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Abstract: In this paper, a modified Fourier series method is presented for the free vibration of moderately
thick orthotropic functionally graded plates with general boundary restraints based on the first-order
shear deformation theory. Regardless of boundary restraints, displacements and rotations of each plate
are described as an improved form of double Fourier cosine series and several closed-form auxiliary
functions to eliminate all the boundary discontinuities and jumps. Exact solutions are obtained by the
energy functions of the plates based on Rayleigh-Ritz method. The convergence and reliability of the
current method and the corresponding theoretical formulations are verified by comparing the present
results with those available in the literature, and numerous new results for orthotropic functionally
graded (OFG) plates with general boundary restraints are presented. In addition, the effects of gradient
index, volume fraction and geometric parameters on frequencies with general boundary restraints
are illustrated.

Keywords: orthotropic functionally graded plates; modified Fourier series method; free vibration;
general boundary restraints; gradient index; volume fraction

1. Introduction

As a kind of novel composite materials, functionally graded materials (FGMs) can be characterized
by the variation in composition and structure gradually over volume, resulting in continuous changes
along the desired directions. Compared to laminated plates, the continuity of FGMs properties
eliminates interfacial stresses at the junctions of materials [1–4]. Therefore, FG plates have been widely
used in various engineering fields, such as aircraft, nuclear and automobile manufacturing [5–9].
As we all known, dynamic load is unavoidable on the practical applications, and it may lead to
fatigue damage and stability reduction of the structures. Thus, it is necessary to study the vibration
characteristics of FG plate structures.

To deal with the vibration problem of FG plates, many accurate and efficient calculation methods have
been developed in the last few decades, such as extended Kantorovich method [10], Ritz method [11–13],
power series method [14], meshless method [15–17], wave propagation approach [18], finite element
method [19,20], etc. Chi et al. [21,22] studied the bending problem of FG rectangular plates based on the
classical plate theory. Qian et al. [23] applied high-order shear and normal deformable plate theory to study
the static and dynamic deformations of FG plates. Liu et al. [24] used an element-free Galerkin method
to study the dynamic response of FG plate containing distributed piezoelectric actuators and sensors.
It should be emphasized that most of these methods were applied to isotropic structures which are only
considering the change of the Young’s modulus in the thickness. However, due to the limitations of the
process conditions, most of the FGMs are orthotropic. The vibration analysis of the orthotropic functionally
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graded (OFG) plates has been the goal of intensive research, and many studies have been devoted to the
OFG plates in the literature. Ramirez et al. [25] used the discrete layer theory in combination with the Ritz
method to obtain an approximate solution for static analysis of OFG plates. Zhang et al. [26] adapted
the third-order shear deformation theory to analyze chaotic vibrations of an OFG plate. Huang et al. [27]
developed a discrete method for solving the vibration problem of orthotropic rectangular plates with
variable thickness in one or two directions. Although these methods give sufficiently accurate results for
thin plates, they are not valid for the vibration analysis of the moderately thick plates.

To eliminate the deficiency of the aforementioned methods, a Fourier series method was presented
by Li [28,29]. This method has been subsequently transferred to the vibration analysis of more
structures with various restraints [30–37]. From the review of the literature, most of the previous
studies on the OFG plates are defined in a single volume distribution type. However, there are a
variety of possible volume distributions in practical engineering applications, and these distributions
have great influence on the vibration properties of the OFG plates. According to the effects of gradient
index on the volume fraction in different distributions, the material properties change continuously
through the thickness of the OFG plates.

Therefore, the objective of the present work is to provide an accurate and reliable method for
the free vibration analysis of moderately thick OFG plates in various volume distribution types
with general restraints. Displacements and rotations of each plate, regardless of boundary restraints,
are described as an improved form of double Fourier cosine series and several closed-form auxiliary
functions. Exact solutions are obtained by the energy functions of the plates based on Rayleigh–Ritz
method. The excellent accuracy and reliability of the current results are verified by comparing the
present solutions with those available in the literature. Studies focused on free vibration properties of
OFG plates are presented, which may serve as a supplement of the material performance of OFG plates.

2. Theoretical Formulation

2.1. Model Description

A moderately thick OFG plate with length a, width b, and uniform thickness h is depicted in
Figure 1. The reference surface is taken to be its middle surface where the plate geometry and
dimensions are arranged in a Cartesian coordinate system (x, y, z). The displacements of the plate in
the x, y, and z directions are denoted by u, v and w, respectively. The general boundary conditions
are assumed to be restrained by three independent springs (translational, rotational and torsional
springs) placed at the ends. Assigning the stiffness of the springs with various values from zero to
infinity is equivalent to imposing different boundary forces on the plate. For example, a free boundary
is obtained by setting the stiffness of springs to zero, and a clamped boundary is obtained by setting
the stiffness of springs to infinity. For moderately thick plates, the Kirchhoff hypothesis is relaxed by
assuming that the normal to the undeformed middle surface is not perpendicular to the deformed
middle surface.
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Figure 1. Schematic diagram of a moderately thick OFG plate with the undeformed and deformed
geometries of an edge including shear deformation.



Materials 2018, 11, 273 3 of 20

2.2. Material Properties

Typically, OFG plates are made from a mixture of two materials in different proportions, for
example, the metal and ceramic used in the following analyses are listed in Table 1. Material parameters
per unit volume are assumed to vary continuously through the plate thickness and can be obtained:

E1 = E f Vf + EmVm

E2 =
E f Em

E f Vm + EmVf
ρ = ρ f Vf + ρmVm

ν12 = ν f Vf + νmVm

(1)

where E1 and E2 represent the horizontal and vertical Young’s modulus, respectively; ν12 and ρ are
the major Poisson ratio and density, respectively; E f and Em are the Young’s modulus of ceramic and
metal, respectively; ν f and ρ f are ceramic’s Poisson ratio and density, respectively; Vm and ρm are
metal’s Poisson ratio and density, respectively; and Vf and Vm denote the volume fractions of ceramic
and metal, respectively. The shear modulus of the material can be given by:

G f =
E f

2(1 + v f )
, Gm =

Em

2(1 + vm)

G12 = G13 = G23 =
G f Gm

G f Vm + GmVf

(2)

where G f and Gm are the shear modulus of ceramic and metal. G12 is composite structure’s shear
modulus. Furthermore, according to different ceramic-to-metal volume distributions in the thickness
direction, the OFG plates are assumed as three types, P-, C- and S-OFG, respectively. Vf in the thickness
direction z can be expressed as:

P : Vf = V1 + (V2 −V1)

(
1
2
+

z
h

)p

C : Vf = V1 + (V2 −V1)

(
1
2
+

z
h
+

(
1
2
− z

h

)2
)p

S : Vf =


V1

2

(
1− 2z

h

)p
+ V2

(
1− 1

2

(
1− 2z

h

)p)
, 0 ≤ z ≤ h

2

V1

(
1− 1

2

(
1 +

2z
h

)p)
+

V2

2

(
1 +

2z
h

)p
, −h

2
≤ z ≤ 0

(3)

where V1 and V2 are available minimum and maximum values of Vf . Especially for P- and C-OFG,
V1 and V2 represent the ceramic volume fractions of bottom and top surfaces, respectively. In addition,
p is the gradient index and only takes non-negative values. When the value of p varies between zero
and infinity, non-homogeneous material properties can be obtained.

Table 1. Main material properties of the used OFG plates.

Metal (Al) Ceramic (ZrO2)

Properties Em (GPa) ˚ m ρm (kg/m3) Ef (GPa) ˚ f ρ f (kg/m3)

70 0.3 2702 200 0.3 5700
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2.3. Stress–Strain Relations and Stress Resultants

Based on the assumptions of the first-order shear deformation theory (FSDT) [38,39], the displacement
components of moderately thick OFG plates are:

U(x, y, z) = u(x, y) + zφx(x, y)
V(x, y, z) = v(x, y) + zφy(x, y)
W(x, y, z) = w(x, y)

(4)

where u, v and w denote the middle surface displacements of the plate in the x, y and z directions,
respectively. φx and φy represent the transverse normal rotations of the reference surface respect to the
y and x directions. Under the assumption of linear and small deformation, the strains and curvature
can be defined in terms of displacements as:


εx

εy

γxy

 =


ε0

x + zχx

ε0
y + zχy

γxy + zχxy

 =



∂u
∂x
∂v
∂y

∂v
∂y

+
∂v
∂x


+ z



∂φx

∂x
∂φy

∂y
∂φx

∂y
+

∂φy

∂x


(5)

{
γxz

γyz

}
=

{
γ0

xz

γ0
yz

}
=


∂u
∂z

+
∂w
∂x

∂v
∂z

+
∂w
∂y

 =


φx +

∂w
∂x

φy +
∂w
∂y

 (6)

where εx, εy and γxy are the normal and shear strains in the x, y and z directions. γxz and γyz indicate
the transverse shear strains, which are assumed to be constants through the thickness. The matrix can
be denoted as:

ε = (
∂u
∂x

,
∂v
∂y

,
∂u
∂y

+
∂v
∂x

)T

χ = (
∂φx

∂x
,

∂φy

∂y
,

∂φx

∂y
+

∂φy

∂x
)T

γ =

(
∂u
∂z

+
∂w
∂x

,
∂v
∂z

+
∂w
∂y

)
T.

(7)

According to the generalized Hooke’s law [40], the corresponding stress–strain relations of a
moderately thick OFG plate can be expressed as follows:

σx

σy

τyz

τxz

τxy


=


Q11(z) Q12(z) 0 0 0

Q12 (z) Q22(z) 0 0 0
0 0 Q44(z) 0 0
0 0 0 Q55(z) 0
0 0 0 0 Q66(z)





εx

εy

γxz

γyz

γxy


(8)

where the elastic constants Qij(z) are defined in terms of the material properties as:

Q11(z) =
E1(z)

1− v12v21
Q44(z) = G23(z)

Q22(z) =
E2(z)

1− v12v21
Q55(z) = G13(z)

Q12(z) =
E1(z)v21

1− v12v21
Q66(z) = G12(z)

(9)
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The force and moment resultants are obtained by integrating the stresses over the plate thickness:

(Nx, Ny, Nxy)
T =

h/2∫
−h/2

[
σx, σy, τxy

]
dz (10)

(Mx, My, Mxy)
T =

h/2∫
−h/2

[
σx, σy, τxy

]
zdz (11)

(Qx, Qy)
T =

h/2∫
−h/2

[
τxz, τyz

]
dz (12)

where Nx, Ny and Nxy are the force resultants. Mx, My and Mxy are the moment resultants.
The transverse shear force resultants are denoted as Qx and Qy, respectively. Performing the integration
operation in Equations (10)–(12), the force and moment resultants can be written as: Nx

Ny

Nxy

 =

 A11 A12 0
A12 A22 0
0 0 A66

ε +

 B11 B12 0
B12 B22 0
0 0 B66

χ (13)

 Mx

My

Mxy

 =

 B11 B12 0
B12 B22 0
0 0 B66

ε +

 D11 D12 0
D12 D22 0

0 0 D66

χ (14)

[
Qx

Qy

]
=

[
A44 0
0 A55

]
γ (15)

The stiffness coefficients Aij, Bij and Dij are expressed as:

(
Aij, Bij, Dij

)
=

h/2∫
−h/2

Qij(z)(1, z, z2)dz (16)

2.4. Energy Functions

In this subsection, the modified Fourier series version of Rayleigh–Ritz method is presented. In the
Rayleigh–Ritz method, a displacement field associated with undetermined coefficients is assumed
firstly, and substituted into the Lagrangian energy function [41]. Then, the undetermined coefficients in
the displacement field can be obtained by finding the stationary value of the energy function, namely,
minimizing the energy function with respect to the undetermined coefficients and making them equal
to zero. Finally, a series of equations related to corresponding coefficients can be achieved and summed
up in matrix form as a standard characteristic equation. The desired frequencies of the structure can be
determined easily by solving the standard characteristic equation.

