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Abstract: Novel, slowly-degradable and hydrophilic materials with proper mechanical properties
and surface characteristics are in great demand within the biomedical field. In this paper, the design,
synthesis, and characterization of polyurethanes (PUR) crosslinked with poly(vinyl alcohol) (PVA) as
a new proposition for regenerative medicine is described. PVA-crosslinked PURs were synthesized
by a two-step polymerization performed in a solvent (dimethylsulfoxide, DMSO). The raw materials
used for the synthesis of PVA-crosslinked PURs were poly(ε-caprolactone) (PCL), 1,6-hexamethylene
diisocyanate (HDI), and PVA as a crosslinking agent. The obtained materials were studied towards
their physicochemical, mechanical, and biological performance. The tests revealed contact angle of
the materials surface between 38–47◦ and tensile strength in the range of 41–52 MPa. Mechanical
characteristics of the obtained PURs was close to the characteristics of native human bone such
as the cortical bone (TSb = 51–151 MPa) or the cancellous bone (TSb = 10–20 MPa). The obtained
PVA-crosslinked PURs did not show significant progress of degradation after 3 months of incubation
in a phosphate-buffered saline (PBS). Accordingly, the obtained materials may behave similar
to slowly-degradable materials, which can provide long-term physical support in, for example,
tissue regeneration, as well as providing a uniform calcium deposition on the material surface, which
may influence, for example, bone restoration. A performed short-term hemocompatibility study
showed that obtained PVA-crosslinked PURs do not significantly influence blood components, and a
cytotoxicity test performed with the use of MG 63 cell line revealed the great cytocompatibility of
the obtained materials. According to the performed studies, such PVA-crosslinked PURs may be a
suitable proposition for the field of tissue engineering in regenerative medicine.

Keywords: polyurethane; poly(vinyl alcohol); crosslinking; degradation; surface; hydrophilicity;
bone tissue engineering

1. Introduction

Polyurethanes (PURs) are characterized as biocompatible and hemocompatible materials. Thus,
they are widely developed in the medical field [1]. PURs possess a segmented structure, which consists
of hard and soft segments. Soft segments (SS) are formed by the macrodiol blocks, while hard segments
(HS) are derived from diisocyanate and chain extenders [2]. According to the segmented structure of
PURs, there is an easy way to adjust their mechanical properties to expected requirements. Due to
this, PURs are used in many novel fields of medical sciences, such as regenerative medicine and tissue
engineering (TE) [3,4].

The aim of TE is to assemble constructs that provide mechanical, cellular, and molecular signals
to restore, maintain, or improve damaged tissues or whole organs. Therefore, bone tissue engineering
strives to restore and heal bone in musculoskeletal disorders, injuries, or deformities. Nowadays,
autografts and allografts are commonly used in the clinical practice of restorative therapy [1,4,5].
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However, bone harvesting is traumatic, causes pain and infections at the donor site, and very often
results in complications. Hence, the use of synthetic grafts is emerging as an alternative treatment [1,5].

One of the requirements of bone tissue engineering is that the materials must be biodegradable.
The degradation of PURs may be controlled not only by the type of macrodiol, diisocyanate and
chain extender chosen for the synthesis but also by the morphology, hard to soft segments ratio
and the degree of crosslinking. Properly designed PURs are biodegradable [6,7] and they degrade
mainly through hydrolytic degradation of the soft segment derived from macrodiols having ester
moieties [8]. In physiological conditions, degradation of the urethane linkages (UL) is unlikely. This is
because the degradation rate of UL is an order of magnitude lower than the degradation rate of ester
linkages. Biodegradable PURs are mainly synthesized from macrodiols containing ester moieties i.e.,
poly(ε-caprolactone)diol (PCL), poly(glycolic acid) (PGA), poly(lactic acid) (PLA) and their application
is FDA (Food and Drug Administration) approved [9,10].

The ideal bone graft promotes calcification of the newly formed tissue in vivo. The ability to
support calcium phosphate crystal formation is one of the most unique properties that distinguishes
PURs from other biomaterials and predisposes them to be used in bone regeneration. PURs, when
they are implanted into the circulatory system, within connective tissue, undergo calcification [11–13].
It is presumed that the hydrophilicity and the presence of ether oxygen have the greatest impact on
calcification [14]. In this case, hydrophobic polyester-urethanes calcification occurs only on the surface,
which is in a direct contact with body fluids [15]. In case of hydrophilic poly(ether-uretane)s, it occurs
both on the surface and within the polymer [16]. Moreover, PURs have a relatively high affinity to
calcium phosphates [16–18].

