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Abstract: Solution approaches to NiOx films for electrochromic applications are problematic due
to the need of an additional high-temperature annealing treatment step in inert gas. In this study,
nanostructured NiOx powder with grain size of about 10.1 nm was synthesized for fabrication of NiOx

films for electrochromic application. Non-toxic dispersants of isopropanol and deionized water were
used and the whole process was carried out in air. The effects of the number of spin-coating layers,
annealing temperature, and the volume ratios of isopropanol to deionized water were systematically
investigated. Large transmittance change of 62.3% at 550 nm, high coloration efficiency (42.8 cm2/C),
rapid switching time (coloring time is 4 s, bleaching time is 3 s), and good stability were achieved
in the optimized NiOx film. The optimized process only required a low processing temperature of
150 ◦C in air with spin-coating three times and 1:2 volume ratio of isopropanol to deionized water.
Finally, good cycle durability of up to 2000 cycles without obvious degradation was demonstrated by
cyclic voltammetry tests in a LiClO4/propylene carbonate electrolyte. This study provides a simple
and effective approach for fabrication of NiOx films at low temperature in air, which is attractive for
further commercialization of electrochromic devices.

Keywords: NiOx nanoparticles; NiOx films; optical and electrochromic properties; spin-coating method

1. Introduction

According to statistics, building energy consumption accounts for 23–50% of total energy
consumption [1]. Heat losses from windows and doors account for 20–30% of the whole building energy
consumption [2]. Therefore, building energy conservation has become a hot topic. Electrochromism
refers to reversible, persistent and visible change in transmittance or reflectance that is associated with
an electrochemically induced oxidation-reduction reaction [3–5]. Electrochromic (EC) smart windows
are a good choice to reduce the heat losses from windows due to their low energy consumption, lack
of pollution and automatic adjustment of their optical properties [6].

Metal oxide material is a big family of inorganic EC materials that have been intensively
studied [7–13]. They have excellent radiation resistances, high chemical stability, strong adhesions
to substrates, and light weight over large areas [14]. Among all inorganic EC materials, NiO is one
of the most important anodic coloring material due to its high optical modulation, fast responding
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time between coloring and bleaching processes, excellent durability, long-lasting memory, abundant
raw materials and low-cost [10]. Complementary EC devices with NiO-based films as counter
electrode layers have been extensively studied [11–13]. Chemical solution methods such as sol-gel
methods [15–19], hydrothermal method [20–22] and chemical bath deposition (CBD) [23,24] have been
widely used to fabricate NiO-based films for EC devices. Several ways are generally investigated to
improve the optical and EC properties of NiO films. The first is to optimize the processing parameters
such as thickness [12], annealing temperature [22], etc. Second is to improve the electrical properties
by doping metal ions such as Al3+ [18], B3+ [25], Li+ [26], Co+ [23] in NiO films. Third is to make
NiO-based films with multilayers [19,24,27,28]. Although the optimized optical and EC properties
of NiO-based films are now acceptable in application, there is still one problem that hampers the
reduction of fabrication cost and commercialization. High temperature annealing above 300 ◦C is
required to improve the optical and EC properties of NiO-based films. In addition, protective gas or
vacuum conditions are normally required in the fabrication process. Solving this problem becomes
more important because of the increasing requirement of flexible EC devices, which must be fabricated
on a substrate that cannot withstand temperature higher than 200 ◦C.

In this study, we showed the fabrication of NiOx films with superior optical and EC properties
that required low-temperature annealing at 150 ◦C in air by the spin-coating method. We optimize the
EC properties of NiOx films as a function of the number of spin-coating layers, annealing temperature,
and the volume ratios of isopropanol (IPA) to deionized water (DI water) in the IPA-DI water-NiOx

suspensions (NiOx inks). NiOx film with large transmittance change, high coloration efficiency, rapid
switching time and good cyclic stability is obtained. We also discussed the microscopic differences
between NiOx films to obtain a clear understanding of the differences in EC properties.