For free vibration analysis, the Lagrangian energy function of the plates can be simplified and
written in terms of the strain energy and kinetic energy functions as:

L = T −Us −Usp (17)
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The strain energy Us of the moderately thick OFG plates during vibration can be defined in terms
of the middle surface strains, curvature changes and stress resultants as:

Us =
1
2

a∫
0

b∫
0

{
Nxε0

x + Nyε0
y + Nxyε0

xy + Mxχx + Myχy + Mxyχxy + Qxγ0
xz + Qyγ0

yz

}
dydx (18)

Substituting Equations (5), (6), and (13)–(15) into Equation (18), the strain energy can be expressed
in terms of displacements (u, v, w) and rotations components (φx, φy) as:

Us =
1
2

a∫
0

b∫
0



A11

(
∂u
∂x

)2
+ A22

(
∂v
∂y

)2
+ A44

(
∂u
∂z

+
∂w
∂x

)2
+ A55

(
∂v
∂z

+
∂w
∂y

)2
+ A66

(
∂u
∂y

+
∂v
∂x

)2

+2A12

(
∂v
∂y

)(
∂u
∂x

)
+ 2B11

(
∂u
∂x

)(
∂φx

∂x

)
+ 2B22

(
∂v
∂y

)(
∂φy

∂y

)
+ 2B12

(
∂u
∂x

)(
∂φx

∂x

)
+2B12

(
∂v
∂y

)(
∂φx

∂x

)
+ 2B66

(
∂u
∂y

+
∂v
∂x

)(
∂φx

∂y
+

∂φy

∂x

)
+ D11

(
∂φx

∂x

)2
+ D22

(
∂φy

∂y

)2

+2D12

(
∂φx

∂x

)(
∂φy

∂y

)
+ D66

(
∂φx

∂y
+

∂φy

∂x

)2


dydx (19)

The kinetic energy T of the vibrating OFG plate is given by:

T =
1
2

a∫
0

b∫
0


I0

(
∂u
∂t

)2
+ I0

(
∂v
∂t

)2
+ I0

(
∂w
∂t

)2
+ 2I1

(
∂u
∂t

)(
∂φx

∂t

)
+ 2I1

(
∂v
∂t

)(
∂φy

∂t

)
+I2

(
∂φx

∂t

)2
+ I2

(
∂φy

∂t

)2

dydx

(20)
Assuming the distributed external forces qx, qy and qz are in the x, y and z directions, respectively.

mx and my are the external couples in the middle surface. Thus, the work We done by the forces and
moments is:

We =

a∫
0

b∫
0

{
qxu + qyv + qzw + mxφx + myφy

}
dydx (21)

ku
ϕ, kv

ϕ, kw
ϕ , Kx

ϕ and Ky
ϕ (ϕ = x0, x1, y0, y1) are used to indicate the rigidities (per unit length) of the

boundary springs at the x = 0, x = a, y = 0 and y = b, respectively (see Figure 2). Therefore, the deformation
strain energy (Usp) stored in the boundary springs can be expressed as:

Usp =
1
2

a∫
0
{[ku

y0
u2 + kv

y0
v2 + kw

y0
w2 + Kx

y0
φx

2 + Ky
y0 φy

2]
y=0

+ [ku
y1

u2 + kv
y1

v2 + kw
y1

w2 + Kx
y0

φx
2 + Ky

y0 φy
2]

y=b
}dx

+
1
2

a∫
0
{[ku

x0
u2 + kv

x0
v2 + kw

x0
w2 + Kx

x0
φx

2 + Ky
x0 φy

2]x=0 + [ku
x1

u2 + kv
x1

v2 + kw
x1

w2 + Kx
x1

φx
2 + Ky

x1 φy
2]x=a}dy

(22)
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2.5. Governing Equations and Boundary Restraints

By applying Hamilton’s principle, the governing equations of moderately thick OFG plates can
be obtained:

∂Nx

∂x
+

∂Nxy

∂y
+ qx = I0

∂2u
∂t2 + I1

∂2φx

∂t2 (23)

∂Nxy

∂x
+

∂Ny

∂y
+ qy = I0

∂2v
∂t2 + I1

∂2φy

∂t2 (24)

∂Qx

∂x
+

∂Qy

∂y
+ qz = I0

∂2w
∂t2 (25)

∂Mx

∂x
+

∂Mxy

∂y
−Qx + mx = I1

∂2u
∂t2 + I2

∂2φx

∂t2 (26)

∂Mxy

∂x
+

∂My

∂y
−Qy + my = I1

∂2v
∂t2 + I2

∂2φy

∂t2 (27)

The general boundary restraints for moderately thick OFG plates can be expressed as the
following forms:

On x = 0
Nx = ku

x0
u, Nxy = kv

x0
v, Mx = Kx

x0
φx, Mxy = Ky

x0 φy, Qx = kw
x0

w (28)

On x = a

Nx = −ku
x1

u, Nxy = −kv
x1

v, Mx = −Kx
x1

φx, Mxy = Ky
x1 φy, Qx = −kw

x1
w (29)

On y = 0
Nxy = ku

y0
u, Ny = kv

y0
v, Mxy = Kx

y0
φx, My = Ky

y0 φy, Qy = kw
y0

w (30)

On y = b

Nxy = −ku
y1

u, Ny = −kv
y1

v, Mxy = −Kx
y1

φx, My = −Ky
y1 φy, Qy = −kw

y1
w (31)

2.6. Admissible Displacement Functions

In this subsection, we consider free vibration of moderately thick OFG plates with general
boundary restraints. Although the Fourier functions exhibit an excellent numerical stability,
conventional Fourier series expression will have a convergence problem along the boundary edges
except for a few simple boundary restraints.

This article proposes a modified Fourier series method for the displacement and rotation
components of the OFG plates, by an improved form of double Fourier cosine series and several
closed-form auxiliary functions. Regardless of boundary conditions, each displacement and rotation
component of the OFG plate is expanded as a modified Fourier series as:

u(x, y) =
M

∑
m=0

N

∑
n=0

Amn cos λmx cos λny+
2

∑
l=1

N

∑
n=0

an
l ζa

l (x) cos λny+
2

∑
l=1

M

∑
m=0

bm
l ζb

l (y) cos λmx (32)

v(x, y) =
M

∑
m=0

N

∑
n=0

Bmn cos λmx cos λny+
2

∑
l=1

N

∑
n=0

cn
l ζa

l (x) cos λny+
2

∑
l=1

M

∑
m=0

dm
l ζb

l (y) cos λmx (33)

w(x, y) =
M

∑
m=0

N

∑
n=0

Cmn cos λmx cos λny+
2

∑
l=1

N

∑
n=0

en
l ζa

l (x) cos λny+
2

∑
l=1

M

∑
m=0

f m
l ζb

l (y) cos λmx (34)

φx(x, y) =
M

∑
m=0

N

∑
n=0

Dmn cos λmx cos λny+
2

∑
l=1

N

∑
n=0

gn
l ζa

l (x) cos λny+
2

∑
l=1

M

∑
m=0

hm
l ζb

l (y) cos λmx (35)
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φy(x, y) =
M

∑
m=0

N

∑
n=0

Emn cos λmx cos λny+
2

∑
l=1

N

∑
n=0

in
l ζa

l (x) cos λny+
2

∑
l=1

M

∑
m=0

jm
l ζb

l (y) cos λmx (36)

where λm = mπ/a and λn = nπ/b. M and N denote the truncation numbers with respect to variables
x and y, respectively. Amn, Bmn, Cmn, Dmn and Emn are the Fourier expansion coefficients of the cosine
Fourier series. an

l , bm
l , cn

l , dm
l , en

l , f m
l , gn

l , hm
l , in

l and jm
l are the corresponding supplement coefficients.

