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Abstract: Alternative processing routes such as powder metallurgy, the extrusion of recycled chips,
or equal channel angular pressing (ECAP) have been considered for effective methods of maintaining
the high mechanical strength of Mg-Y-Zn alloys containing long-period stacking ordered structures
with respect to the alloy processed by the conventional extrusion of as-cast ingots with the advantage
of minimizing the yttrium content. A yield stress similar to that found for extruded Mg97Y2Zn1 alloy
can be attained with only half of the usual yttrium and zinc additions thanks to the grain refinement
induced by ECAP processing. The properties of Mg98.5Y1Zn0.5 subjected to ECAP are maintained
up to 200 ◦C, but superplastic behavior is found above this temperature when the alloy is processed
through a powder metallurgy route.
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1. Introduction

The mechanical strength and creep resistance of Mg-Y,RE-Zn (RE = rare earths) alloys containing
long-period stacking ordered (LPSO) phases at intermediate temperatures exceed by far those of
commercial magnesium alloys [1–6]. LPSO-phases are solid solutions of yttrium or certain rare earth
elements and transition metals in the magnesium lattice, where these atoms are arranged periodically
in the magnesium basal planes to form ordered structures [7–11]. Depending on the processing route,
important variations in mechanical properties can be obtained. The Mg97Y2Zn1 (at %) alloy produced
by the warm extrusion of rapidly solidified (RS) powders exhibited the highest high yield strength
reported in this system, about 610 MPa [1]. The extrusion of RS ribbons with a very fine dendritic
microstructure renders a yield stress of 410 MPa [12]. The optimization of extrusion parameters of
as-cast Mg97Y2Zn1 ingots results in a material combining cast high-yield stress (around 350 MPa)
and appreciable ductility [3]. Furthermore, subsequent equal channel angular processing (ECAP)
after extrusion leads to yield stresses higher than 400 MPa due to grain refinement of the magnesium
phase [13,14]. However, in all cases, the yttrium and/or RE contents were at least 2 at %. Reduction
in the use of rare earth elements is a critical point in the design of new high-strength magnesium
alloys because there is a tendency to minimize the content of rare earth elements since the market
is controlled by China and future availability is not guaranteed. Consequently, Europe, Japan, and
the USA are proposing policies/guidelines addressed to substitute the use of such elements as much
as possible [15,16]. In the case of LPSO-phase containing alloys, the decrease in the Y concentration
implies a significant decrease in mechanical strength because the volume fraction of the reinforcing
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LPSO-phase is reduced [17]. Therefore, an additional refinement of the grain size in alloys containing
the LPSO-phase is needed in such a way that it can compensate minor hardening due to the smaller
volume fraction of the LPSO-phase. At this point, the use of a powder metallurgy route or severe
plastic deformation (SPD) techniques are proposed in the present study as suitable methods for refining
the grain size of the alloy.

An alloy with a composition of Mg98.5Y1Zn0.5 (at %) (with half the yttrium concentration of
Mg97Y2Zn1 alloy) was processed by three different techniques: ECAP, the consolidation of machining
chips (CM), and powder metallurgy (PM). Therefore, the present study examines the microstructure
and the mechanical strength from room temperature up to 300 ◦C of the Mg98.5Y1Zn0.5 alloy processed
through these alternative processes. Results are compared to those obtained in Mg97Y2Zn1 alloy
processed by the extrusion of the as-cast material.

2. Materials and Methods

The alloy Mg98.5Y1Zn0.5 (at %) was obtained by melting high purity Mg and Zn as well as a
Mg-22%Y (wt %) master alloy in an electric resistance furnace. The mixture was then cast in cylindrical
steel molds of 42 mm in diameter. Machined chips and rapidly solidified (RS) powders were obtained
from the cast bars. On one hand, the machined chips were fabricated by high-speed machining in a
conventional Computer numerical controlled (CNC) lathe. RS powders were prepared by the EIGA
(Electrode Induction Melting Gas Atomization) process by TLS Technik GmbH (Bitterfeld-Wolfen,
Germany). Powders have a spherical morphology with a diameter less than 100 µm. Chips and
powders were uniaxial compacted under 350 MPa for 2 min at room temperature (RT), providing
cylindrical green compacts of 40 mm in diameter. Chip and powder compacts and cast cylinders
machined up 40 mm were extruded at 350 ◦C using several extrusion ratios depending on the material:
4:1 and 18:1 for the cast alloy and 36:1 for the chip and powder compacts. A higher extrusion ratio is
required for chips and powders to ensure their complete consolidation.