Among crosslinked materials used in the biomedical field, the literature reports hydrogels
obtained by using natural polymers such as gelatin [19], chitosan [19,20], hyaluronic acid [21],
collagen [20], and synthetic once such as poly(vinyl alcohol) (PVA) [22] or poly(vinylpirolidone)
(PVP) [23]. PVA is a useful polymer in the biomedical field. It is linear in its structure, which is
highly soluble in water and resistant to most organic solvents. The FDA has approved PVA to be
in close contact with food products and to be used as a medical device due to its biocompatibility,
nontoxicity, non-carcinogenicity, swelling and bio-adhesive properties [22]. Until now, PVA hydrogels
and membranes have been developed for biomedical applications such as contact lenses [24], artificial
pancreases [25,26], hemodialysis [27], and synthetic vitreous humor [28], as well as for implantable
medical materials to replace cartilage [29–33] and meniscus tissues [34,35]. It is an attractive material
for these applications because of its biocompatibility and low protein adsorption properties, resulting
in low cell adhesion compared with other hydrogels. These diverse uses of PVA in medical devices
indicate that it is safe for human use in applications where adsorption of the host protein is undesired
and the device experiences tensile stress during use [36].

The aim of performed studies was to design, synthesize and characterize PVA-crosslinked PURs
as a proposition of the novel material, which can be utilized in the field of regenerative medicine.
The data reported in this paper constituted the basis of the Polish patent No. PL 223226 B1 [37] released
in 2016. Until now, only a few scientific papers have been related to the PVA combination with PUR for
biomedical applications, and such systems are mainly crosslinked hydrogels. For example, Bonakdr
et al. reported a PVA hydrogel crosslinked by biodegradable polyurethane for tissue engineering of
cartilage. It was a PVA hydrogel crosslinked by urethane prepolymer consisting of cycloaliphatic
4,4’-bis cyclo(hexyl isocyanate) (HMDI) and PCL [38]. Studies by Shokrgozar et al. [39] confirmed that
PVA hydrogels crosslinked by polyurethane chain are good candidates for a rabbit cartilage model.
Petrini et al. [40] suggested the application of polyurethane hydrogels, obtained by using HMDI, PEG,
low molecular chain extender 1,4-butandiol and two types of catalysts, 1,4-diazabicyclo [2.2.2]octane
(DABCO) and dibutyltin dilaurate (DBTDL), for the biomedical field. The obtained hydrogels had
a porous structure of low crosslinking degree, which allowed obtaining of high swelling and not
water-soluble PVA-PUR hydrogels. These materials also present an elastomeric behavior in the swollen
state [40].
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The novel PVA-crosslinked PURs, described in this paper, were obtained in a two-step
polymerization procedure with DMSO used as a solvent. The chemical composition and properties of
obtained PVA-crosslinked PURs were determined and compared to non-crosslinked PUR samples.
PUR chemical composition was studied by using Fourier transform infrared spectroscopy (FTIR).
The mechanical properties such as tensile strength percent of elongation at break and hardness were
determined. A long-term interaction study was performed to verify these materials’ potential for
degradation under conditions that simulate the environment of the human body. Before and after
this examination the surface contact angle was studied. Short-term hemocompatibility was studied
to indicate whether obtained materials did not cause a severe effect on blood components and the
cytotoxicity test with the use of MG 63 cell line (Human osteosarcoma) was performed to indicate the
effect of obtained materials on cells in vitro. In summary, the obtained material may potentially be
used as biomedical material in the field of regenerative medicine.

2. Experimental

2.1. Materials and Methods

2.1.1. Synthesis of Polyurethanes (PURs)

PURs were synthesized by the standard two-step polymerization procedure [3,4,36], which was
carried out in DMSO solvent. Cast PURs, which were non-crosslinked (PU-I), were synthesized as
follows: The urethane prepolymer (8 wt % of free isocyanate groups) was obtained in the reaction of
poly(ε-caprolactone) (PCL, CAPA 2000, POCH, Gliwice, Poland), and aliphatic 1,6-hexamethylene
diisocyanate (HDI, Sigma Aldrich, Poznań, Poland) dissolved in DMSO (30 wt % per the weight
of the macrodiol used). The prepolymerization reaction was carried out at 90 ◦C for 5 h. In the
second step the chain extender—1,4-butanediol (BDO) (POCH, Gliwice, Poland)—was added to the
urethane prepolymer (after cooling up to 60 ◦C) to obtain PURs with a molar ratio of free isocyanate
groups (NCO) (in the urethane prepolymer) to hydroxyl groups (OH) of chain extender BDO equal
to NCO:OH = 0.95:1. Then, samples were transferred to the laboratory drier set at 100 ◦C for 24 h to
complete the reaction.