ζa
l (x) and ζb

l (y) denote the auxiliary polynomial functions introduced to remove all the discontinuities
potentially associated with the first-order derivatives at the boundaries. The auxiliary functions are
expressed as follows:

ζa
1(x) = x

( x
a
− 1
)2

ζa
2(x) =

x2

a

( x
a
− 1
)

ζb
1(y) = y

(y
b
− 1
)2

ζb
2(y) =

y2

b

(y
b
− 1
) (37)

It is easy to verify that,

ζa
1(0) = ζa

1(a) = ζa′
1 (a) = 0, ζa′

1 (0) = 1
ζa

2(0) = ζa
2(a) = ζa′

2 (0) = 0, ζa′
2 (a) = 1

ζb
1(0) = ζb

1(b) = ζb′
1 (b) = 0, ζb′

1 (0) = 1
ζb

2(0) = ζb
2(b) = ζb′

2 (0) = 0, ζb′
2 (b) = 1

(38)

All the expansion coefficients in Equation (25) can be treated independently and equally as the
generalized coordinates and solved directly from the Ritz method. The method can be summed up in
a matrix form as:

(K−ω2M)G = 0 (39)

where K and M is the stiffness matrix and mass matrix of the OFG plate, respectively. Both are
symmetric matrices and can be written as:

K =


Kuu Kuv Kuw Kuφx Kuφy

Kuv Kvv Kvw Kvφx Kvφy

Kuw Kvw Kww Kwφx Kwφy

Kuφx Kvφx Kwφx Kφxφx Kφxφy

Kuφy Kvφy Kwφy Kφxφy Kφyφy

 (40)

M =


Muu 0 0 Muφx 0

0 Muu 0 0 Mvφy

0 0 Mww 0 0
Muφx 0 0 Mφxφx 0

0 Mvφy 0 0 Mφyφy

 (41)

The coefficient eigenvector G is the unknown expansion coefficient in the series expansions, and
determined for a given frequency, namely:

G =
[
Gu, Gv, Gw, Gφx , Gφy

]T (42)

The Fourier coefficient eigenvector G, stiffness matrix K and mass matrix M are given in the
Appendix A.

3. Numerical Results and Discussion

In this section, numerical examples for the free vibration analysis of moderately thick OPG plates
with various gradient indexes and general boundary restraints are presented. Firstly, the convergence
and reliability of the proposed modified Fourier series method is validated by comparing the current
solutions with those results published in the literature under the distribution of P-OFG. Secondly, the free
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vibration behavior of OFG plates with general boundary restraints is studied. Then, the effects of
gradient index p on the volume fraction in the thickness direction, in various distributions (P-, C- and
S-OFG), are discussed. Finally, the relations between fundamental frequencies f (Hz) and gradient index
p in the various volume fractions with general boundary restraints are contrasted and analyzed as well.

3.1. OFG Plates with General Boundary Restraints

The aforementioned general boundary restraints can be readily realized by assigning the stiffness
of the boundary springs at proper values. Taking edge x = 0 as an example, the frequently encountered
boundary restraints F (free edge), C (clamped edge) and S (simply-supported edge) can be defined as
follows:

F : ku
x0

= kv
x0

= kw
x0

= Kx
x0

= Ky
x0 = 0

C : ku
x0

= kv
x0

= kw
x0

= Kx
x0

= Ky
x0 = 107D

S : ku
x0

= kv
x0

= kw
x0

= Ky
x0 = 107D, Kx

x0
= 0

(43)

where D = E1h3/12(1− v2
12) is the flexural stiffness of the plate. The accuracy and convergence of the

present solution is demonstrated in Tables 2 and 3. Table 2 compares the first five frequency parameters
Ω = ωa2

√
ρh/D of OFG plates with CCCC, SSSS and FFFF boundary restraints and thickness–length

ratio a/b = 0.5. Three different thickness–length ratios, h/a = 0.1, 0.2 and 0.3, corresponding to the
moderately thick plates, are considered in the comparison. The solution given by Jin et al. [35] by
the three-dimensional elasticity method is provided for a direct comparison. The difference does not
exceed 0.044% for the worst case, which is acceptable.

Table 2. The first five frequency parameters Ω = ωa2√ρh/D of OFG plate with different restraints
and thickness–length ratios (a/b = 0.5).

h/a Method
Mode Number

1 2 3 4 5

CCCC boundary restraint

0.1 Present 12.767 13.242 14.454 16.649 19.937
Ref. [35] 12.767 13.243 14.451 16.647 19.938

0.2 Present 7.5324 8.0879 9.3818 10.206 11.430
Ref. [35] 7.5325 8.0882 9.3822 10.210 11.435

0.3 Present 5.2981 5.8807 6.8086 7.0848 8.7976
Ref. [35] 5.2982 5.8807 6.8086 7.0848 8.7975

SSSS boundary restraint

0.1 Present 8.2283 8.3304 8.8058 10.181 12.615
Ref. [35] 8.2286 8.3304 8.8058 10.182 12.616

0.2 Present 4.1653 6.0783 6.5920 7.8472 8.3304
Ref. [35] 4.1652 6.0783 6.5922 7.8472 8.3304

0.3 Present 2.7768 4.6194 5.1094 5.5535 5.5535
Ref. [35] 2.7768 4.6197 5.1096 5.5536 5.5536

FFFF boundary restraint

0.1 Present 1.2016 1.6451 3.2673 3.5279 5.8824
Ref. [35] 1.2016 1.6450 3.2673 3.5278 5.8822

0.2 Present 1.1741 1.5491 3.0822 3.2398 3.9205
Ref. [35] 1.1742 1.5490 3.0822 3.2398 3.9204

0.3 Present 1.1337 1.4422 2.6131 2.8420 2.9385
Ref. [35] 1.1337 1.4422 2.6132 2.8421 2.9387

The non-dimensional frequency parameters v = ωh
√

ρm/Em for square plates with CCCC, SSSS,
CFCF, and SCSC boundary restraints are shown in Table 3. The thickness–length ratio used for the
analysis is h/a = 0.2, and the truncation number is M = N = 9 and 11. It can be seen that the present
solutions are in close agreement with the results obtained from TSDT method [15]. In general, a
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consistent agreement of the present results is seen from the tables by comparing with those available
in the literature.