Cylinders from the extruded cast alloy bar, 70 mm long and 20 mm in diameter (extrusion
ratio 4:1) were ECAP processed at 300 ◦C, using route B (i.e., 90◦ rotation of the sample between
passes). A hydraulic machine with a circular cross-section die with a diameter of 20 mm and a die
angle of 118◦ was used. Per pass, a true strain of 0.7 was produced. For ECAP process, samples
were heated in the die, reaching die temperature in 5 min before pressing. A standard pressing speed
of 20 mm/min was used in all cases. Following each ECAP pass, the heated split-die was opened
hydraulically for rapid sample removal and then water quenched. The alloy able to be processed for
up to four passes without cracking. Figure 1 shows the schematic view of the production methods for
the Mg98.5Y1Zn0.5 alloy.
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Figure 1. Schematic view of the production methods for the Mg98.5Y1Zn0.5 alloy: CE, CME, CEE
and PME.

Microstructural characterization was carried out using scanning electron microscopy (SEM) and
X-ray diffraction (XRD). The microscope JEOL JSM 6500F (JEOL, Akishima, Tokio, Japan) was used in
the backscattered mode. Metallographic preparation consisted of mechanical polishing and etching
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in a solution of 0.5 g picric acid, 5 mL acetic acid, 20 mL ethanol, 1 mL water, and 25 mL methanol.
Quantitative image analysis was carried out to follow the evolution of the recrystallized fraction and
grain size in the magnesium matrix after extrusion or ECAP. For the recrystallized fraction, several
SEM images from areas recrystallized to different extents were measured to give a good statistical
measure of this fraction. The sizes of recrystallized grains were measured, counting a minimum of
500 grains from backscattered electrons images. Statistical analyses were carried out with the software
Sigma Scan Pro (Jandel Scientific, San Rafael, CA, USA), taking the grain size as the average value
obtained. XRD patterns were carried out in a Siemens diffractometer D5000 using Cu-Kα radiation
with a wavelength of 0.1506 nm.

Cylindrical samples machined with their long direction parallel to the extrusion/ECAP direction
(head diameter of 6 mm, curvature radius of 3 mm, gauge diameter of 3 mm, and gauge length of
10 mm) were deformed in tension at a constant strain rate of 10−4 s−1 from room temperature up to
300 ◦C.

For simplicity, the different processing routes were designed as follows: CE for the alloy extruded
from the cast bars, CEE for the ECAP processing, CME for the alloy produced using machined chips,
and, finally, PME for the alloy fabricated using RS powders.

3. Results and Discussion

The micrograph of the Mg98.5Y1Zn0.5 cast alloy (Figure 2a) revealed a two-phase dendritic
microstructure consisting of magnesium dendrites with a second phase located at the interdendritic
space. The interdendritic phase was characterized by a lamellar morphology typical of the LPSO-phase.
The volume fraction of the LPSO-phase was 9%—much lower than volume fraction in the Mg97Y2Zn1

