2.71
Liquid limit (%) 27.98
Plastic limit (%) 17.45

Plasticity index (%) 10.53
Specific surface area (m2/g) 27.5

Cation exchange capacity (meq/100 g) 3.5

Chemical compositions (weight%)

P2O5 0.16
TiO2 0.65
SiO2 54.73

Al2O3 11.81
Fe2O3 4.57
MnO 0.066
MgO 2.82
CaO 9.61

Na2O 2.18
K2O 2.47
LOI 10.78
Total 99.84

The nano-SiO2 used in this study is commercially available, and came from the manufacturing
industry (Changsha, China). Figure 2 shows the SEM images of nano-SiO2. As shown in Figure 2,
the nano-SiO2 were isolated particles and agglomerated particles. The average size of the agglomerated
particles was about 30 µm, although the average diameter of the isolated particle was 30 nm. The basic
properties of nano-SiO2 are shown in Table 2.
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analysis. After compressive strength tests, the fractured samples were carefully collected for 
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Table 2. Basic properties of nano-SiO2 used in this study.

Property Value

Average diameter (nm) 30
Purity (%) ≥99.8

Density (g/cm3) <0.15
Specific surface area (m2/g) 300

Color White
Morphology Spherical solid

2.2. Sample Preparation

The loess was first allowed to air dry at room temperatures of about 20 ◦C, which was passed
through a sieve with a 0.5 mm aperture. This sieve was selected because the particle size of all soil
was less than 0.5 mm. Distilled water was first added to the oven-dried, disaggregated loess to reach
an initial water content of 15%, which was selected to obtain a uniform sample during compaction.
Afterward, the samples were sealed and stored for 12 h at room temperature, which ensured a uniform
distribution of moisture before packing for the following sample preparation.

The amount of dry nano-SiO2 selected was 0.2%, 0.4%, 0.8%, 1.0%, 1.5% and 2.0% of the total dry
weight of the loess. The mixed samples were placed in a designed steel cylinder 50 mm in diameter
and 100 mm in height. The cylindrical samples were prepared using a static compacted method with
the help of a hydraulic jack and a steel holder. To achieve a uniform density, the samples were placed in
five layers and each layer was compacted so that a designated dry density of 1.47 g/cm3 was achieved.
The cylindrical samples were sealed using a plastic film and were cured for 7 days, 14 days, 28 days,
and 60 days at room temperature.

2.3. Test Procedures

To obtain the mechanical behavior of the untreated and nano-SiO2 treated loess, the cylindrical
samples after acquiring respective curing days were placed on an automatic loading machine
(Lanzhou city, Gansu Province, China) with a maximum loading capacity of 100 kN and they were
compressed at a constant rate of 0.1 mm/min. The smooth perspex plate was placed at the bottom
of each specimen during all tests to minimize end effects. To examine the quality of the specimens
and prevent possible errors, the unconfined compressive strength (UCS) of the specific samples
was repeatedly tested two or three times. The average value of the repeated samples was used in
data analysis. After compressive strength tests, the fractured samples were carefully collected for
composition analysis and structure tests.
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The macro-structures and micro-structures of the untreated and treated samples were examined.
The macroscopic particle size distributions of all samples were determined using a Microtrac S3500
laser diffraction instrument (Lanzhou, China). The micro-morphology and micro-size were observed
on the powder samples after metallization with gold powder using a JSM-5600LV scanning electron
microscope (SEM) (Lanzhou, China). Meanwhile, nitrogen adsorption BET was conducted with an
ASAP 2020 Plus physisorption analyzer (Lanzhou, China) on powder for the untreated and treated
samples for their microscopic pore size. All BET tested samples were outgassed after 12 h before
running analyses at a maximum temperature of 22 ◦C.

The mineralogical composition of the untreated and treated samples were examined by X-ray
diffraction (XRD) for the specified samples. A Philips PW 3710 diffractometer (Lanzhou, China) was
used for XRD analysis. The diffraction patterns were determined using Cu-Kα radiation with a Bragg
angle (2θ) range of 5◦–45◦, running at a rate of 0.03◦/s.

3. Results

3.1. Mechanical Behavior

Figure 3 shows the stress-strain curves from unconfined compressive tests on untreated and
treated loess with various amounts of nano-SiO2 content when subjected to different curing days.
The test results are plotted here based on the axial strain measurement.
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(a) 7 days; (b) 14 days; (c) 28 days; and (d) 60 days. (note: 0.0% denote untreated loess).