PURs crosslinked with poly(vinylalcohol) (PVA, Mw = 31,000, Mowiol 4-88, Sigma Aldrich,
Poznań, Poland) (Table 1) were synthesized as follows: to the prepolymer (60 ◦C) different amounts
(1 wt % or 2 wt % per weight of diisocyanate) of PVA were added and mixed for 2h to reach the solid
material. Then, the samples were transferred to the laboratory drier set at 100 ◦C for 24 h to complete
the reaction. The scheme of the reaction is presented in Figure 1. Symbols of the samples with their
detailed composition are given in Table 1.

Table 1. Symbols of obtained PURs and their detailed composition.

Symbol HDI (g) PCL (g) BDO (g) PVA (g)
The Ratio of

NCO:OH in the
Prepolymer

Concentration of Free
NCO Groups Present in

the Prepolymer (%)

PU-I 7.93 27.27 2.87 - 3:1 8.18
PU-II-1 7.93 27.27 - 0.1 3:1 8.18
PU-II-2 7.89 27.11 - 0.2 3:1 8.18
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Figure 1. Scheme of PUR synthesis.

2.1.2. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR analysis was performed with the use of a Nicolet 8700 Spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) in the spectral range of 4000 to 500 cm−1 averaging 256 scans with a
resolution of 4 cm−1. Spectra were analyzed by free software Essential FTIR®Spectroscopy Toolbox 3.

2.1.3. Swelling and Crosslink Density

To perform sorption studies, six cylindrical samples (V = 3.5 cm3) were cut from the PU-I, PU-II-1
and PU-II-2, by using a sharp steel die. Samples (dried at 60 ◦C, RADWAG MAX50/SX, Radwag,
Radom, Poland) were placed in glass containers and immersed in 15 mL of the organic solvents: DMSO.
At regular time intervals the samples were taken out of the containers and the wet surfaces were gently
pressed to remove surface-adsorbed solvents. The samples were weighed quickly and reimmersed in
the respective solvents. The process was repeated until equilibrium was attained. The possibility of an
error introduced due to the evaporation of solvent while weighing was minimized by weighing as
quickly as possible within 30 s and taking the mean of 6 measurements. The sorption was carried out
at 27 ◦C. Sorption (S) was calculated according to formula (1) where mi—sample weight after 120 h of
incubation (g), m0—sample weight before the test (g) [41].

S =

(
mi −m0

m0

)
·100% (1)

The crosslink density study was performed according to the most common approach via a
Flory-Rehner swelling experiment [41–43]. The crosslink densities of the samples (ν) were determined
from measurements in a DMSO, using the Flory-Rehner relationship from the following Equation (2):

ν =
− ln(1−Vr)−Vr − χ·V2

r

Vs·(V
1
3

r − 1
2 ·Vt)

=
1

Mc
(2)

where, Vs is the molar volume of DMSO (Vs = 71 cm3/mol), Vr is the volume fraction of polymer in
the sample at equilibrium swelling, χ is the Flory-Huggins natural rubber-DMSO interaction constant
(χ = 0.38). The average molecular weight Mc (g/mol) of the polymer between crosslinks was calculated
as an inverse of cross-link density (ν).
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2.1.4. Static Contact Angle (CA)

Static CA of PURs was determined at room temperature with the use of a Reichert Wien optical
microscope (35× magnification, New York Microscope Company INC., Hicksville, New York, NY,
USA). PURs were cut in 2 cm2 samples, whose surfaces were purified with n-hexane (POCH, Gliwice,
Poland) before measurement. To determine contact angle the Sessile Drop Method (SDM) was applied,
using a 5 µL of distilled water droplet. For each angle reported, at least ten measurements on different
surface locations were averaged. The width and the height of the Sessile Drop were indicated, and the
CA was determined according to the Formula (3)–(5).

tgθ =
h
d

(3)

θ = arctg
h
d

(4)

θ[◦] = θ[rad]·180◦

π
(5)

2.1.5. Mechanical Properties

Tensile Strength (TSb) and Elongation at Break (εb)

TSb and εb were studied by using the universal testing machine Zwick & Roell Z020 (Zwick Roell
Polska Sp. Z o.o., Wrocław, Poland) according to PN-EN ISO 527-2:2012 [44] with a crosshead speed of
300 mm/min. Results were presented as an average of 6 measurements.

Hardness

Hardness was measured by using the shore method according to [45]. The obtained data were
presented with the shore degree (◦Sh D and ◦Sh A). Ten measurements (each side of the PUR) were
performed and results are an arithmetic mean of 10.