alloy, which was between 20% and 25% [17,18]. The microstructure of the machined chips (Figure 2b)
was similar to that of the cast alloy, but the LPSO-phase was broken. The dendritic microstructure of
spherical RS powders was also dendritic, but much finer than that found in the as-cast ingots, as shown
in Figure 2c. XRD patterns of Figure 2d confirmed that magnesium and 18R-LPSO-phase are the only
phases that existed in the as-cast alloy and RS powders.
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Figure 2. Microstructure of the Mg98.5Y1Zn0.5 alloy: (a) as-cast alloy, (b) machined chips, and (c) rapidly
solidified (RS) powders. The grey and white phases correspond to the magnesium and LPSO-phases.
(d) Diffraction pattern of the Mg98.5Y1Zn0.5 alloy: as-cast alloy and RS powders.
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After extrusion, the LPSO-phase in the CE material appeared strongly elongated along the
extrusion direction, independent of the extrusion ratio (Figure 3a). The LPSO-phase in the extruded
bar produced using machined chips (the CME material) was also deformed and elongated along
the extrusion direction (Figure 3b). However, at higher magnifications, it was observed that the
LPSO-phase was fragmented into small particles with a diameter lower than 1 µm. The LPSO-phase in
the CEE material was still elongated along the initial extrusion direction but also showed a serrated
shape distribution after each pass by ECAP, as shown Figure 3c. During the extrusion process of the
RS powders (PME material), the LPSO-phase appeared to be homogeneously and finely distributed in
the magnesium matrix with a particle size below 500 nm (Figure 3d). These LPSO-phase particles were
located mainly at grain boundaries, inhibiting the grain growth during the extrusion process.
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Figure 3. Microstructure of processed Mg98.5Y1Zn0.5 alloy: (a) CE, (b) CME, (c) CEE, and (d) PME. The
grey and white phases correspond to the magnesium and LPSO-phases.

The grain structure of the alloy processed by the four routes is shown in Figure 4. The grain
structure depends on the processing route; it was (i) equiaxed for PME and CME alloys, and (ii)
bimodal, in which fine dynamically recrystallized (DRXed) and coarse non-recrystallized grains
coexist. Using image analysis techniques, the ratio of DRXed and non-DRXed regions as well as the
size of DRXed grains were evaluated (see Table 1).
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grain size of 0.96 µm. The presence of the LPSO-phase as small particles rendered a more 
homogeneous distribution of this phase within the magnesium matrix, acting as pinning points 
which prevented further coarsening of the DRXed grains. This fact, however, did not lead to the alloy 
with the finest grain size, which was obtained in the alloy processed by ECAP, where the total 
processing strain was the highest (Table 1) and the processing temperature was the lowest. 

Figure 4. Grain structure of processed Mg98.5Y1Zn0.5 alloy: (a) CE; (b) CME; (c) CEE; and (d) PME.

Table 1. Total processing strains, volume fraction of the LPSO-phase, non-recrystallized and
recrystallized grains, recrystallized grain size, yield stress, σ0.2, ultimate tensile strength, Ultimate
tensile strength (UTS), and tensile ductility for the processed Mg98.5Y1Zn0.5 alloy: CE, CME, CEE,
and PME.

εT fLPSO (%) fDef (%) fDRX (%) D (µm) σ0.2 (MPa) UTS (MPa) Ductility (%)

CE 2.9 9 ± 0.7 45 ± 9 46 ± 8 1.4 ± 0.02 300 370 8
CME 3.6 9 ± 0.7 0 91 1.08 ± 0.02 313 361 13
CEE 4.2 9 ± 0.7 - - 0.66 ± 0.02 364 383 3
PME 3.6 9 ± 0.7 0 91 0.96 ± 0.02 316 370 16

The grain size histogram of DRXed areas is showed in Figure 5. The CE material showed a
bimodal grain structure with DRXed grains of about 1 µm and non-DRXed coarse grains elongated
along the extrusion direction. It has been reported that DRXed grains are randomly oriented while
coarse grains are oriented with the basal plane parallel to the extrusion direction [3]. The CME
material was fully recrystallized with a grain size slightly lower than that of the extruded as-cast ingots
(1.08 µm). The alloy processed using ECAP was not completely recrystallized. However, since both
kinds of grains were intimately mixed, an accurate estimation of the volume fraction of both areas
is not easily achieved without significant error. The DRXed grain size was lower than that for the
CE material, 0.66 µm against 1.4 µm. Finally, the PME material was fully recrystallized with a grain
size of 0.96 µm. The presence of the LPSO-phase as small particles rendered a more homogeneous
distribution of this phase within the magnesium matrix, acting as pinning points which prevented
further coarsening of the DRXed grains. This fact, however, did not lead to the alloy with the finest
grain size, which was obtained in the alloy processed by ECAP, where the total processing strain was
the highest (Table 1) and the processing temperature was the lowest.
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Figure 6 shows the true stress-true strain curves of the Mg98.5Y1Zn0.5 alloy at room temperature
for the four processing routes. For comparison, the tensile behavior of the extruded Mg97Y2Zn1