2. Materials and Methods

2.1. Fabrication of Samples

There are two methods to fabricate NiOx films with different numbers of layers. One is to spin
multiple layers and anneal the films at the end. In this study, we choose this method to reduce the
processing complexity. The other is to anneal the films whenever each layer is coated. Although
this method is complex, it is reported to further improve the film quality, which will be studied
later [29]. Figure 1 shows the fabrication flowchart of NiOx NPs and NiOx films. Firstly, we fabricated
high-quality non-stoichiometric NiOx NPs similar to the facile chemical precipitation method of Fei
Jiang and co-workers’ work [30]. 0.1 mol nickel nitrate hexahydrate (NiN2O6·6H2O, AR, 98%) was
added into 20 mL DI water. After stirring, it formed a light green solution. Thenceforth, NaOH (AR,
98%) solution with a concentration of 10 mol/L was slowly added into the obtained solution until
pH = 10. At this time, the green Ni(OH)2 colloidal precipitation was observed. The mixture was
centrifuged and cleaned with an ultrasonic bath in DI water and circulated 3 times in turn. Then,
the Ni(OH)2 precipitation was collected and dried at 80 ◦C for 12 h. Finally, this dried green product
was annealed at 270 ◦C for 2 h in air to decompose into ultrafine dark-black NiOx NPs. The NiOx NPs
can be stored for a long time for multiple uses. Reactions (1) and (2) illustrate the chemical reactions in
this procedure of non-stoichiometric NiOx NPs [30]:

Ni(NO)3 + NaOH→ Ni(OH)2 ↓ +Na(NO3)2 (1)

Ni(OH)2
270 ◦C→ NiOx + H2O (2)

Secondly, we prepared NiOx inks. 20 mg of the above NiOx NPs were uniformly dispersed in
1 mL IPA-DI water mixture using magnetic stirring.

Thirdly, we fabricated NiOx samples by the spin-coating method. Conductive indium tin oxide
(ITO, 10 Ω/sq) coated glasses were cleaned with acetone, ethanol, and DI water in an ultrasonic bath
for 15 min in sequence before use. The above NiOx inks were spin-coated onto substrates with different
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numbers of coating layers (2000 rpm for 30 s each time). Finally, the NiOx samples were annealed for
2 h in air for the evaporation of the organic solvent.
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Figure 1. Preparation flowchart of NiOx NPs and NiOx films.

2.2. Characterization

The morphology and structure of NiOx films and NiOx NPs were characterized by a field
emission scanning electron microscope (FE-SEM, Zeiss Ultra 55, Carl Zeiss, Jena, Germany) and
a XRD diffractometer (XRD, MiniFlex600, Cu Kα radiation, Rigaku, Tokyo, Japan). Electrochemical
measurements of NiOx electrodes were performed by employing a three-electrode electrochemical
workstation (Versa STAT 3, AMETEK, Oak Ridge, TN, USA) and carried out in a three-electrode system
in 1 M KOH (AR, 90%) electrolyte: the as-prepared sample was used as working electrode, an Ag/AgCl
electrode and a platinum wire were used as reference and counter electrodes, respectively. Before each
electrochemical test, each sample was first circulated 12 times by applying square-wave-type voltages
(±1.7 V, 60 s per cycle) until the responses become stabilized. The transmission spectra of NiOx films
in fully colored and fully bleached states was measured over the wavelength range from 340 to 900 nm
with a UV-vis spectrophotometer (Model UV-2550, Shimadzu, Tokyo, Japan). The transmittance of
ITO-glasses in the 1 M KOH electrolyte was considered to be 100% transmittance and was used as
the baseline.