2.1.6. Long-Term Interactions with Selected Media

The long-term interactions of obtained PURs were studied in selected media: canola oil, distilled
water, and phosphate buffered saline (PBS) by the standard procedure [3,4]. PURs were cut into 6
round samples of V = 3.5 cm3. Prepared samples were dried and weighed in a thermobalance set at
60 ◦C. Then, 6 samples of each studied PVA-crosslinked PUR material were placed in a 24-well cell
culture plate filled with canola oil, distilled water, or PBS. Canola oil is often used because it replaces
the assay of lipids present in the living body. Furthermore, drugs delivered to the body encapsulated in
a biodegradable polymer are often introduced as a lipid emulsion. Samples were incubated in a specific
media at room temperature. Both distilled water and PBS simulate the environment of the human body
fluids in vitro. Thus, they are used as a model media to determine progress of degradation. Different
time points for different media were chosen by suggestions given in the literature [10,46].

Samples were incubated in media at 37 ◦C. Changes in the weight of the samples were examined
after 24 h for canola oil medium, after 1 and 14 days for distilled water and after 1 and 3 months
for PBS. Samples’ weight change measurements were as follows: samples were taken out from the
container and put into a paper sheet to reduce the medium excess. Then, the samples were placed in
the thermobalance (set at 60 ◦C) where they were dried and weighed to a constant weight. Mass loss
was calculated by formula (6) where mi is sample weight after i-days of incubation (g), m0 is sample
weight before the test (g). In performed study the medium pH was controlled for PBS medium after 1
and 3 months by Metler Toledo pH-meter (Metler Toledo, Greifensee, Switzerland).

S =

(
mi −m0

m0

)
·100% (6)



Materials 2018, 11, 352 6 of 19

2.1.7. Optical Microscopy

The initial changes at the PURs′ surfaces were monitored by optical microscopy (OM, Bresser
GmbH, Rhede, Germany) performed with the use of a Bresser microscope (Bresser GmbH, Rhede,
Germany) at the magnification of 20×.

2.1.8. Calcification Study

Golomb and Wagner’s Compound was used to perform the calcification study. The calcification
metastable solution consisted of 3.87 millimole (mM) CaCl2, 2.32 mM K2HPO4, yielding a ratio of
calcium to phosphate (Ca/PO4) = 1.67, and 0.05 M Tris Buffer (in this study C4H11NO3) dissolved in
1 mL of reverse osmosis (RO) water [25]. PUR and PUR-M samples were cut into round samples of
0.5 cm2 area. Prepared samples were dried and weighed in a thermobalance set at 60 ◦C. Then,
6 samples of each studied PUR material were placed in a 24-well cell culture plate filled with
Golomb and Wagner’s Compound. The progress of the calcification was studied by Scanning Electron
Microscopy (SEM, Zeiss Scanning Electron Microscope EV-40, Jena, Germany) with Energy Dispersive
X-ray Spectroscopy (EDX) (Microanalyzer, Jena, Germany) after 21 days [47].

2.1.9. Hemocompatibility

Hemocompatibility was studied to evaluate the short-term action of obtained PVA-crosslinked
PURs on blood components. Hemocompatibility was examined in a Medical Laboratory with analyzer
SYSMEX XS–1000i (Symex Poland, Warszawa, Poland). Samples of venous blood from healthy women
were used in this study. Biologic material, directly after being taken, was put into a test-tube containing
heparin, an agent which prevents blood clotting. The next step was obtaining reference parameters for
blood morphology. After that, in the test-tube were put samples with a size of 3.5 cm3 PU and 8 mL of
blood was added. The samples before hemocompatibility test were sterilized with argon gas plasma
generated over H2O2. The samples were incubated in blood for 15 and 240 min at room temperature.
After this, they were removed and blood was hematologically analyzed.

The hemocompatibility test was performed according to Polish standards [48] (PN-EN ISO 15189),
where no approval of an ethics committee is needed. It was performed at a certified laboratory
in Gdansk Clinical Centre. The in vitro studies were performed using established MG 63 cell line
according to the ISO Standard: ISO-10993-5:2009 [49].

2.1.10. Biocompatibility

The biocompatibility studies were performed similarly to the cytotoxicity protocol given in our
previous paper [47] as follows:

In Vitro Cytocompatibility

The cytotoxicity assay was performed on the obtained materials: PU-I, PU-II-1 and PU-II-2.
To examine the cytotoxicity of the samples, the extracts were prepared and tested on MG 63 cell
line according to [49]. To obtain extract, the sterile samples were incubated in cell culture medium
(Dulbecco’s Modified Eagle’s Medium, DMEM) (Gibco) supplemented with 10% fetal bovine serum
(FBS) (Gibco), L-glutamine (1% solution in medium) (Gibco), 1% antibiotic–antimycotic mixture for 24 h
at 37 ◦C under continuous steering. MG 63 cells were cultured in standard conditions (5% CO2, 37 ◦C,
95% humidity) in the culture polystyrene plates. MG 63 morphology was assessed (Nikon, Tokyo,
Japan). Cells seeded without polymer extract in the culture medium served as the negative control.
The viability of MG 63 has been investigated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) test after 24 and 48 h of culture. The MTT test is a colorimetric assay routinely used in
toxicology in vitro. It is based on the capacity of metabolically active cells to convert the substrate of
the reaction, the yellow tetrazolium salt MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide, into the product, an insoluble formazan. The final product of the reaction was measured
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with an ELISA reader vs. Spectrophotometer (Molecular Devices LLC, San Jose, CA, USA) at 450 nm.
MTT solution incubated without cells was used as blank and the signal was normalized to positive
control (MG 63 cells cultured in standard plate). The viability rate (%) was expressed as a percentage of
the positive control, where the severe cytotoxicity is observed for less than 30%, moderate cytotoxicity
between 30–60%, slight cytotoxicity between 60–90%, and nontoxicity greater than 90% of viable
cells [32].

The statistical analysis was performed with the use of the Origin Pro 8.5. To evaluate statistical
differences the two-way method ANOVA (α = 0.05) and post hoc Tukey test (α = 0.05) were used.

Cell Adhesion

Cell adhesion was investigated on the synthesized materials. Samples were placed in 24-well
tissue culture polystyrene plates. Approximately 1× 105 MG 63 cells per well were seeded by dropping
a cell suspension onto the surface of the examined materials. Cells seeded into wells without polymer
samples served as a control. The cells were incubated in the same conditions as in the cytotoxicity
assay. Cell attachment and distribution on the samples, after 24 and 72 h of incubation, were examined
by staining with 4′,6-diamidine-2′-phenylindole dihydrochloride (DAPI) and Tetramethylrhodamine
isothiocyanate mixed isomers (TRITC)-conjugated phalloidin for the immunofluorescent staining
of cell nucleus and actin filaments in the cytoskeleton (Chemicon). The fluorescence observation of
cell morphology was carried out with a Nikon Eclipse TE2000-U microscope (Precoptic, Warszawa,
Poland).

3. Results

3.1. Fourier Transform Infrared Spectroscopy (FTIR)

Figure 2 shows the FTIR spectra of non-crosslinked and PVA-crosslinked PURs. Table 2 shows the
band assignments of obtained PUR samples. According to Figure 2 the composition of PUR materials
was confirmed by bands assigned to the urethane linkages and their interactions in hard segments
(HS). The complete reaction of used reagents was confirmed by the lack of free NCO band in the
range between 2200–2300 cm−1. The wide stretching band of NH (3500 cm−1) confirmed formation of
urethane bond in obtained materials. The stretching band of C=O was weaker by 20 cm−1 in the case of
PU-II-1 and PU-II-2 than in the case of PU-I. Thus, the possible interactions between HS and OH of PVA
might occur. The sharp band of C=O stretching (1730 cm−1) was related to the not-hydrogen-bonded
C=O present in polyester PCL soft segments. On the other hand, the band noted at 1630 cm−1 was
recognized as C=O, which was strongly hydrogen bonded, so engaged in the hydrogen bonds of
HS in PUR structure. The strong hydrogen bonding between the HS present in the PUR structure
was confirmed as well by the presence of bands related to the NH secondary amide deformations
(1570–1540 cm−1) in urethane groups and stretching of CN in urethane linkage (1240 cm−1). Bands
observed at 1160 cm−1, 1100 cm−1 and 1180 cm−1 were related to the combined asymmetric and
symmetric stretching of -(C=O)-O-C- of ester and urethane groups.
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Figure 2. The FTIR spectra of non-crosslinked (black) and PVA-crosslinked PURs (blue and red
respectively for 1 wt % and 2 wt % of PVA) in the range between 500–4000 cm−1 (a) and in the range of
1000–2000 cm−1 (b).

Table 2. Band assignments of non-crosslinked and PVA crosslinked PURs.

Wavelength (cm−1) Band Assignment Description

3350 m νNH Stretching of NH groups in urethane bond

1730 vs νC=O C=O ester stretching in PCL soft segments

1630 s νC=O C=O stretching in urethane hard segments
R-NH-COO-R

1570–1540 m δCN 2º amide N-H urethane deformation

1240 m νCN C-N urethane stretching in hard segments

1160 m ν-(C=O)-O-C- Combined asymmetric C-O-C stretching in urethane and
PCL (Hard/soft segments)

1100, 1080 w ν-(C=O)-O-C- Symmetric stretching of C-O-C groups in (1100)
PCL/soft and (1080) urethane/hard segments.

vs—very strong, m—medium, w—weak.