Table 3. The comparison of non-dimensional frequency parameters v = ωh
√

ρm/Em for square plates
with CCCC, SSSS, CFCF and SCSC boundary restraints, respectively (h/a = 0.2).

Mode

p = 0 p = 5 p = ∞

9 × 9 11 × 11 9 × 9 11 × 11 9 × 9 11 × 11

Present TSDT [15] Present TSDT [15] Present TSDT [15] Present TSDT [15] Present TSDT [15] Present TSDT [15]

CCCC boundary restraint

1 0.3598 0.3596 0.3597 0.3598 0.3148 0.3151 0.3154 0.3154 0.3086 0.3090 0.3089 0.3092
2 0.6262 0.6263 0.6282 0.6282 0.5440 0.5441 0.5456 0.5458 0.5379 0.5382 0.5396 0.5398
3 0.6262 0.6263 0.6282 0.6282 0.5440 0.5441 0.5456 0.5458 0.5379 0.5382 0.5396 0.5398
4 0.8462 0.8462 0.8486 0.8486 0.7336 0.7338 0.7357 0.7358 0.7270 0.7272 0.7290 0.7291
5 0.8697 0.8696 0.8687 0.8687 0.7595 0.7597 0.7590 0.7590 0.7471 0.7472 0.7462 0.7464
6 0.8697 0.8696 0.8687 0.8687 0.7595 0.7597 0.7590 0.7590 0.7471 0.7472 0.7462 0.7464

SSSS boundary restraint

1 0.2463 0.2467 0.2465 0.2462 0.2244 0.2240 0.2236 0.2236 0.2120 0.2120 0.2117 0.2116
2 0.4472 0.4474 0.4485 0.4483 0.3916 0.3914 0.3920 0.3921 0.3846 0.3845 0.3854 0.3852
3 0.4472 0.4476 0.4485 0.4484 0.3916 0.3915 0.3920 0.3922 0.3846 0.3846 0.3854 0.3853
4 0.5405 0.5407 0.5398 0.5397 0.4866 0.4869 0.4862 0.4861 0.4647 0.4646 0.4641 0.4638
5 0.5405 0.5408 0.5398 0.5398 0.4866 0.4869 0.4862 0.4861 0.4647 0.4647 0.4641 0.4638
6 0.6505 0.6509 0.6465 0.6470 0.5691 0.5693 0.5661 0.5659 0.5595 0.5593 0.5562 0.5560

CFCF boundary restraint

1 0.2379 0.2383 0.2358 0.2362 0.2087 0.2085 0.2101 0.2103 0.2054 0.2055 0.2041 0.2044
2 0.2608 0.2611 0.2611 0.2614 0.2304 0.2300 0.2305 0.2306 0.2230 0.2233 0.2248 0.2250
3 0.4228 0.4231 0.4225 0.4227 0.3672 0.3699 0.3694 0.3696 0.3631 0.3636 0.3629 0.3632
4 0.4250 0.4246 0.4225 0.4248 0.3773 0.3772 0.3765 0.3764 0.3656 0.3649 0.3655 0.3657
5 0.5271 0.5278 0.5307 0.5310 0.4594 0.4592 0.4620 0.4617 0.4543 0.4536 0.4560 0.4563
6 0.5604 0.5603 0.5668 0.5669 0.4902 0.4900 0.4953 0.4952 0.4821 0.4813 0.4869 0.4871

SCSC boundary restraint

1 0.3068 0.3066 0.3069 0.3066 0.2709 0.2708 0.2710 0.2709 0.2631 0.2635 0.2632 0.2635
2 0.4507 0.4504 0.4510 0.4509 0.3942 0.3940 0.3946 0.3944 0.3868 0.3871 0.3871 0.3875
3 0.5584 0.5579 0.5578 0.5578 0.4932 0.4930 0.4934 0.4930 0.4790 0.4794 0.4790 0.4793
4 0.6068 0.6064 0.6080 0.6082 0.5286 0.5285 0.5305 0.5302 0.5206 0.5211 0.5224 0.5226
5 0.8009 0.8004 0.7995 0.7997 0.6970 0.6967 0.6994 0.6991 0.6872 0.6878 0.6867 0.6871
6 0.8123 0.8118 0.8120 0.8126 0.7096 0.7094 0.7106 0.7101 0.6968 0.6975 0.6978 0.6982

Numerous new results of fundamental frequencies f (Hz) are presented in Tables 4 and 5 for
moderately thick OFG plates with a variety of general boundary restraints. In the case of Tables 4
and 5, the gradient indexes and geometrical parameters of the OFG plates are taken to be p = 0.5, 2,
and 10, and a/b = 1.5 and 2, h/a = 0.2, 0.3, and 0.5. The boundary restraints, including SSSS, SSSC,
SSSF, CFCC, CFCS, CFCF, CFSS and CFSF, are considered. It can be seen from the tables that the
solutions of the fundamental frequencies f (Hz) corresponding to different boundary restraints have
obvious difference. The frequencies of the moderately thick OFG plates with SSSS, SSSC and SSSF are
significantly lower the other restraints, this is due to that the smaller restraints at the edges decrease the
flexural rigidity of the plate, resulting in smaller frequency response. The frequencies of the OFG plates
decrease as thickness–length ratio (h/a) and length–width ratio (a/b) increase. The first four mode
shapes with SSSS, SSSC, SSSF, CFCC, CFCS and CFCF boundary restraints are depicted in Figure 3
to further enrich the vibration results of OFG plates. The gradient index and geometrical parameters
are set as p = 1, a/b = 1.5, and h/a = 0.3. Next, the effects of gradient index and volume fraction on
frequencies in various volume distributions with general boundary restraints are illustrated.