3. Results

3.1. Microstructure Characteristics of the NiOx NPs

Figure 2 shows the XRD patterns of NiOx NPs. Four prominent characteristic diffraction peaks of
NiOx cubic structure appears at 37.7◦, 43.6◦, 63.2◦ and 75.8◦, belonging to the (111), (200), (220) and
(311) planes (JCDPS No. 47-1049), the full width half maximum (FWHW) of the diffraction peaks are
0.805◦, 0.878◦, 0.978◦, and 0.901◦, respectively. No other peaks were observed. The crystallite size of
the NiOx NPs can be estimated from the four XRD diffraction peaks by Debye-Scherrer formula [31]:

D =
0.89λ

B cos θ
(3)
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where D is the size of crystallite, B is the FWHW. θ is the Bragg angle (degree) and λ (0.154056 nm) is
the wavelength of the X-ray. The average NiOx crystallite size is estimated to be is 10.1 nm. The small
grain size is favorable for ions to shorten diffusion pathway and increase the switching speed of NiOx

films and increase the utilization efficiency of active materials. Such characteristics are favorable for a
fast EC reaction [32,33].
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Figure 2. XRD pattern of NiOx NPs fabricated by chemical precipitation method.

3.2. Optical and EC Properties of NiOx Films

The coloring processes of NiOx electrodes can be attributed to the following oxidation
reactions [28]:

NiO + OH− ↔ NiOOH + e− (4)

Or
NiO + H2O↔ NiOOH + H+ + e− (5)

The bleaching processes of the NiOx electrodes can be attributed to the following
reduction reaction:

NiOOH + H+ + e− ↔ Ni(OH)2 (6)

Or
NiOOH + H2O + e− ↔ Ni(OH)2 + OH− (7)

∆T and switching time are the most important criteria indexes to evaluate optical and EC
properties of materials. ∆T (Tb − Tc) is the change of transmittance between the bleached states
(Tb) and the colored states (Tc). The switching time is defined as the time required for a system to
reach 90% of its full ∆T. Guofa Cai et al. [12] reported the optical and EC properties of inkjet-printed
NiO films as a function of the number of printed layers. Sahu et al. [34] also reported the optical and
EC properties of e-beam evaporated NiO films were affected with different thicknesses. Similarly,
we studied the transmittance spectra of NiOx films at colored and bleached states as a function of
the number of spin-coating layers. The results are shown in Figure 3a–d. Colored states of the NiOx

films is obtained through applying positive voltages and bleached states by negative voltages. As the
positive voltages increase from +1.0 V to +1.7 V, the transmittance of the colored states obviously
decreases. However, the changes of the transmittance of the bleached states is not obvious when the
negative voltage increases from −1.0 V to −1.7 V. The ∆T exhibits the best value of 50.5% at 550 nm
varying from 93.0% to 42.5% between the bleached state (−1.7 V) and the colored state (+1.7 V). For
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the NiOx films after spin-coating three times, the ∆T gradually becomes lower. The change in optical
density (∆OD) is defined as [5]

∆OD(λ) = log
Tb(λ)

Tc(λ)
(8)

Materials 2018, 11, x FOR PEER REVIEW  5 of 13 

 

ΔOD is small. Under the third spin-coatings, the surface is gradually filled, forming a complete 
layer, which shows the best ΔOD. Further increase in numbers of spin-coatings increases the 
thicknesses of the NiOx films. Because NiO and NiOH are semiconductors with extra-high 
resistances, the superfluous NiOx NPs do not contact with electroconductive ITO layer and are less 
active in electrochemical processes. Figure 3f shows the changes in transmittance at 550 nm of the 
NiOx film after spin-coating three times for applied square-wave-type voltages (±1.0 V, 60 s per 
cycle). It is calculated that the switching time is 3 s for the coloring process and 2 s for the bleaching 
process. The fast switching speed of the NiOx film is attributed to the short diffusion pathways in 
the NiOx NPs, which facilitates charge, transport [32,33].  

 
Figure 3. Optical transmittance spectra at as-deposited, colored and bleached states of NiOx films as 
a function of the number of spin-coating layers: (a) spin-coating once; (b) spin-coating three times; 
(c) spin-coating five times; (d) spin-coating seven times (the increases of voltages has little effect on 
the Tb, so the 2 bleached curves overlap together); (e) ΔOD; (f) Switching curve of the NiOx film by 
spin-coating three times. The NiOx films are annealed at 100 °C and the volume ratio in NiOx inks is 
IPA:DI water = 1:3. 