3.2. Swelling and Crosslink Density

Table 3 shows the behavior of the samples in DMSO, the Huggins parameter (χ) and crosslinking
density (mol/cm3). Table 3 shows clearly that PU-I were soluble in DMSO, thus they were
non-crosslinked. PURs obtained by PVA addition (PU-II-1 and PU-II-2) can be considered as
crosslinked materials, because after the incubation they were swollen but not dissolved. Application
of PVA of functionality >2 meant that some part of the OH groups, present in PVA, reacted with
non-reacted NCO groups in the prepolymer and formed the crosslinks. According to the references the
higher the crosslink density, the more degradation resistance the materials shows [50]. Thus, in this
study, PURs with 2 wt % of PVA represented higher crosslink density than the PURs obtained by using
1 wt % of PVA and swelling of PU-II-2 is lower than PU-II-1.
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Table 3. Solubility of obtained PURs in DMSO, the Huggins parameter (χ) and crosslinking density
(mol/cm3).

Sample Solubility in DMSO * χ ** Cross-Links Density (mol/cm3)

PU-I + − −
PU-II-1 − 1.1979 31.12 × 10−4

PU-II-2 − 1.3579 42.44 × 10−4

* + soluble, − swelling; ** Huggins parameter

3.3. Static Contact Angle Determination

Table 4 shows the CA of the surface of obtained PURs before and after 1 and 3 months of
incubation in PBS. Table 4 shows that the addition of PVA to the PUR caused the obtaining of more
hydrophilic materials (47 ± 0.1◦ and 38 ± 0.1◦ for PU-II-1 and PU-II-2 respectively) in comparison to
the non-crosslinked PURs (59± 0.2◦). On the other hand, the CA of obtained PURs did not significantly
change after 3 months of incubation in PBS (Table 3). Thus, that may confirm that obtained materials
were crosslinked [51,52].

Table 4. Contact angle of obtained PURs before and after 1 and 3 months of incubation in PBS.

Sample
Contact Angle (◦)

Before 1 Month 3 Months

PU-I 59 ± 0.2 58 ± 0.2 57 ± 0.3
PU-II-1 47 ± 0.1 46 ± 0.1 45 ± 0.2
PU-II-2 38 ± 0.1 37 ± 0.1 37 ± 0.1

3.4. Mechanical Properties

Mechanical properties of obtained non-crosslinked and PVA-crosslinked PURs were presented in
Figure 3. Figure 3 shows that each of the studied mechanical parameters (TSb, εb and hardness) was
increased due to the PVA-crosslinking of PURs. Thus, presence of crosslinks improves mechanical
performance of the materials. Tensile strength of PVA-crosslinked PURs was 41 ± 3 MPa and
52 ± 1 MPa for PU-II-1 and PU-II-2 respectively, while for not-crosslinked PURs (PU-I) it was of
31± 1 MPa. In the case of percent of elongation at the break it was 460± 8% and 512± 6% respectively
for PU-II-1 and PU-II-2, while for PU-I it was 320 ± 5%. Hardness for PU-II-1 and PU-II-2 was
comparable (60 ± 3 ◦ShD and 64 ± 2 ◦ShD respectively) and higher than for PU-I (39 ± 1).
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3.5. Long-Term Interactions with Selected Media

Figure 4 shows that the PVA-crosslinked PURs (PU-II-1 = 0.6 ± 0.1% and PU-II-2 = 1.0 ± 0.3%)
had lower canola oil sorption capability in comparison to the linear and non-crosslinked PURs
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(PU-I = 12 ± 0.5%). Figure 5 shows that non-crosslinked PURs underwent defragmentation easily in
distilled water (32 ± 2% and 41 ± 3% after 1 and 3 months of incubation respectively) in comparison
to the PVA-crosslinked PURs, which stay stable during the incubation period (3 ± 0.5% and 3.7 ± 0.7%
after one and 3 months of incubation respectively for PU-II-1; 1 ± 0.1% and 1.7 ± 0.1% after one and
3 months of incubation respectively for PU-II-2). In the case of the incubation in PBS medium the
observed mass decrease was higher for non-crosslinked PURs (45± 6% after 1 month and 52 ± 4% after
3 months of incubation). The PVA-crosslinked PURs showed mass decrease (3 ± 1 % and 4.3 ± 0.5%
respectively after one and 3 months of incubation for PU-II-1 and 1.5 ± 0.7% and 2.4 ± 0.2% after one
and 3 months of incubation for PU-II-2) comparable to the one observed in case of distilled water.
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3.6. Optical Microscopy

Figure 6 presents microscopic images of obtained PURs before and after the incubation in
PBS. Analysis of microscopic images of PVA-crosslinked PURs revealed no interruptions at their
surface, which is in contrast to the non-crosslinked PURs. This suggests slow degradation of the
material [53–55].



