Supplementary information

An optical biosensing strategy based on selective light absorption and wavelength filtering from chromogenic reaction

Hyeong Jin Chun¹, Yong Duk Han¹, Yoo Min Park^{1,2}, Ka Ram Kim¹, Seok Jae Lee², and Hyun C. Yoon^{1*}

¹ Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea

² Nanobio Application Team, National NanoFab Center (NNFC), Daejeon 34141, South Korea

* Author to whom correspondence should be addressed:

E-mail: hcyoon@ajou.ac.kr

Figure S1

Figure S1. The workflow of the manufacture of a biorecognition layer on the biosensing channel surface. Construction of the enzyme layer for detection of glucose by means of GOx, HRP, and a dendrimer.

Figure S2. Changes in the absorbance at visible wavelengths caused by various concentrations of glucose in the sample (0, 1.3, 2.5, 5, or 10 mM).