Chen et al. [22] and Gamze Atak et al. [35] reported that annealing temperature is also an 
important parameter affecting the optical and EC properties of NiO-based films. Similarly, we 
studied the transmittance spectra of NiOx films by spin-coating three times as a function of the 
annealing temperature for 2 h in air after spin-coating. Figure 4a–e shows the transmittance spectra 
of NiOx films at colored and bleached states as a function of annealing temperature. As annealing 
temperature is 100–150 °C, the transmittance of the bleached states can be improved to over 90.0%. 
The ΔT of NiOx films annealed at room temperature (RT), 100 °C, 150 °C, 200 °C and 300 °C are 
49.8%, 50.5%, 53.0%, 43.8% and 17.5% respectively between bleached states (−1.7 V) and colored 
states (+1.7 V). The ΔOD of the NiOx film annealed at 150 °C is the highest ΔOD compared to the 
others (Figure 4f). These differences of annealing effects can be explained by the changes of SEM 
morphology in Figure 5. If the NiOx film was not annealed, it can be seen that the NiOx NPs was not 
obvious because of the presence of residuary dispersants and organic binders (Figure 5a). Uniform 
and obvious NiOx NPs were observed after annealing at 150 °C as shown in Figure 5b. This was 
because the evaporation of the residuary dispersants and the decomposition of the organic binder 
led to an active electrochemical reaction of the NiOx NPs with the KOH electrolyte after annealing 
at the appropriate temperature [12]. At higher annealing temperature, the nanoparticles aggregated, 
and some voids formed between these NiOx NPs at the surface in Figure 5c. The voids would cause 
leakage, and the compact and dense aggregated area would lower the electrochemical reactivity, 
thus degrading the optical and EC properties.  

Figure 3. Optical transmittance spectra at as-deposited, colored and bleached states of NiOx films as
a function of the number of spin-coating layers: (a) spin-coating once; (b) spin-coating three times;
(c) spin-coating five times; (d) spin-coating seven times (the increases of voltages has little effect on
the Tb, so the 2 bleached curves overlap together); (e) ∆OD; (f) Switching curve of the NiOx film by
spin-coating three times. The NiOx films are annealed at 100 ◦C and the volume ratio in NiOx inks is
IPA:DI water = 1:3.

∆OD represents the contrast between colored states and bleached states and it is presented in
Figure 3e. Under the first spin-coating, the NiOx NPs partially cover the surface of ITO-glass, the ∆OD
is small. Under the third spin-coatings, the surface is gradually filled, forming a complete layer, which
shows the best ∆OD. Further increase in numbers of spin-coatings increases the thicknesses of the
NiOx films. Because NiO and NiOH are semiconductors with extra-high resistances, the superfluous
NiOx NPs do not contact with electroconductive ITO layer and are less active in electrochemical
processes. Figure 3f shows the changes in transmittance at 550 nm of the NiOx film after spin-coating
three times for applied square-wave-type voltages (±1.0 V, 60 s per cycle). It is calculated that the
switching time is 3 s for the coloring process and 2 s for the bleaching process. The fast switching
speed of the NiOx film is attributed to the short diffusion pathways in the NiOx NPs, which facilitates
charge, transport [32,33].

Chen et al. [22] and Gamze Atak et al. [35] reported that annealing temperature is also an
important parameter affecting the optical and EC properties of NiO-based films. Similarly, we studied
the transmittance spectra of NiOx films by spin-coating three times as a function of the annealing
temperature for 2 h in air after spin-coating. Figure 4a–e shows the transmittance spectra of NiOx