alloy is also shown [18]. It can be verified that lowering the yttrium and zinc content by the half,
i.e., decreasing the volume fraction of the LPSO-phase in the alloys processed by the extrusion of
as-cast ingots, induced a significant decrease of about 150 MPa, although the elongation to failure
was enhanced.
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Figure 6. (a) True stress-true strain curves of processed Mg98.5Y1Zn0.5 alloy: CE, CME CEE, and PME. 
For comparison, the curve of the extruded Mg97Y2Zn1 alloy obtained from the as-cast alloy is included; Figure 6. (a) True stress-true strain curves of processed Mg98.5Y1Zn0.5 alloy: CE, CME CEE, and PME.

For comparison, the curve of the extruded Mg97Y2Zn1 alloy obtained from the as-cast alloy is included;
(b) Evolution of the yield stress as a function of the inverse square root of the grain size for the alloy
processed by the four routes: CE, CME, CEE, and PME.
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The curves of materials processed by machined chips or RS powders, MCE and PME in Figure 6,
revealed similar yield stresses, 313 and 316 MPa, respectively. These values are slightly higher than
that of the conventional extruded material, 310 MPa, but the ultimate tensile stresses (UTS) are lower.
Yamasaki et al. [3] proposed that coarse grains contribute to reinforce the alloy since neither basal
slip nor tensile twinning can be easily activated in these grains. Garces et al. [19,20] confirmed this
assumption using diffraction methods during in situ tension and compression tests. Moreover, they
proved that the beginning of plasticity (yield stress) is always controlled by the activation of the basal
slip system in DRXed grains. Therefore, the higher yield stress of CME and PME materials is due to
their finer grain size. In the case of the CE alloy, coarse grains areas (non-DRXed grains) contribute to
reinforce the material during tensile tests, reaching a yield stress almost comparable to that of CME
and PME alloys. It is important to mention that the material produced using RS powders showed
the higher elongation to failure. The use of the PM route in magnesium alloys produced extruded
bars with low texture and, therefore, favored the ductility [21]. The Mg98.5Y1Zn0.5 processed by ECAP,
the CEE material, attained the same yield stress as the Mg97Y2Zn1 alloy, although its ductility was
highly reduced. This fact confirms again that the beginning of plasticity in this kind of alloys with
bimodal grain structure is controlled by the plasticity of DRXed grains, so the grain refinement of these
grains is the best strategy to improve the mechanical strength in these alloys. Figure 6b shows the
variation of the yield stress with the reciprocal of the square root of the grain size (d−1/2). The yield
stress increased as the grain size decreased following a Hall-Petch relationship with a slope of 170 MPa
µm−1/2, similar to that obtained by Hagihara et al. [4] in Mg97Y2Zn1 alloy.

