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Abstract: In the present paper, a novel cellular metamaterial that was based on a tensegrity pattern is
presented. The material is constructed from supercells, each of which consists of eight 4-strut simplex
modules. The proposed metamaterial exhibits some unusual properties, which are typical for smart
structures. It is possible to control its mechanical characteristics by adjusting the level of self-stress
or by changing the properties of structural members. A continuum model is used to identify the
qualitative properties of the considered metamaterial, and to estimate how the applied self-stress and
the characteristics of cables and struts affect the whole structure. The performed analyses proved that
the proposed structure can be regarded as a smart metamaterial with orthotropic properties. One of its
most important features are unique values of Poisson’s ratio, which can be either positive or negative,
depending on the applied control parameters. Moreover, all of the mechanical characteristics of the
proposed metamaterial are prone to structural control.
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1. Introduction

Metamaterials are usually defined as man-designed and man-made, which are not observed in
nature, composite structures with unusual or non-typical properties [1–3]. Features of metamaterials
are determined mainly by morphology of the structure in the scale bigger than molecular, and in
smaller degree by chemical or phase composition. This area has been under considerable and important
scientific research in recent years. Many state-of the-art applications refer to electromagnetic waves and
phenomena [4–6], solar photovoltaic cells and panels [7,8], energy absorption, including seismic [9]
and acoustic waves [10,11], and mechanical metamaterials [12–16] (for example, with unusual dynamic
properties, negative Poisson’s ratio, non-typical modulus of extension and volumetric changes,
ultra-light, and ultra-stiff materials).

Smart materials are the materials that are able to convert one form of energy (mechanical, magnetic,
electrical, etc.) into another in a reversible and repeatable process [17,18]. They are capable of sensing
changes in the environmental conditions, responding to them in a predetermined manner, in an
appropriate time and returning to their original shape as soon as the stimulus is removed.

Smart structures are the structures with the ability to sense and respond adaptively to
changes in their environment [19,20]. This feature distinguishes them from the conventional ones.
Whereas, the main purpose of the traditional structures is to provide strength and carry loads acting
on them, the smart ones adapt in a pre-designed manner to a functional need, modifying their shape,
stiffness, or damping characteristics in order to minimize the deflection and possible damage.

In the context of the above definitions, the metamaterial with smart features is more close the
term smart structure than smart material.
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Standard engineering materials when compressed along a particular direction are the most
commonly observed to expand in the directions orthogonal to the applied load. This property is
measured by a Poisson’s ratio, which is a good example to characterize the mechanical metamaterial.
Positive Poisson’s ratio in the range of 0.0 to 0.5 is observed for the majority of engineering materials,
which means that it is a typical material property. However, theory of elasticity permits negative
values and for anisotropic materials also the coefficients bigger than 0.5. Negative Poisson’s ratios
are not observed in nature and this is why metamaterials with such a property are being looked
for. An interesting group of up to date efforts in this area are metamaterials that are based on the
origami patterns [21–26], inspired by the art of paper folding. The most efficient is the Miura-Ori
origami pattern.

Another interesting type of structures that allow for building materials with negative Poisson’s
ratios are tensegrities. The term “tensegrity” was first introduced by Buckminster Fuller (see [27] for
historical details). Several definitions of this concept can be found in the literature [27–29]. For the
purpose of this paper, a tensegrity structure is defined as a pin-jointed system with a particular
configuration of cables and struts that form a statically indeterminate structure in a stable equilibrium.
Tensegrities consist of a discontinuous set of compressed elements inside a continuous net of tensioned
members, which have no compressive stiffness. Infinitesimal mechanisms, which occur in tensegrity
structures, are balanced with self-stress states [30,31]. Occurrence of a self-stress state in a structure
indicates that there is a certain set of internal forces in structural members, which are independent
from external loading and boundary conditions because they are in self-equilibrium.

To major advantages of tensegrity systems belong: large stiffness-to-mass ratio, deployability,
reliability, controllability [27,28], as well as programmable deployment [32]. Moreover, tensegrities have
some unique features that result from the infinitesimal mechanisms, which are stabilized by self-stress
forces. It is possible to control their static and dynamic properties by adjusting the pre-stressing
forces [33–36].

As it was presented in [37], there are some particular features of tensegrity structures,
following which one can classify them as smart structures. There are: self-control, self-diagnosis,
self-repair, and self-adjustment (active control).