films at colored and bleached states as a function of annealing temperature. As annealing temperature
is 100–150 ◦C, the transmittance of the bleached states can be improved to over 90.0%. The ∆T of
NiOx films annealed at room temperature (RT), 100 ◦C, 150 ◦C, 200 ◦C and 300 ◦C are 49.8%, 50.5%,
53.0%, 43.8% and 17.5% respectively between bleached states (−1.7 V) and colored states (+1.7 V).
The ∆OD of the NiOx film annealed at 150 ◦C is the highest ∆OD compared to the others (Figure 4f).
These differences of annealing effects can be explained by the changes of SEM morphology in Figure 5.
If the NiOx film was not annealed, it can be seen that the NiOx NPs was not obvious because of the
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presence of residuary dispersants and organic binders (Figure 5a). Uniform and obvious NiOx NPs
were observed after annealing at 150 ◦C as shown in Figure 5b. This was because the evaporation of
the residuary dispersants and the decomposition of the organic binder led to an active electrochemical
reaction of the NiOx NPs with the KOH electrolyte after annealing at the appropriate temperature [12].
At higher annealing temperature, the nanoparticles aggregated, and some voids formed between
these NiOx NPs at the surface in Figure 5c. The voids would cause leakage, and the compact and
dense aggregated area would lower the electrochemical reactivity, thus degrading the optical and
EC properties.Materials 2018, 11, x FOR PEER REVIEW  6 of 13 
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According to the above description, the NiOx films annealed at RT, 100 ◦C and 150 ◦C have
better ∆T. Therefore, their electrochemical properties were further characterized by cyclic voltammetry
tests (CVs) at a scan rate of 100 mV/s. The results are shown in Figure 6. The shapes of the curves
have typical oxidation and reduction peaks. The oxidation peaks correspond to coloring processes.
The opposite reduction peaks correspond to bleaching processes. The NiOx films annealed at 100 ◦C
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and 150 ◦C show much lower oxidation and reduction potentials compared to NiOx film annealed at
room temperature. Moreover, the NiOx film annealed at 100 ◦C and 150 ◦C exhibits smaller potential
separation between the oxidation peaks and the reduction peaks. It is well known that the peak
potentials separation are used as a measure of reversibility [22]. It is reasonable that the NiOx films
annealed at 100 ◦C and 150 ◦C has better reaction reversibility. In addition, the cathodic and anodic
peak current densities (j) of NiOx films annealed at 100 ◦C and 150 ◦C are much higher than NiOx

film annealed at room temperature. It indicated that the NiOx films annealed at 100 ◦C and 150 ◦C
had higher electrochemical reaction activity. The amount of per unit charges (Q) in the insertion and
extraction processes can be calculated [36]:

Q =

∫
IdV
v

(9)

in which I, v and V are instantaneous current, and scan rate of CV curves and instantaneous potential,
respectively. A parameter often used to characterize an EC material is the coloration efficiency (CE) [5],
which is defined as the charge in ∆OD, per unit inserted charge density (Qin):

CE(λ) =
∆OD(λ)

Qin
(10)

the CE values of the NiOx films annealed at room temperature, 100 ◦C and 150 ◦C at 550 nm wavelength
are calculated to be 34.7 cm2/C, 36.7 cm2/C and 49.7 cm2/C, respectively.
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Figure 6. CVs of the NiOx films annealed at RT, 100 ◦C and 150 ◦C in 1 M KOH electrolyte. The NiOx

films are spin-coated three times and the volume ratio in NiOx inks is IPA:DI water = 1:3.

The optimum spin-coating times and annealing temperature of NiOx films mentioned above
are three times and 150 ◦C, respectively. On this basis, as IPA and DI water are used as dispersants
for NiOx NPs, we further focused on the effect of different volume ratios of IPA:DI water in NiOx