As shown in Figure 3, even at very low nano-SiO2 content, an increase in strength was observed
for all treated samples with different curing days. However, the effect of nano-SiO2 content on the
compressive behavior of the samples showed a clear difference in short-term (i.e., 7 days and 14 days)
and long-term (i.e., 28 days and 60 days) curing duration in the presented study. For short-term curing
duration, the ductile behavior was integrally maintained, with post-peak stress decreasing gradually
with strain, which is a similar manner to that manifested by the untreated sample until nano-SiO2

content was greater than 2%; the peak stress increased observably after 1% of the nano-SiO2 content
(see Figure 3a,b). With longer curing duration, i.e., 28 days and 60 days (see Figure 3c,d), all the treated
samples became much more brittle than untreated samples. Meanwhile, they exhibited a quick drop
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after the peak stress with strain, which is more akin to the collapse failure of the meta-stable structure
of saturated loess [22]. It is obvious that their peak stress increased significantly due to the addition
of nano-SiO2; and the corresponding strain to peak stress decreased from 1.5% to approximately 1%
(see Figure 3c,d).

Figure 4 shows the measured changes in UCS and E50 values with different nano-SiO2 contents
and curing days. They presented a similar trend with increasing nano-SiO2 contents and curing days.
The UCS and E50 values of nano-SiO2 treated loess were greater than that of untreated loess. The UCS
and E50 values increased with higher nano-SiO2 content and with longer curing days. Moreover,
the increase in the UCS and E50 values was more significant to a relatively longer curing day. Despite
this, there are two different types of UCS and E50 values that changed, which is shown in Figure 4.
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kPa or more due to treatment is considered effective. The test results indicated that the loess treated 
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Figure 4. (a) Unconfined compressive strength (UCS) values of treated loess with different nano-SiO2

contents and curing days; (b) E50 values of treated loess with different nano-SiO2 contents and
curing days.

The first type was for tests with 7 days and 14 days of short-term curing. In this type, the UCS
values of treated loess increased gradually with increasing nano-SiO2 content, which presented an
almost linear trend. The second type was for tests with relatively longer curing duration, i.e., 28 days
and 60 days. This presented an obviously nonlinear trend. The UCS values of the treated loess rapidly
increased at very low (0.2%) nano-SiO2 content and after that only a slight increase with any further
increase in nano-SiO2 content was observed. The changes could be attributed to a decrease in water
content and wet density of nano-SiO2 treated loess, which is shown in Figure 5.
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An unconfined compressive test is a common method for assessing the mechanical properties of
stabilized soils [6]. Therefore, the UCS values can be used as an indicator to evaluate the efficiency
of soil stabilization. According to criteria suggested by ASTM D4609-08 [23], an increase in UCS of
345 kPa or more due to treatment is considered effective. The test results indicated that the loess
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treated by 0.2% nano-SiO2 content after 60 days’ curing was almost effective. However, high nano-SiO2

contents treated loess did not achieve the ASTM criteria when the samples were cured for 7 and 14 days.
This means that a sufficient curing day is more significant to the mechanical improvement of nano-SiO2

treated loess. This finding is consistent with those observed in lime-treated loess [6]. A similar finding
was reported by Rogers, Glendinning [24]; who investigated the effect of lime addition to clay soils
in the UK. These results all reveal that a small addition to seek full stabilization can be satisfied with
enough curing duration for treated soils.

3.2. Macrotexture

Figure 6 shows the cumulative particle size distribution curves of untreated and treated loess
with different nano-SiO2 contents and curing days. To facilitate a clearer view of particle size change,
a linear abscissa was used, rather than a logarithmic abscissa. As a whole, the cumulative distribution
curves show a continuous increase in particle size when nano-SiO2 contents increased. Nevertheless,
during coarse particle development, there was still interesting and observed differences at different
curing durations. At a given nano-SiO2 content, coarser particles formed when the curing duration
was shorter. This means that the coarser particle development was the most striking. The degree
of the coarser particle development slightly decreased only up to 28 days of curing. When curing
duration reached 60 days, the particle size distribution curves of all the treated loess were much closer
to that of untreated loess. This means that the coarse particle development became weak with longer
curing duration.
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Figure 7 shows the frequency distribution curves of particle size of untreated and treated loess
with different nano-SiO2 contents and curing days. As shown in Figure 6, the results afford further
details on the changes in particle size of nano-SiO2 treated loess. It can be seen that the 45 µm of
particle size was a critical boundary. Before the boundary (i.e., 30~45 µm), the percent of finer particle
sizes of the treated loess became gradually less with increasing nano-SiO2 content. When exceeding
the boundary (i.e., 45~60 µm), the percent of coarser particle sizes of the treated loess became gradually
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greater with increasing nano-SiO2 content. Also, the peaks of particle size distribution of treated loess
shifted slightly to the coarser side. These changes show that the nano-SiO2 treated loess resulted in
coarser particle size compared to untreated loess and the modification was not very striking but it was
observable, as shown in Figure 7.Materials 2018, 11, x FOR PEER REVIEW  8 of 14 
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Furthermore, the measurement of particle size by laser diffraction makes it easier to examine
changes in the texture of treated soils. In addition, it can offer macroscopic evidence to better
understand the microscopic characteristics [25,26], as it is not reliable to directly infer from micro-pore
feature as suggested by Chew, Kamruzzaman [27]. The results from particle size distribution were
aligned to the following SEM and BET microstructure observations.