Self-control of tensegrity systems consists in self-stiffening of the structures under the applied
load that causes displacements consistent with the infinitesimal mechanism mode. External loading
acts similarly to the self-stress—it eliminates singularity of the problem, additionally, pre-stresses
the structure and stiffens it. Self-diagnosis relates to the possibility of damage detection and
identification by measuring the internal forces in active members. Damage of one structural element
affects the distribution and level of self-stress in the whole structure. Self-repair of tensegrity
structures is realized by adjusting self-stress forces. A proper change of pre-stressing level can
compensate the damaged element and restore the values of structural displacements from before
damage. Self-adjustment (active control) in regard to tensegrity systems is related with the ability of
self-adjustment through self-stress forces. Both the pre-stressing of the whole structure and its part
causes a stiffening of the system and the reduction of its displacements. Therefore, active control of
tensegrities can be realized by adjusting the level of self-stress in only one selected part of the structure.

The objective of the present paper is to develop a metamaterial based on the 4-strut simplex
tensegrity module [38], which was exhibiting the smart structure features. A continuum model [39,40]
is applied to identify the qualitative properties of the proposed metamaterial. Its mechanical
characteristics can be controlled with the self-stress state and cable to strut properties ratio,
including positive or negative values of Poisson’s ratio. According to the best knowledge of the
authors, there are almost no papers in this field in the available literature, with the first valuable
attempt on the mechanical response of three-dimensional (3D) tensegrity lattices by [41].
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2. Unit Cell

The proposed metamaterial is based on one of the best known tensegrity modules—a 4-strut
simplex (Figure 1). As all typical tensegrity structures, it is a pin-jointed system consisting of isolated
compressed elements (four struts) inside a continuous net of tensioned members (twelve cables) [27–29].
The 4-strut simplex module is obtained from a regular prism by rotating one of its bases 135 degrees
clockwise or counter clockwise.
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Figure 1. Geometry of a unit cell—a 4-strut simplex module—axonometry and three views.

One of the unique features of tensegrities are infinitesimal mechanisms that are balanced with
self-stress states [30,38]. The considered simplex module has one infinitesimal mechanism (Figure 2a)
and one corresponding self-stress state (Figure 2b)—self-stress is expressed by the relative forces in
struts and cables with a multiplier S0, which can be any positive real number.
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Any material or system that is based on tensegrity is complicated regarding both its geometry
and mechanics. Therefore, it is often difficult or even impossible to determine and understand its
properties using typical tools. Standard methods, such as the finite element method, enable analysing
any kind of structure, but they do not explain if the analysed system exhibits anisotropic, orthotropic
properties, or is characterized by some other type of elastic symmetry. Using such methods, it is also
hard to describe unusual properties in the sense of a metamaterial.

In order to analyse all of the untypical, unique features of tensegrity systems and to identify their
properties, a continuum model [39,40] is suggested. The aim of the proposed model is to facilitate
the identification and the understanding of mechanical characteristics of tensegrities through the
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qualitative comparison with a continuum body [42,43] with equivalent features. The model is built
by assuming that the strain energy of an unsupported tensegrity structure is equivalent to the strain
energy of a solid [39,40].

The strain energy of a tensegrity truss, according to the finite element method (FEM), is a quadratic
form of nodal displacements q:

EFEM
s =

1
2

qTKq, (1)

where K = KL + KG, KL—global linear stiffness matrix, KG—global geometric stiffness matrix.
The self-stress of the structure is represented by the geometric stiffness matrix. The strain energy of a
solid, according to the symmetric linear 3D elasticity theory (LTE), can be expressed as:

ELTE
s =

1
2

∫
V

εTEε dV, (2)

where ε—vector of strain components (containing normal strains and shear strains), E—6 × 6 elasticity
matrix in Voight’s notation [42] (including 21 independent coefficients). In order to analyse mechanical
properties of the structure, such as Young’s moduli, shear moduli, Poisson’s ratios, etc., the strain
energy of an unsupported tensegrity structure is compared to the strain energy of a cube of edge length
a. It is assumed that the strain energy of the cube is constant in its whole volume. To compare the
energies and to build the equivalent elasticity matrix, the nodal displacements q of the structure are
expressed by the average mid-values of displacements and their derivatives in the centre of the cube
of edge length a, with the use of Taylor series expansion. In case of small values of a, terms with the
factor an (n > 1) can be regarded as higher order terms and are omitted. This assumption leads, in a
quantitative sense, to the infinitesimal model. Mechanical characteristics can be determined from the
inverse elasticity matrix H = E−1 [42]:

H =



1
E1

−V21
E2

−V31
E3

λ11
G1

λ21
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G3
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1
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1
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1
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µ21
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µ31
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κ12
E1

κ22
E2

κ32
E3

µ12
G1

1
G2

µ32
G3

κ13
E1

κ23
E2

κ33
E3

µ13
G1

µ23
G2

1
G3


. (3)

The following technical coefficients can be defined for anisotropic body: Young’s moduli (E),
shear moduli (G), Poisson’s ratios (ν), coefficients (µ)—relations between shear strains in perpendicular
directions, coefficients (λ)—relations between normal strains in three directions and shear strains in
one direction, and coefficients (κ)—relations between shear strains in three directions and normal
strains in one direction.