inks. Figure 7a–e show transmittance spectra of NiOx films at colored and bleached states as a
function of the volume ratios of IPA:DI water in NiOx inks. With increasing IPA volume ratios, we
observed a significant decrease of transmittance for colored states. However, there was only a small
loss of bleached transmittance. The better ∆T value of 62.3% (IPA:DI water = 1:2) and 71.4% (IPA:DI
water = 1:1) at 550 nm between the bleached states (−1.7 V) and the colored states (+1.7 V) were
observed. The NiOx films with the 1:2 and 1:1 ratios of IPA:DI water gave higher ∆OD compared to
the others (Figure 7f).
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Figure 8 shows the changes in transmittance at 550 nm of NiOx films as a function of the volume
ratios of IPA:DI water in NiOx inks for applied square-wave-type voltages (±1.0 V, 60 s per cycle) at
550 nm. The volume ratios of IPA:DI water in NiOx inks have a large effect on the switching time.
When the volume ratios of IPA:DI water in NiOx inks were 0:1, 1:3 and 1:2, fast switching speed was
observed in Figure 8a–c. However, when the volume ratios of IPA:DI water in NiOx inks were 1:1 and
2:1, we observed a significant extension of switching time to more than 10 s (Figure 8d,e).
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inks: (a) 0:1; (b) 1:3; (c) 1:2; (d) 1:1 and (e) 2:1. The NiOx films are by spin-coating three times and after
150 ◦C annealing.

The effect of different volume ratios of IPA:DI water in NiOx inks on ∆T and switching time of
NiOx films can be explained by SEM in Figure 9. When DI water was used as dispersant, NiOx NPs
could be evenly dispersed. However, due to the high surface tensions of DI water, cracks occurred
more easily during annealing. When IPA was used as dispersant, its surface tension was small, which
can overcome the shortcoming of DI water as dispersant. It could be seen that the NiOx NPs were
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uniformly and distinctly dispersed on the substrate surfaces (Figure 9b,c). However, higher volume
content of IPA in NiOx inks typically cause fall-off of NiOx NPs partially (Figure 9d,e), which reduces
the relative surface area of NiOx films and leads to the decrease of active reaction area.
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The NiOx films with 1:3, 1:2 and 1:1 volume ratios of IPA:DI water were further characterized by
CVs at a scan rate of 100 mV/s. The results are shown in Figure 10. The NiOx films with 1:2 and 1:1
volume ratios of IPA: DI water exhibit smaller potential separation between the oxidation peaks and
the reduction peaks, so they have better reaction reversibility. Besides, the cathodic and anodic peaks j
of the NiOx films are much higher than NiOx film with volume ratios of 1:3. It indicated that the NiOx

films with the volume ratios of 1:2 and 1:1 had higher electrochemical reaction activity. The CE values
at 550 nm wavelength were calculated to be 49.7 cm2/C (IPA:DI water = 1:3), 42.8 cm2/C (IPA:DI
water = 1:2) and 48.5 cm2/C (IPA:DI water = 1:1), respectively.
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Table 1 summarizes the typical processing condition in references in the past 5 years. We can
see that our method provides the lowest processing temperature, and superior EC properties than
many works. We are aware that in many methods, formation of NiO are processed by decomposition
of nickel salts (NiCl2, Ni(OAc)2, NiSO4, NiNO3, Ni(CH3COO)2) in dispersants when the NiO thin
film was fabricated. In our method, we prepared NiOx NPs first and fabricated the NiOx films
by the NiOx NPs in dispersants. Dispersants with low boiling point were used, which ensured
low-temperature deposition.

Table 1. NiO-based films reported earlier by chemical solution methods in KOH electrolyte.

No. Methods Films Annealing
Condition

∆T
(%)

CE
(cm2/C)

Tc/Tb
(s) Ref. Year

1 Dip-coating NiO film 500 ◦C 51 40 7/5 [15] 2017
2 Dip-coating NiO film 350 ◦C 50.7 71.4 - [16] 2017
3 Inkjet printing NiO film 200 ◦C 64.2 136.7 9/6 [12] 2016
4 Hydrothermal NiO film 300 ◦C 35.8 49.8 1.3/3.2 [20] 2015
5 Hydrothermal NiO film 400 ◦C/Ar 40 63.2 2.7/1.8 [21] 2015
6 Hydrothermal NiO film 300 ◦C/Ar 77 49 3/4 [22] 2013
7 Spin-coating Al-doped NiO film 400 ◦C 58.4 54.2 4.2/1.8 [18] 2016
8 CBD Co-doped NiO film 300 ◦C 88.3 47.7 5.4/3.4 [23] 2014
9 Dip-coating NiO/GO film 350 ◦C 40.7 12.85 4.3/3.9 [27] 2017