3.3. Microstructure

Figure 8 shows the SEM images of the untreated loess with 0.4%, 1.0%, and 2.0% nano-SiO2

contents after seven days of curing. Figure 8a–c are at magnification factors of 500, 1000 and 4500,
respectively. As shown in Figure 8a,b, two low magnification SEM images of untreated and treated
loess revealed that the nano-SiO2 addition caused microstructural evolution with increasing content at
the given curing duration. The low nano-SiO2 content addition first produced an observed filled effect
in pores between particles or aggregations, which caused a decrease in porosity and an increase in the
density degree of the treated loess. Afterward, the further increase in nano-SiO2 content promoted an
obvious aggregated effect on the treated loess, which resulted in the formation of greater aggregations.
When nano-SiO2 content was very high, the treated loess appeared in a state of looser packing and
larger pores.

The interesting abnormity could be explained by high magnification SEM images (see Figure 8c).
The SEM images recorded at high magnification show that nano-SiO2 addition formed a coating effect
on the treated loess and the coating effect is more obvious to very high nano-SiO2 content treated
loess. Essentially, the nano-SiO2 coating effect on treated loess played a dual role in structural changes.
One direct role was that coating caused coarser particle size development, which was proven by the
results from particle size distribution (as shown in Figures 6 and 7). Another derivative effect was that
coating restrains contact between particles or aggregations.
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Figure 9 shows the SEM images of the treated loess with 2.0% nano-SiO2 content after 28 days
of curing. It can be seen that at a given nano-SiO2 content, a longer curing duration produces denser
filling and smaller pores compared to a shorter one (Figure 8a,b). In addition, the nano-SiO2 particles
itself formed agglomerations, which are easily observed in treated loess (Figures 8 and 9).
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Figure 10 shows the pore size distribution curves of untreated and treated loess with different
nano-SiO2 contents and curing days. It can be seen that the addition of nano-SiO2 resulted in a
decrease in the amount of large pores. In all cases, there were two families of pore size, centered on
about 50 Å of pore width and between 100 and 1000 Å of pore width. The two families belonged
to inter-aggregated and intra-aggregated porosities, respectively. The relatively striking changes
occurred mainly around 50 Å. Similarly, in the above-mentioned changes in macrostructure, after 28
days of curing the inter-aggregated porosity had almost disappeared in the nano-SiO2 treated loess
(Figure 10d). The change of each pore family was slight, but its evolution was observable.
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As a whole, the structure changes of treated loess observed from SEM images and BET analysis
were matched with these changes in mechanical and textural properties. Their relations will be
analyzed in the following discussion.

3.4. Mineralogical Composition

Figure 11 shows the XRD diffractograms of loess with 0%, 0.2%, 0.4%, 0.8%, 1.0%, 1.5% and 2.0%
nano-SiO2 content after 7 days of curing. Figure 12 shows the XRD diffractograms of treated loess
for specified samples (i.e., 0.4%, 1.0% and 1.5% nano-SiO2 contents) after curing for 28 days and 60
days, respectively. It can be seen that the non-clay minerals identified consist mainly of quartz, calcite,
and feldspar, while kaolinite, chlorite, and illite are the main clay mineral phases. Moreover, the effect
of longer curing duration on mineralogical composition was insignificant to the treated loess at the
same nano-SiO2 contents. The results support the observation of microstructures and macrostructures,
which existed as only physical changes in particle size, fabric, and contact of the treated loess.