Table 4. The first four frequencies f (Hz) of moderately thick OFG plates with various boundary
restraints, gradient indexes and thickness–length ratios (a/b = 1.5).

p h/a Mode
Boundary Restraints

SSSS SSSC SSSF CFCC CFCS CFCF CFSS CFSF

0.5 0.2

1 149.27 149.27 148.52 183.54 190.92 189.42 182.01 189.43
2 197.60 197.60 197.79 263.85 251.08 249.90 261.16 249.27
3 268.70 268.70 267.95 297.59 340.27 341.19 296.66 340.73
4 283.64 283.64 283.54 360.97 358.36 358.11 363.46 358.11
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Table 4. Cont.

p h/a Mode
Boundary Restraints

SSSS SSSC SSSF CFCC CFCS CFCF CFSS CFSF

0.5

0.3

1 73.802 73.08 73.436 89.413 93.036 94.231 89.782 94.232
2 103.90 103.90 103.31 140.17 131.40 131.22 138.48 131.22
3 148.69 150.15 149.87 157.01 188.64 189.83 158.70 189.83
4 158.85 158.85 158.81 200.97 201.05 194.98 201.41 201.98

0.5

1 22.872 22.871 23.486 25.853 28.699 29.260 26.981 38.988
2 36.633 36.056 35.439 50.398 46.378 45.522 51.837 45.508
3 57.082 57.082 56.925 57.403 71.642 71.353 57.263 71.345
4 60.526 60.526 60.548 75.468 76.557 76.637 75.184 77.240

2

0.2

1 139.82 138.54 137.19 175.35 173.10 173.92 177.47 173.92
2 176.40 176.40 175.66 218.98 224.11 222.62 219.83 222.62
3 219.76 220.94 219.01 289.21 277.88 275.82 289.21 279.37
4 235.79 235.79 235.47 289.58 299.38 300.53 289.34 288.57

0.3

1 65.998 65.998 65.164 82.771 83.441 83.373 84.466 83.809
2 89.699 89.699 89.101 112.91 113.12 113.57 112.24 113.57
3 117.20 117.20 117.80 156.24 148.17 146.97 152.31 146.97
4 126.79 126.79 128.58 157.38 160.39 160.18 156.24 160.19

0.5

1 19.385 19.385 19.526 25.401 24.863 24.626 25.130 24.603
2 29.511 29.510 29.624 37.273 36.784 36.587 37.560 36.582
3 41.343 41.343 41.060 54.783 52.479 52.129 54.783 52.125
4 47.861 45.759 45.111 55.233 65.442 57.663 57.311 61.643

10

0.2

1 126.24 126.24 124.07 170.09 159.65 159.72 172.19 159.72
2 155.05 155.70 155.24 195.56 197.08 197.04 195.59 197.09
3 181.92 181.92 181.99 234.65 230.57 230.56 235.40 247.57
4 213.04 195.00 196.87 287.83 248.14 247.57 285.93 268.55

0.3

1 59.038 59.039 59.980 81.646 72.792 74.173 80.591 74.541
2 76.164 76.052 77.799 99.184 96.254 96.254 97.498 95.994
3 91.501 91.798 91.059 122.82 116.05 115.18 121.14 114.86
4 100.93 100.93 92.095 153.18 126.44 127.23 152.02 127.10

0.5

1 16.608 16.608 16.210 21.258 20.341 20.629 24.613 20.501
2 24.392 23.587 23.378 30.328 29.454 29.473 31.454 29.251
3 28.855 28.855 28.908 42.315 36.206 36.074 41.992 36.187
4 33.175 33.175 33.255 54.897 41.721 42.218 54.944 42.077

Table 5. The first four frequencies f (Hz) of moderately thick OFG plates with various boundary
restraints, gradient indexes and thickness–length ratios (a/b = 2).

p h/a Mode
Boundary Restraints

SSSS SSSC SSSF CFCC CFCS CFCF CFSS CFSF

0.5

0.2

1 143.27 143.27 142.55 172.14 180.56 180.56 172.96 180.44
2 169.61 169.61 169.43 217.36 212.08 213.37 215.25 213.37
3 215.70 215.70 215.71 288.85 268.79 273.19 282.80 275.78
4 261.46 263.40 261.78 293.42 343.84 318.69 293.74 323.83

0.3

1 39.957 39.799 39.959 37.882 49.638 50.648 46.905 50.649
2 50.756 50.756 50.259 66.126 65.693 64.701 64.718 64.685
3 71.395 71.395 71.466 94.250 88.635 87.408 95.658 89.695
4 93.545 93.545 94.043 99.961 118.79 118.38 99.716 118.38

0.5

1 13.742 13.742 13.918 10.946 10.722 12.523 10.099 12.520
2 21.131 21.130 21.214 17.774 17.161 17.210 18.616 17.424
3 26.870 29.640 30.154 28.204 26.478 26.538 28.033 26.390
4 32.248 32.248 31.950 31.325 37.018 36.416 30.482 37.678

2

0.2

1 131.95 131.95 131.92 171.11 167.09 170.62 168.99 167.34
2 153.97 153.97 153.22 195.56 194.12 193.80 196.22 193.67
3 189.64 189.64 189.12 234.63 239.11 239.76 234.59 239.76
4 214.35 214.35 214.52 281.09 271.88 272.33 283.23 273.38

0.3

1 34.865 34.865 31.766 46.420 44.966 44.964 45.004 41.363
2 44.032 44.009 35.233 52.573 55.703 56.658 56.257 56.661
3 59.393 59.393 59.309 73.363 73.826 70.840 73.412 76.400
4 69.760 69.759 70.258 94.390 88.247 87.151 93.799 87.154

0.5

1 7.9456 7.9443 8.0661 16.104 10.235 10.082 11.810 10.080
2 11.244 11.245 11.670 19.577 14.729 14.280 13.584 14.274
3 16.165 16.522 15.924 27.897 21.322 20.896 20.420 20.891
4 20.059 19.795 20.059 28.088 26.279 25.679 28.050 25.608
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Table 5. Cont.

p h/a Mode
Boundary Restraints

SSSS SSSC SSSF CFCC CFCS CFCF CFSS CFSF

10

0.2

1 121.99 121.78 121.99 164.35 153.67 153.22 164.34 153.22
2 139.33 139.32 138.89 179.97 177.43 175.93 180.63 175.97
3 163.88 163.88 164.16 203.80 207.55 208.46 204.18 208.41
4 176.79 177.01 177.53 234.65 222.20 223.76 235.40 224.36