Materials 2018, 11, 352 11 of 19
Materials 2018, 11, x FOR PEER REVIEW  11 of 19 

 

 

Sample Before Degradation 
After Degradation 

1 month 3 months 

PU-I 

   

PU-II-1 

   

PU-II-2 

   

Figure 6. Microscopic images of the PUR surfaces before and after long-term interactions study 

performed in PBS. 

3.7. Calcification Study 

As can be noted in Figure 7 both non-crosslinked and PVA-crosslinked PURs revealed good 

ability to calcificy at the surface in properly selected medium. After 21 days of study the obtained 

material was significantly deposited with calcium salt, which is indicated by the EDX study (Figure 8).  

 PU-I PU-II-2 PU-II-2 

Before 

Study 

   

After 

21 Days 

   

Figure 7. Selected SEM images of non-crosslinked (PU-I) and PVA-crosslinked (PU-II-1, PU-II-2) 

before and after calcification study.  

Figure 6. Microscopic images of the PUR surfaces before and after long-term interactions study
performed in PBS.

3.7. Calcification Study

As can be noted in Figure 7 both non-crosslinked and PVA-crosslinked PURs revealed good ability
to calcificy at the surface in properly selected medium. After 21 days of study the obtained material
was significantly deposited with calcium salt, which is indicated by the EDX study (Figure 8).
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and after calcification study.
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3.8. Hemocompatibility Study

Figure 9 gathers the selected results of blood parameters tested for non-crosslinked and
PVA-crosslinked PURs hemocompatibility. All the studied blood parameters, hemoglobin (Hb),
red blood cells, hematocrit (WBC), and the coagulation factors (fibrinogen and partial thromboplastin
time APTT), were comparable between PVA-crosslinked PURs and non-crosslinked PUR (Figure 9).
It is worth mentioning that the values of the studied blood parameters were in the reference range
after 240 min (4 h) of the test. Obtained materials did not significantly influence the blood components.
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3.9. Biocompatibility

Figure 10 shows the MG 63 cell response on polymer extracts after 24 h, 48 h and 72 h of
incubation. It was clearly viewed that both non-crosslinked and PVA-crosslinked PURs possessed
good biocompatibility at comparable levels between 83–97% of cell viability.
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Figure 10. The effect of polymer extracts on the in vitro cell growth of MG 63 studied by MTT assay
after 24 h, 48 h and 72 h.

After 24 h of culture on non-crosslinked and PVA-crosslinked PURs cells were well attached to
the material and spread out, displaying a normal morphology. It indicated that the studied samples
(Figure 11) can provide favorable conditions for cell attachment. The elongated and flattened cells
adhered to the non-crosslinked and PVA-crosslinked PURs surface.
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Figure 11. The cell attachment to the selected samples surface: PU-I (a) and PU-II-2 (b) after 72 h of
the test. Cells were simultaneously stained with DAPI (blue) for nucleus visualization and Phalloidin
TRITC (red) for actin viability.

4. Discussion

Tissue engineering is a widely developing field with regard to obtaining functional
implants [56–59]. Crosslinked materials including PUR may play a significant role in in this
field [60]. In this paper, was described the concept, synthesis, and characterization of novel,
not previously described, PVA-crosslinked PURs as well as the influence of crosslinks on PUR chemical
composition, surface characteristics, long-term material behavior in selected media and the material’s
biological performance.