Moreover, limiting conditions for the values of mechanical characteristics can be found using the
assumption that both matrices E and H have to be positive definite (see [44,45] for details).

The continuum analysis of tensegrities allows for: estimate the influence of self-stress on
the behaviour of the system, assess how the characteristics of cables and struts affect the whole
structure and determine the mechanical characteristics of materials or structures that are based on
tensegrity modules.

In the continuum analysis of a unit cell, a 4-strut simplex module inscribed into a cube of edge
length a (Figure 1) was considered. The module itself is an anisotropic structure, but as proved in the
following sections it can be arranged in such a way that the material based on a simplex tensegrity
pattern has orthotropic properties.
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The elasticity matrix E obtained for the analysed module has the following form:

E =



e11 e12 e13 e14 0 0
e11 e13 −e14 0 0

e33 0 0 0
e12 0 0

e13 0
sym. e13


, (4)

where:

e11 = 2EA
a2 (0.314815 + 1.39827 · k − 0.0794978 · σ),

e12 = EA
a2 (0.296296 + 0.707107 · k − 0.0134742 · σ),

e13 = EA
a2 (0.740741 + 0.357771 · k + 0.17247 · σ),

e14 = EA
a2 (−0.2222222 − 0.0808452 · σ),

e33 = 2EA
a2 (0.592593 + 1.43108 · k − 0.17247 · σ),

k =
(EA)cable
(EA)strut

, (EA)strut = EA, σ = S
EA ,

E—Young’s modulus of the strut, A—cross-sectional area of the strut.

Two characteristic parameters were used in the analysis: k and σ. Parameter k is defined as a ratio
between the stiffness of cables and struts, parameter σ determines the level of self-stress.

It should be noticed that the proposed unit cell is an anisotropic structure, as there are non-zero
coefficients e14 and e24 = e14 in the determined elasticity matrix (4). However, it is proved in the
following sections that the material that is based on such unit cells exhibits orthotropic properties.

3. Tensegrity Cellular Material

Simplex tensegrity modules that are described in the previous section can be arranged in different
patterns to form a material with certain properties. Depending on the type of the module used (with the
basis rotated clockwise or counter clockwise) and the way in which the modules are connected,
a material with different mechanical characteristics can be obtained. In the present paper, a material
with orthotropic properties is proposed, as it exhibits some special features, such as a negative
Poisson’s ratio.

Figure 3 presents a system consisting of four simplex modules that are connected through common
cables of the lower bases and common nodes of the upper bases.

The following elasticity matrix E was determined for the analysed system using the
continuum approach:

E =



e11 e12 e13 0 0 0
e11 e13 0 0 0

e33 0 0 0
e12 0 0

e13 0
sym. e13


, (5)

where:

e11 = 2EA
a2 (0.314815 + 1.13709 · k − 0.0794978 · σ),

e12 = EA
a2 (0.296296 + 0.707107 · k − 0.0134742 · σ),

e13 = EA
a2 (0.740741 + 0.268328 · k + 0.17247 · σ),

e33 = 2EA
a2 (0.592593 + 1.07331 · k − 0.17247 · σ).

The obtained elasticity matrix (5) indicates that the four-module layer, although based on
anisotropic unit cells, exhibits orthotropic properties.
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Following this reasoning, an eight-module supercell (Figure 4), which was built from two
four-module layers, was considered. The upper layer of the system was created by putting the
four-module layer upside-down and connecting it with the bottom layer through common cables.
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Figure 4. Geometry of an eight-module supercell—axonometry and three views.

The elasticity matrix E that was obtained from the continuum analysis of the considered supercell
has the following form:

E =



e11 e12 e13 0 0 0
e11 e13 0 0 0

e33 0 0 0
e12 0 0

e13 0
sym. e13


, (6)

where:

e11 = 2EA
a2 (0.314815 + 0.960318 · k − 0.0794978 · σ),

e12 = EA
a2 (0.2962963 + 0.353553 · k − 0.0134742 · σ),

e13 = EA
a2 (0.740741 + 0.268328 · k + 0.17247 · σ),

e33 = 2EA
a2 (0.592593 + 1.07331 · k − 0.17247 · σ).