0.3

1 26.254 30.634 30.422 43.323 38.697 38.705 43.546 38.856
2 30.635 38.260 37.712 51.818 47.346 47.606 50.407 47.328
3 48.066 48.067 48.033 63.056 61.108 58.731 61.700 60.328
4 51.483 51.482 51.025 74.388 64.981 65.664 74.191 62.648

0.5

1 6.5105 6.5123 6.6952 12.656 8.0167 8.3461 10.053 7.8646
2 8.9101 8.9129 9.1915 12.891 10.870 11.210 12.916 11.243
3 12.426 12.430 12.199 16.145 15.570 15.098 16.666 15.386
4 12.468 12.468 13.262 21.249 16.497 16.222 20.417 15.884Materials 2018, 2, x FOR PEER REVIEW  13 of 21 
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Figure 3. The first four mode shapes of the moderately thick OFG plates with various boundary restraints:
(a) SSSS; (b) SSSF; (c) SSSC; (d) CFCC; (e) CFCS; and (f) CFCF.

3.2. Volume Fraction Analysis

In this study, the material properties are assumed as three types (P-OFG, C-OFG, and S-OFG),
which are realized by different ceramic-to-metal volume distributions in the thickness direction.
The material properties are assumed to vary through the thickness of the plate with ceramic-to-metal
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volume distribution between the two surfaces. Specifically, the horizontal and vertical Young’s
modulus (E1 and E2), density ρ and main Poisson ratio ν12 are assumed to vary continuously through
the plate thickness.

According to Equations (1)–(3), the variation of the ceramic volume fraction through
coordinate-thickness ratio in various types is presented in Figure 4 (V1 = 0, V2 = 1). In Figure 4a,
the volume fraction of ceramic varies quickly near the lowest surface for p < 1 and increases quickly
near the top surface for p > 1 under the case of P-OFG. In Figure 4b, the distribution of the ceramic
volume fraction is symmetric about the middle surface for C-OFG. In Figure 4c, the distribution is
inverse symmetric about the middle surface for S-OFG, and each part is similar to P-OFG.Materials 2018, 2, x FOR PEER REVIEW  14 of 21 
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3.3. Fundamental Frequencies Analysis

In this subsection, the relations between fundamental frequencies f (Hz) and gradient index p with
general boundary restraints for P-, C- and S-OFG plates are contrasted and analyzed. The variation of
the fundamental frequencies f (Hz) through gradient index p for OFG plates with h/a = 0.3 is shown
in Figure 5. SSSS, SSSF, SSSC, CFCC, CFCS and CFCF boundary restraints are studied for P-, C- and
S-OFG plates.Materials 2018, 2, x FOR PEER REVIEW  15 of 21 
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Figure 5. Variation of the frequencies through p for OFG plates with h/a = 0.5: (a) OFG plates with
SSSS; (b) OFG plates with SSSF; (c) OFG plates with SSSC; (d) OFG plates with CFCC; (e) OFG plates
with CFCS; and (f) OFG plates with CFCF.

The six sets of curves show a similar behavior. For P- and C-OFG, the frequency parameters
are considerably decreased by increasing the gradient index p. This is because Em is much smaller
than Ef and the stiffness of the plate decreases with the increased distribution range of metal, thus
the frequency parameter declines. When the value of p equals to zero, a complete ceramic plate is
obtained, whereas infinity p indicates a complete metal plate. For the case of S-OFG, although there is
a small range of fluctuations as p changes, the interval of fundamental frequencies f (Hz) is not large.
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Without loss of generality, the ceramic volume fraction always exhibits the opposite changes and the
effect of p on the stiffness is small. Therefore, p has little influence on the fundamental frequencies
f (Hz) with different boundary restraints overall.

Based on the above analysis, the fundamental frequencies f (Hz) for OFG plates with respect to
gradient index p and volume fractions with simply supported boundary restraint are presented in
Figure 6. It can be seen that, with the increase of V2-V1, the variation of fundamental frequencies
f (Hz) through the gradient index p is more obvious for OFG plates. The results in Figure 6 show that
the effects of the gradient index p on the fundamental frequencies f (Hz) vary with ceramic volume
fractions between bottom and top surfaces.Materials 2018, 2, x FOR PEER REVIEW  16 of 21 
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4. Conclusions

In this investigation, a modified Fourier series method has been applied to solve the free vibrations
of moderately thick OFG plates with general boundary restraints. Displacements and rotations of each
plate, regardless of boundary restraints, are described as an improved form of double Fourier cosine
series and several auxiliary functions to effectively eliminate any possible jumps with the original
displacement function and its relevant derivatives at the boundaries. Exact solutions are obtained by
the energy functions of the plates based on Rayleigh–Ritz method. The general boundary restraints
are achieved by setting the stiffness of springs without requiring any special procedures or schemes.
It is shown that the present method has high reliability and accuracy. Numerous new results for
moderately thick OFG plates with general boundary restraints are presented, which may serve as
benchmark solutions for future research in this field.

A comprehensive investigation focused on free vibration properties of OFG materials is given,
which serves as a supplement of the properties of FGMs. It is shown that vibration frequencies of
the OFG plates are strongly influenced by the ceramic-to-metal volume distribution, gradient index,
geometric parameter and boundary restraint. With the interval of ceramic volume fraction increases,
the variation of fundamental frequencies through the gradient index is more obvious. When the
interval of volume fraction is certain, S-OFG is less affected by the gradient index, while the vibration
frequencies of P- and C-OFG are significantly influenced by the gradient index. The effects of the
gradient index on the volume fraction are also discussed as well.
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Appendix A

Fourier coefficients eigenvector G, stiffness matrix K and mass matrix M of the moderately
thick plates:

A = [A00, · · · , Amn, · · · , AMN ]
Ta = [a0

1, · · · , an
l , · · · , aN

2 ]
T

b = [b0
1, · · · , bm

l , · · · , bM
2 ]

T

B = [B00, · · · , Bmn, · · · , BMN ]
Tc = [c0

1, · · · , cn
l , · · · , cN

2 ]
T

d = [d0
1, · · · , dn

l , · · · , dM
2 ]

T

C = [C00, · · · , Cmn, · · · , CMN ]
Te = [e0

1, · · · , en
l , · · · , eN

2 ]
T

f = [ f 0
1 , · · · , f m

l , · · · , f M
2 ]

T

D = [D00, · · · , Dmn, · · · , DMN ]
Tg = [g0

1, · · · , gn
l , · · · , gN

2 ]
T

h = [h0
1, · · · , hm

l , · · · , hM
2 ]

T

E = [E00, · · · , Emn, · · · , EMN ]
Ti = [i01, · · · , in

l , · · · , iN
2 ]

T
j = [j01, · · · , jm

l , · · · , jM
2 ]

T

The unknown Fourier coefficients eigenvector G in the displacement expressions is divided into
five parts: Gu, Gv, Gw, Gφx , Gφy .