In accordance to performed studies, the increase of PVA in PUR structure (from 1 wt % to
2 wt %) caused the presence of crosslinks, which influenced these materials’ long-term interactions
with selected media as well as mechanical properties and hydrophilicity of their surface. Obtained
PVA-crosslinked PURs were slowly degradable materials, due to the presence of crosslinks in their
structure. In the presence of organic solvents, they were swelling, not dissolving. Sorption of media and
solvents by the PUR materials is closely related to their crosslink density. In the case of non-crosslinked
PURs selected media more easily penetrated the material in depth and causes sliding of PUR chains,
which led to chain defragmentation [10,61]. In comparison, PVA-crosslinked PURs were stable for
3 months of the study in distilled water and PBS. Observed mass decrease did not exceed 5% of the
initial weight of the sample. That could be caused by the presence of additional hydrogen bonds
formed by crosslinking of PUR by PVA, which added the resistance to the novel materials. It was
established that polymer degradation starts through swelling of the medium, which aggregate at the
material’s surface and may hinder the medium molecules’ absorption at their surface, which could be
related to the additional presence of salts at the material surface [10,61]. Thus, such PVA-crosslinked
PURs may be a useful proposition for slowly degradable implants, which may find an application
in the field of tissue engineering [59,62] because such materials are able to provide the prolonged
physical support of the scaffold until the cells reach a proper level of maturation [63–67]. The surface
characteristic of PVA-crosslinked PURs during the long-term interaction study with selected media was
not disturbed by occurring infractions or fractures, which is in contrast to the non-crosslinked PURs.
The CA of PVA-crosslinked materials was decreased in order to determine the presence of PVA (47◦ and
38◦ respectively for PU-II-1 and PU-II-2). In the case of non-crosslinked PURs the CA was higher
(59◦). It is worth mentioning that the CA of the PVA-crosslinked PURs surface was not significantly
changed after 3 months of incubation in PBS. What was interesting was the fact that after 21 days of
calcification study, both materials showed a superior ability of calcium deposition. In the long-term
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interaction profile, CA and calcification study showed that addition of PVA improved hydrophilicity of
the obtained materials, whose characteristics were suitable for regenerative medicine purposes [68–70].
Liu et al. [69] proved that enhanced surface wettability (contact angle of 75◦ to 65◦) of PURs results in
uniform coating with calcium phosphate throughout electrospun scaffold after immersion in simulated
body fluid (SBF). It is worth mentioning that Gogolewski and Gorna [18] reported that cancellous bone
formed on the scaffolds from PUR with higher content of hydrophilic component contained more
bone mineral than the bone formed in the defects implanted with PUR of lower content of hydrophilic
component. Moreover, their surface characteristic was suitable for scaffold implantation because
the most suitable CA for cell growth at the surface of the implant and their proliferation in depth
of mammalian cells is between 45–76◦ [71,72]. The superior mechanical characteristics of obtained
PURs (TSb of 41 ± 3 MPa and 52 ± 1 MPa for PU-II-1 and PU-II-2 respectively) was comparable to the
native bone tissue such as human cortical bone (TSb in the range of 51–151 MPa) and human cancellous
bone (TSb in the range of 10–20 MPa) [73]. Moreover, the short-term hemocompatibility study showed
satisfactory blood-PURs interactions, which is desired in case of medical implants. The slight reduction
in the concentration of white blood cells after 4 h of PUR incubation may be related to their natural
disintegration and their adhesion to the surface of the PUR materials. Similar observations were made
by Paluch et al. [72] who examined the effect of the polyester knitted fabrics, varying in the degree
of the wettability, on blood parameters. The authors indicated changes of the blood cells shape by
studying them with the use of an electron microscope. It was found that cells had an extended shape
and formed aggregates similar to leukocyte-leukocyte and leukocyte-platelet cells. This can indicate
the activation of white blood cells, which is the first step of "adaptation" of an implanted artificial
material [74–77]. No exceeding of blood parameter reference values was observed; thus, it can be
considered that no inflammation induction was present due to the blood-PUR interaction [74–77].
The APTT was determined to estimate the coagulation time, which could be disrupted by presence of
the foreign body. APTT is the number of seconds required for the formation of the clot (fibrin fibers) in
the plasma after exposure to the PUR materials [77]. In the performed study the APTT and fibrinogen
were in the reference range, thus the obtained materials did not induce premature blood clotting.
This corresponds to the references that relate to the fact that PURs belong to the one of the most
hemocompatible synthetic polymers used in the biomedical field [77]. An observed slight increase in
erythrocyte (RBC) after 240 min of the test in the case of PU-I compared to the control blood sample
can result from an abnormal red blood cell sedimentation caused by the presence of the PUR [77].
PVA-crosslinked PURs did not cause significant changes in RBC value, which was in the reference
range of studied blood. Moreover, performed biocompatibility tests with the use of MG 63 cell line
revealed that the obtained materials were characterized by great biocompatibility (97–83%) and cell
morphology comparable to the control. Thus, the obtained materials may be a suitable candidate for
an application in the tissue engineering field.

5. Conclusions

In this paper, the design, synthesis, and characterization of novel PVA-crosslinked PURs as a
suitable candidate for tissue regeneration are described. The significant changes in terms of swelling
properties, surface characteristics and behavior in long-term interactions with selected media were
noted. The PVA-crosslinking means that the obtained PUR materials can be classified in the group of
slowly degradable materials used in tissue engineering which is suitable in reference to this point. It is
worth mentioning that addition of PVA meant that the obtained PURs had hydrophilic surface suitable
for cell adhesion and growth. Moreover, novel PVA-crosslinked PURs undergo a uniform calcification
within the test. The short-term hemocompatibility study revealed proper blood-PVA-crosslinked PURs
interactions, which is suitable for implantation purposes. The great cytocompatibility of the obtained
materials was confirmed by cytotoxicity tests with the use of MG 63 cell line. Thus, the obtained
PVA-crosslinked PURs may be a suitable candidate for the purposes of regenerative medicine.
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