Similarly to the four-module layer, the analysed eight-module supercell has orthotropic properties.
In order to find mechanical characteristics of the structure, an inverse matrix H = E−1 with seven

independent coefficients was determined:

H = E−1 =



1
E1

− ν12
E1

− ν31
E3

0 0 0
− ν12

E1
1

E1
− ν31

E3
0 0 0

− ν13
E1

− ν13
E1

1
E3

0 0 0
0 0 0 1

G1
0 0

0 0 0 0 1
G2

0
0 0 0 0 0 1

G2


(7)

with the following values:

E1 = E2 =
(e11−e12)(2e2

13−(e11+e12)e33)
e2

13−e11e33
,

E3 =
−2e2

13+(e11+e12)e33
e11+e12

,
G1 = e12,
G2 = G3 = e13,
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ν12 = ν21 =
e2

13−e12e33

e2
13−e11e33

,

ν13 = ν23 = −e13(e11−e12)

e2
13−e11e33

,

ν31 = ν32 = e13
e11+e12

.

Symmetry of the matrix H generates the following condition: ν13/E1 = ν31/E3.
Moreover, the limiting conditions that are described in [44,45] resulting from the positive definition
of the matrices E and H have to be satisfied: E1 > 0, E2 > 0, E3 > 0, G1 > 0, G2 > 0, G3 > 0,
and ν12ν21 < 1, ν13ν31 < 1, ν23ν32 < 1, ν12ν21 + ν13ν31 + ν23ν32 + ν12ν31ν23 + ν21ν13ν32 < 1.

Analysis of the above limiting conditions and the domains of the determined mechanical
characteristics leads to conditions that limit the values of parameters k and σ. All of the considered
conditions are described by curves, which, for engineering purposes, can be approximated with the
equations of straight lines (see [46] for details). A general condition that is a common domain for all of
the mechanical characteristics can be written, as follows:

σ > 3.69983 k. (8)

In addition to the above condition, in the analyses presented in this paper the values of k and
σ are limited to: k < 1 and σ < 1. Figure 5 presents a range of possible values of the considered
parameters. The boundary line of the region σ > 3.69983 k is also marked on the contour plots of the
selected mechanical characteristics presented below.
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Using the results obtained from the presented continuum analysis, an influence of element
properties and self-stress on the mechanical characteristics of the eight-module supercell can be
determined. Figures 6–11 show how the selected mechanical characteristics depend on the defined
parameters k and σ. The values of these characteristics should be considered in the range that is
shown in Figure 5. It should be noticed that all of the analysed mechanical characteristics are prone
to structural control—their values might be controlled by adjusting either the properties of struts
and cables or the values of prestressing forces in structural members. This feature distinguishes the
proposed smart metamaterial from the traditional ones. Whereas, a typical material exhibits certain
properties that are constant (assuming that the rheology is neglected), the characteristics of a smart
material can be actively controlled.

Parameter k depends on the physical and geometrical cable to strut ratio and can be fixed for the
supercell at a certain level. Slightly different is the role of self-stress parameter σ, which can be adjusted
during exploitation of the material to control the values of elastic coefficients. As it is seen in Figures 6
and 7, the influence of these parameters on the Young’s and shear modulus is quite significant.
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The most important features that characterize mechanical metamaterials are negative values of
Poisson’s ratio. In the case of the proposed eight-module supercell Poisson’s ratio ν12 (and ν21 = ν12),
can reach negative as well as positive values in the considered range of the parameters k and σ

(Figures 8 and 9, as an example for the fixed value of the parameter k = 0.4). The influence of the
self-stress parameter σ on the value of Poisson’s ratio ν12 is significant. The gaps between the positive
and negative values of the Poisson’s ratios ν12 and ν13 visible in Figures 8 and 10 result from the
domains of these functions. However, they are not taken into account as they lie outside the considered
range (Figure 5).Materials 2018, 11, x FOR PEER REVIEW  10 of 14 
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Figure 9. Poisson’s ratio ν12 = ν21 changing sign (the plot for k = 0.4).