Gu = [A, a, b]T =
[

A00, A01, · · · , Am0, Am1, · · · Amn, · · · , AMN , a0
1, · · · , an

l , · · · , aN
2 , b0

1, · · · , bm
l , · · · , bM

2

]
Gv = [B, c, d]T =

[
B00, B01, · · · , Bm0, Bm1, · · · Bmn, · · · , BMN , c0

1, · · · , cn
l , · · · , cN

2 , d0
1, · · · , dm

l , · · · , dM
2

]
Gw = [C, e, f]T =

[
C00, C01, · · · , Cm0, Cm1, · · ·Cmn, · · · , CMN , e0

1, · · · , en
l , · · · , eN

2 , f 0
1 , · · · , f m

l , · · · , f M
2

]
Gφx = [D, g, h]T =

[
D00, D01, · · · , Dm0, Dm1, · · ·Dmn, · · · , DMN , g0

1, · · · , gn
l , · · · , gN

2 , h0
1, · · · , hm

l , · · · , hM
2

]
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Gφy = [E, i, j]T =
[

E00, E01, · · · , Em0, Em1, · · · Emn, · · · , EMN , i01, · · · , in
l , · · · , iN

2 , j01, · · · , jml , · · · , jM
2

]
Sub-matrices in the K and M are listed as follows:

H =
[
Hxy, Hx, Hy

]
Hxy = [cos λ0x cos λ0y, · · · , cos λmx cos λny, · · · , cos λMx cos λNy]

Hx = [ζa
1(x) cos λ0y, · · · , ζa

l (x) cos λny, · · · , ζa
2(x) cos λNy]

Hy =
[
ζb

1(y) cos λ0x, · · · , ζb
l (y) cos λmx, · · · , ζb

2(y) cos λMx
]

{Kuu} =
a∫

0

b∫
0

{
A11

∂HT

∂x
∂H
∂x

+ A66
∂HT

∂y
∂H
∂y

}
dydx +

b∫
0

{
ku

x0
HTH|x=0 + ku

x1
HTH|x=a

}
dy

+
a∫

0

{
ku

y0
HTH

∣∣y=0 + ku
y1

HTH
∣∣∣y=b

}
dx

{Kvv} =
a∫

0

b∫
0

{
A22

∂HT

∂y
∂H
∂y

+ A66
∂HT

∂x
∂H
∂x

}
dydx +

b∫
0

{
kv

x0
HTH|x=0 + kv

x1
HTH|x=a

}
dy

+
a∫

0

{
kv

y0
HTH

∣∣y=0 + kv
y1

HTH
∣∣∣y=b

}
dx

{Kww} =
a∫

0

b∫
0

{
A44

∂HT

∂y
∂H
∂y

+ A55
∂HT

∂x
∂H
∂x

}
dydx +

b∫
0

{
kw

x0
HTH|x=0 + kw

x1
HTH|x=a

}
dy

+
a∫

0

{
kw

y0
HTH

∣∣y=0 + kw
y1

HTH
∣∣∣y=b

}
dx

{
Kφxφx

}
=

a∫
0

b∫
0

{
D11

∂HT

∂φx

∂H
∂φx

+ D66
∂HT

∂y
∂H
∂y

+ A55HTH
}

dydx +
b∫

0

{
kx

x0
HTH|x=0 + kx

x1
HTH|x=a

}
dy

+
a∫

0

{
kx

y0
HTH

∣∣y=0 + kx
y1

HTH
∣∣∣y=b

}
dx

{
Kφyφy

}
=

a∫
0

b∫
0

{
D22

∂HT

∂φy

∂H
∂φy

+ D66
∂HT

∂x
∂H
∂x

+ A44HTH
}

dydx +
b∫

0

{
ky

x0HTH|x=0 + ky
x1HTH|x=a

}
dy

+
a∫

0

{
ky

y0HTH
∣∣y=0 + ky

y1HTH
∣∣∣y=b

}
dx

{Kuv} =
a∫

0

b∫
0

{
A12

∂HT

∂x
∂H
∂y

+ A66
∂HT

∂y
∂H
∂x

}
dydx

{
Kuφx

}
=

a∫
0

b∫
0

{
B11

∂HT

∂φx

∂H
∂φx

+ B66
∂HT

∂y
∂H
∂y

}
dydx

{
Kuφy

}
=

a∫
0

b∫
0

{
B12

∂HT

∂x
∂H
∂φy

+ B66
∂HT

∂φy

∂H
∂x

}
dydx

{
Kvφx

}
=

a∫
0

b∫
0

{
B12

∂HT

∂y
∂H
∂φx

+ B66
∂HT

∂φx

∂H
∂y

}
dydx

{
Kvφy

}
=

a∫
0

b∫
0

{
B22

∂HT

∂φy

∂H
∂φy

+ B66
∂HT

∂x
∂H
∂x

}
dydx
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{
Kφxφy

}
=

a∫
0

b∫
0

{
D12

∂HT

∂φx

∂H
∂φy

+ D66
∂HT

∂φy

∂H
∂φx

}
dydx

{
Kwφx

}
=

a∫
0

b∫
0

{
A55

∂HT

∂φx
H
}

dydx

{
Kwφy

}
=

a∫
0

b∫
0

{
A44

∂HT

∂φy
H
}

dydx

{Kuw} = 0

{Kvw} = 0

Muu = Mvv = Mww =

a∫
0

b∫
0

I0HTHdydx

Muφx = Mvφy =

a∫
0

b∫
0

I1HTHdydx

Mφxφx = Mφyφy =

a∫
0

b∫
0

I2HTHdydx
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