For all the examined samples, there were no observed changes in mineralogical compositions,
while there was very little, if any, of the intensity and the full width at half maximum of the treated loess.
The results revealed that a nano-SiO2 addition cannot cause the observed changes in mineralogical
composition for treated samples, which may only produce a very slight alteration of the mineral
structure. This means that physical alteration, such as filling, cementation, and coating occurred
predominantly in the nano-SiO2 treated loess, which did give rise to a chemical reaction. This finding
is consistent with those found in similar research performed by other authors [13,17].
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4. Discussion

The above results have shown that the addition of nano-SiO2 can strikingly change the properties
of treated loess. The compressive strength of nano-SiO2-treated loess increased with increasing
nano-SiO2 contents at different curing days (see Figure 3). This resulted in an increase in USC and E50

values (see Figure 4). The decrease in water and volume supported the improvement of mechanical
strength of nano-SiO2-treated loess (see Figure 5). The results from particle size distributions and
SEM images show there was an obvious modification in structure caused by coarser particles, denser
packing, and smaller pores (see Figures 6–10). There was a similar trend in particle size and pore
size after 28 days of curing. This means that the development of coarse particles and denser packing
became weak with increasing curing duration. The particle size distributions and SEM images afforded
a nice observation of macrostructure and microstructure, respectively. However, the BET analyses
permitted better observation of the pore families and their evolution over curing duration. Meanwhile,
the mineralogical components have proven that the changes in mechanical and structural properties of
nano-SiO2-treated loess are physical alterations rather than chemical reactions (see Figures 11 and 12).
The physical densification induced a strengthening effect on loess, which has also been observed its
shear strength [28].

There was a close relationship between macroscopic behaviors (such as, mechanical strength,
density and water content) and microscopic characteristics (such as, structure and mineralogy) of
treated soils [25–27]. The SEM images results (see Figures 8 and 9) confirmed that the addition of a
nano-SiO2 particle caused the filling of porous areas and the formation of greater aggregations and
consequently caused coarser particle size and more interparticle contact. To some degree, the nano-SiO2

particle itself was also beneficial to the aggregation formation [13]. This agglomerated effect can be
attributed to large surface areas and high surface reactivity of the nano-SiO2 particle. As a result, the
nano-SiO2-treated loess produced stronger mechanical strength. Moreover, previous studies have
found that loess with aggregates has a relatively higher strength [2,22].

There are two types of change trends in mechanical strength of treated loess. The different
styles and trends are dependent on the reactive activity of nano-SiO2 at different curing durations.
Under short-term curing duration, the ductile behavior and linear increase in strength are related to
the evolution of the structure due to nano-SiO2 addition. As observed in Figure 8, the nano-SiO2 filling
effect occurred first in pores between particles or aggregations and then came an obvious coating effect
to single particle due to an ongoing addition. Nevertheless, the reactive activity of nano-SiO2 was
relatively weak to treated loess in the whole process. However, the structural changes were not a
transient activity in processing. Under long-term curing duration, the brittle behavior and nonlinear
increase in strength were attributed to stronger structure effect, which caused denser packing and
smaller pores (Figures 5–10). We inferred that this is related to the nano-SiO2 self-properties, due to
large surface areas and high surface reactivity. The differences further show that various additives are
time-dependent in improving the performance of treated soils. Therefore, for effective cost control
in particle engineering, it is crucial that there is enough curing time to guarantee treated soils an
appropriate addition content.

5. Conclusions

The present paper examined the changes in mechanical, mineralogical, and structural properties
of nano-SiO2 treated loess with different contents and curing days. The compressive test results showed
that mechanical strength of nano-SiO2-treated loess gradually improves by increasing content and
curing days. The accumulative increase in mechanical strength can be attributed to the coarser particle,
denser packing and smaller pore processes in nano-SiO2-treated loess. These changes in microscopic
characteristics can be proven by the evidence from particle size, SEM, and BET. Furthermore, the
changes in dry density and water content, along with the unchanged mineralogy, support the idea that
the increase in mechanical strength of treated loess resulted from their physical structure modification
rather than chemical alteration due to the addition of nano-SiO2. The results presented in this
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research have shown that nano-SiO2 may serve as a cost-effective additive in loess stabilization.
Meanwhile, a small addition to seek full stabilization can be satisfied for nano-SiO2 treated loess when
curing duration is long enough. Additionally, there was a close relationship between microscopic
characteristics (mineralogy, microstructure and microspore) and macroscopic behaviors (strength,
texture, state, etc.). The macroscopic behaviors of loess significantly depend on its microscopic
characteristics. Thus, the linked relations can facilitate the understanding of the effect of nano-SiO2 on
loess properties and their complicated interactions.

In addition, there is a strong need to conduct systematic laboratory experiments and particular
field research into various nanomaterials that may be used as stabilizing additives to facilitate a better
understanding for practical applications. Laboratory measurements are important for providing useful
post hoc estimates for practical applications but field evaluations of the nano-materials are still not
enough. Hence, there is a need to conduct an in-situ evaluation and a longer curing duration for
nano-SiO2-treated loess.
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