The other Poisson’s ratios ν13 and ν31 are always positive (Figures 10 and 11) in the considered
domain (Figure 5). While the coefficient ν13 is not very sensitive to k and σ, the other one ν31 can be
adjusted by changing these two parameters.
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It should be highlighted that in the case of the analysed system, the selected Poisson’s ratios can
not only have negative values, but they can also change sign (Figure 9). It means that the proposed
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metamaterial behaves differently depending on the adopted parameters k and σ. This is a unique
feature of smart metamaterials. Such a material can act like a standard material with positive Poisson’s
ratios, and, in the same time, it can be changed into a metamaterial with negative values of these
mechanical characteristics.

The considered eight-module supercells can be used to build a metamaterial of any volume.
The properties of such a material are the same as the properties of the supercell. An example of a
metamaterial that is built from the analysed eight-module supercells is presented in Figure 12.
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4. Conclusions

The present paper focuses on the development and analysis of a novel cellular metamaterial based
on the simplex tensegrity pattern. The proposed material is constructed from supercells, each of which
consists of eight 4-strut simplex modules. Using continuum model different structures are analyzed:
a unit cell, a four-module layer, and an eight-module supercell. The continuum analysis of tensegrities
allows for: estimating the influence of self-stress on the behaviour of the system, asses how the
characteristics of cables and struts affect the whole structure and determine mechanical characteristics
of materials or structures based on tensegrity patterns.

The proposed unit cell is an anisotropic structure. However, it can be arranged in such a way
that that the material based on the simplex tensegrity pattern exhibits orthotropic properties. Such a
material is considered in this paper. The developed metamaterial has some unusual properties,
which are typical for smart structures. It is possible to control its mechanical characteristics by adjusting
the level of self-stress or by changing the properties of structural members.
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One of the most important features of the proposed cellular metamaterial is a unique behaviour of
some of its Poisson’s ratios. Depending on the applied control parameters, they can be either positive
or negative. This feature is of a great importance as far as the active control of the system is concerned.

Moreover, the proposed metamaterial exhibits features which characterize smart systems.
Its mechanical properties, such as Young’s moduli, shear moduli and Poisson’s ratios, can be adjusted
and controlled during the exploitation via the self-stress parameter σ to satisfy the self-control,
self-diagnosis, active-control, as well as self-repair conditions (see [20,37,46] for details of smart
tensegrity structures). It is possible due to the occurrence of infinitesimal mechanisms that are balanced
with self-stress states.

The results that are presented in this paper indicate a great potential that lies in the proposed
metamaterial. Thanks to its unique features, such as the negative Poisson’s ratio, controllability,
sensitivity to the self-stress, the material can be applied in smart structural systems. The members
constructed from such a material can be designed to adapt to a functional need by modifying their
shape, stiffness, or damping characteristics in order to minimize the deflection and possible damage.

In the future works, it is worth developing and analysing smart metamaterials based
on different tensegrity patterns. Other modules are to be considered as unit cells in various
arrangements—orthotropic and anisotropic ones. The proposed systems are to be considered from the
point of view mechanical properties (using the continuum approach), as well as inherent smartness
and the conditions that have to be satisfied in order to regard a structure as smart.
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Szcześniak, W., Ataman, M., Eds.; Warsaw University of Technology Publishing House: Warsaw, Poland,
2013; pp. 117–126. (In Polish)

41. Rimoli, J.J.; Pal, R.K. Mechanical response of 3-dimensional tensegrity lattices. Compos. Part B 2017, 115,
30–42. [CrossRef]

42. Green, A.E.; Zerna, W. Theoretical Elasticity; Oxford University Press: Oxford, UK, 1968.
43. Chadwick, P.; Vianello, M.; Cowin, S. A new proof that the number of linear elastic symmetries is eight.

J. Mech. Phys. Solids 2001, 49, 2471–2492. [CrossRef]
44. Ting, T.C.T. Positive definiteness of anisotropic elastic constants. Math. Mech. Sloids 1996, 1, 301–314.

[CrossRef]
45. Zheng, Q.S.; Chen, T. New perspective on Poisson’s ratio of elastic solids. Acta Mech. 2001, 150, 191–195.

[CrossRef]
46. Al Sabouni-Zawadzka, A. On Possible Applications of Smart Structures in Bridge Engineering. Ph.D. Thesis,

Warsaw University of Technology, Warsaw, Poland, 2016.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijsolstr.2013.05.014
http://dx.doi.org/10.1016/j.compositesb.2016.10.046
http://dx.doi.org/10.1016/S0022-5096(01)00064-3
http://dx.doi.org/10.1177/108128659600100302
http://dx.doi.org/10.1007/BF01181811
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Unit Cell 
	Tensegrity Cellular Material 
	Conclusions 
	References