Figure 7 shows the true stress-true strain curves of the Mg98.5Y1Zn0.5 alloy for the four processing
routes from RT to 300 ◦C at 10−4 s−1. For all processing routes, two ranges of behavior were
distinguished: (1) the interval from RT up to 200 ◦C with high strength, high work hardening, and low
ductility, and (2) the interval from 200 to 300 ◦C in which a pronounced decrease in strength was noticed
but elongation to failure was substantially improved. The evolution of the yield stress is shown in
Figure 8a from RT to 300 ◦C for the four processing routes. In all materials there was a gradual decrease
in strength as the temperature increased, although the strength remained above 200 MPa up to 200 ◦C,
and even up to 250 ◦C in the case of the CEE material. The alloy processed by extrusion followed by
ECAP exhibited the highest yield stress over the entire temperature range. The mechanical behavior
was determined mainly by two parameters: (i) the equiaxed or bimodal structure of the magnesium
matrix, and (ii) the size and morphology of the LPSO-phase. The use of chips, powders resulted
in fine-grained equiaxed magnesium grains. In addition, the alternative processing routes induced
changes in the LPSO-phase. In the case of the CME material, the LPSO-phase was broken during the
machining stage. In addition, the large strain accumulated during machining induced subsequent
fracture during the extrusion process. In the CEE material, however, most of the LPSO-phase particles
were not broken during ECAP. Instead, they were severely kinked. The distribution and alignment
of the LPSO-phase was similar to that of the CE material, i.e., the LPSO-phase was arranged in long
strings of particles aligned along the extrusion direction. However, the linearity of such arrangements
was lower, especially in the case of the CEE material, compared to the CE alloy (as can be seen in
Figure 1). A major difference of PME alloy was that the fine dendritic structure of the RS powders
results in the fracture of LPSO-phase particles located at the interdendritic regions, leading to very
homogenous distribution in the magnesium matrix. At room temperature and 100 ◦C, it seemed that
the effect of grain size prevailed over the reinforcement due to the LPSO-phase. The reinforcing effect
of LPSO-phase particles, larger than 0.5–1 µm in size, on the strength of magnesium alloys through the
load transfer mechanism is well reported [20,22], due to its higher Young Modulus compared to the
magnesium phase [22,23]. Thus, up to 100 ◦C, grain size is the main parameter controlling the yield
stress of the different alloys. As the volume fraction of the LPSO-phase is essentially the same in all
alloys and no large differences in the grain size of DRXed regions, changes in the reinforcing effect
due to load transfer from the magnesium matrix to the LPSO-phase should be small, as a result of
differences in the shape and size of the LPSO-phase particles.
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Above 200 ◦C, both the specific characteristics of the magnesium matrix and the LPSO-phase
particles in each alloy determined their mechanical behavior. Thus, the alloys with a fully recrystallized
microstructure (CME and PME) became much softer than alloys with a bimodal microstructure
(CE and CEE). Such different behavior was associated with some contribution of the grain boundary
sliding (GBS) mechanism during the plastic deformation of the alloy. It is well reported that magnesium
alloys containing the LPSO-phase exhibit superplasticity, even in alloys reinforced with volume
fractions of coarse second phases exceeding 50% [6,24,25]. Consequently, GBS can proceed not only



Materials 2018, 11, 733 9 of 10

between magnesium grains but also in LPSO-phase/Mg interfaces. In alloys with grain sizes ranging
between 2 and 5 µm and coarse second phases, superplastic behaviors with high elongations have been
attained at temperatures above 300 ◦C because the accommodation of stresses generated during GBS
must be achieved by cracking the LPSO-phase particles, which subsequently become homogeneously
redistributed in the magnesium matrix. In addition, the existence of coarse non-DRXed regions
precludes the activity of GBS there, reducing the superplastic deformation capabilities of the material.
Superplastic behavior could take place once these coarse non-DRXed grains become recrystallized,
usually at temperatures above 300 ◦C. Given the special features required for GBS in alloys containing
the LPSO-phase, only the PME alloy exhibited superplastic behavior at 300 ◦C, 317% as elongation
to failure (see Figure 8b), because this alloy was the only one combining the grain refinement of the
magnesium matrix and the homogeneous distribution of fine second phases.

4. Conclusions

Severe deformation processing has been used to decrease the yttrium content of Mg-Y-Zn alloys
containing LPSO phases without losing their mechanical strength at room temperature. In this study,
three alternative routes were explored to maximize the mechanical strength of the Mg98.5Y1Zn0.5 alloy:
the extrusion of machined chips and RS powders obtained from the cast alloy, and ECAP processing
of the extruded bar. The microstructure of the extruded bars obtained from the machined chips and
RS powders was fully recrystallized with a grain size near 1 µm, slightly improving the yield stress
in comparison to the extruded alloy. On the other hand, the use of ECAP processing highly refined
the grain size of the alloy up to 660 nm in such a way that its yield stress became similar to that of the
extruded alloy with twice the yttrium content. Superplasticity could be achieved at 300 ◦C for the
alloy prepared by a powder metallurgy route due to the grain size of the alloy, and the homogeneous
distribution permitted the operation of grain boundary sliding.
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