

Supplementary

A Reversible Bis(salamo)-based Fluorescence Sensor for Selective Detection of Cd²⁺ in Water-containing Systems and Food Samples

Jing Hao, Xiao-Yan Li, Yang Zhang and Wen-Kui Dong *

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; haojingmm@126.com (J.H.); L1401569787@163.com (X.-Y.L.); zhangy8124@163.com (Y.Z.)

* Correspondence: dongwk@mail.lzjtu.cn

Received: 27 February 2018; Accepted: 28 March 2018; Published: 28 March 2018

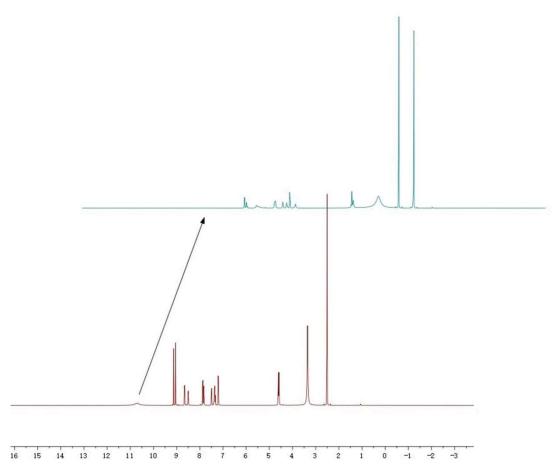


Figure S1. ¹H NMR titration in upon addition of 3.0 equiv. Cd²⁺.

H_4L	H ₄ L	H ₄ L	H ₄ L	H ₄ L	H ₄ L	H ₄ L	H ₄ L	H ₄ L	H ₄ L	H ₄ L	H ₄ L	H ₄ L	H ₄ L
	+	+	+	+	+	+	+	+	+	+	+	+	+
	Cu ²⁺	Ba ²⁺	Ca ²⁺	K ⁺	Cr ³⁺	Mn ²⁺	Sr ²⁺	Co ²⁺	Na ⁺	Li ⁺	Ni ²⁺	Ag ⁺	Zn ²⁺
H ₄ L + Cd ²⁺	H ₄ L + Cd ²⁺ + Cu ²⁺	H ₄ L + Cd ²⁺ + Ba ²⁺	H ₄ L + Cd ²⁺ + Ca ²⁺	H ₄ L + Cd ²⁺ + K ⁺	H ₄ L + Cd ²⁺ + Cr ³⁺	H ₄ L + Cd ²⁺ + Mn ²⁺	H ₄ L + Cd ²⁺ + Sr ²⁺	H ₄ L + Cd ²⁺ + Co ²⁺	H ₄ L + Cd ²⁺ + Na ⁺	H ₄ L + Cd ²⁺ + Li ⁺	H ₄ L + Cd ²⁺ + Ni ²⁺	H ₄ L + Cd ²⁺ + Ag ⁺	H ₄ L + Cd ²⁺ + Zn ²⁺

Figure S2. The result of colorimetric measured photographs with sensor H_4L for detecting Cd^{2+} under irradiation at 365 nm.