10 Spin-coating Ni/NiO/rGO film 350 ◦C/N2 and air 51.6 48.15 4.2/2.4 [19] 2017
11 CBD TiO2/NiO film 300 ◦C/Ar 83 60.6 6.8/14.8 [24] 2014
12 Spin-coating NiOx film 150 ◦C/air 62.3 42.8 4/3 This work

3.3. Cyclic Durability of the NiOx Film with Optimized Parameters

Considering the above optimized parameters, the NiOx film which is spin-coated three times and
annealed at 150 ◦C with the 1:2 ratio in NiOx inks of IPA:DI water gives better ∆T, higher CE and faster
switching time. Therefore, we choose the optimized NiOx film for further study. Figure 11a,b shows
good contrast between the bleached state and the colored state, the NiOx films exhibit reversible color
change from dark brown (colored state) to transparent (bleached state). The optimized NiOx electrode
has been tested for applied square-wave-type voltages (±1.0 V, 90 s per cycle) up to 6000 s in 1 M
KOH electrolyte. The spectral response at 550 nm has been recorded in Figure 11c. The ∆T of the NiOx

film exhibits a value of ∆T = 34.2% for the initial time. It increases gradually and reaches a maximum
value of 52.7% in the steady period up to 6000 s. In addition, the cyclic durability limits the further
advancement of NiO-based films as has been reported by many researchers, which showed that the
degradations are depending on the applied electrolytes or fabrication parameters [13,37]. Therefore,
we choose the optimized NiOx electrode to further study its cyclic durability. Because NiO-based
films are often used in ECDs containing Li+ electrolytes [38,39], we consider using 0.5 M LiClO4-PC
electrolyte for cyclic voltammetry tests (CVs) in Figure 11d. It is usually recognized that NiOx was
subjected to the following electrochemical oxidation and reduction processes [13]:

NiOx + yLi+ + ye− → LiyNiOx (11)

LiyNiOx ↔ Liy−zNiOx + zLi+ + ze− (12)

Figure 11d showed typical oxidation and reduction peaks. The peak potential shifted in the
first few cycles, when the migration paths for ions were established and became stable. This process
involved the slight change of thin film resistance, which caused slight change of voltage on the film,
and thus the shifting of reduction and oxidation peaks. The peaks became immobile after 400 cycles.
The separation between cathodic and anodic peaks of j in the steady periods was smaller than that of
the initial periods. It indicated that the NiOx films had higher electrochemical reaction activity in the
steady periods. It showed that the optimized NiOx film did not obviously degraded until 2000 cycles,
which proved good stability of the optimized NiOx film in Li+-based electrolytes.
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4. Conclusions

In summary, NiOx NPs fabricated by chemical precipitation method were developed to prepare
IPA-DI water-NiOx suspensions for application of spin-coated NiOx films. The optical properties
of EC NiOx films as functions of the number of spin-coating layers, annealing temperature, and the
volume ratios of IPA to DI water in IPA-DI water-NiOx suspensions were systematically investigated.
Large transmittance of 62.3% at 550 nm, high coloration efficiency (42.8 cm2/C), rapid switching
time (coloring time is 4 s, bleaching time is 3 s) and good stability were achieved in the optimized
NiOx film, which is characterized by spin-coating three times and 150 ◦C annealing in air with the
1:2 volume ratio of IPA:DI water. We showed that the NiOx NPs were uniformly and distinctly
dispersed in the optimized NiOx film, which facilitated the best ion migration. CVs of the optimized
NiOx film in LiClO4-PC electrolyte prove to have good cyclic durability without obvious degradation.
The fabrication technique used low-cost and non-toxic precursors with low fabrication temperature,
which facilitates further development of fabricating electrochromic devices at low temperatures.
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