

Article

MDPI

Supplementary Information for "High partial auxeticity in simple model with Yukawa interactions induced by nanochannels in [111]-direction"

Konstantin V. Tretiakov¹, Paweł M. Pigłowski¹, Jakub W. Narojczyk¹, Mikołaj Bilski² and Krzysztof W. Wojciechowski¹

- ¹ Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
- ² Institute of Applied Mechanics, Poznań University of Technology, Jana Pawła II 24, 60–965 Poznań, Poland
- * tretiakov@ifmpan.poznan.pl, Tel.: +48-61-689-52-76; mikolaj.bilski@put.poznan.pl

Published: date

1. Used nomenclature

The signs used in the manuscript are shown below

- *N* the number of particles
- N_{HS} the number of particles forming inclusion
- *N*_Y the number of 'Yukawa' particles
- *n* the number of fcc cells on the edge of the system
- *c* the concentration of the nanoinclusion particles
- σ the particles' diameter
- κ^{-1} the Debye's screening length
- ϵ the contact potential
- $\beta = 1/(k_{\rm B}T)$
- $k_{\rm B}$ the Boltzmann constant
- *T* the temperature
- r_{ij} distance between *i*-th and *j*-th particle
- S_{ijkl} component of elastic compliance tensor
- ε_{ij} component of strain tensor
- V_p equilibrium volume of the system
- P pressure
- $p^* \equiv \beta P \sigma^3$ reduced pressure
- **h** the box matrix
- $\mathbf{h}_0 \equiv \langle \mathbf{h} \rangle$ the reference box matrix
- *I* identity matrix
- δ_{ij} the Kronecker delta
- n_i' the *i*-component of a unit vector in the direction of the applied stress
- *m_i* the *i*-component of a unit vector in the direction in which the reaction of the system is observed.
- v_{nm} the Poisson's ratio
- χ the degree of auxeticity

In this paper Voigt's notation and Einstein's summation are used.

2. Computations of the elastic compliances

The Lagrangian strain tensor can be expressed as [1]:

$$\varepsilon_{ij} \equiv \left(\partial_i u_j + \partial_j u_i + \sum_k \partial_i u_k \partial_j u_k\right) / 2 , \qquad (1)$$

where $u_i \equiv x_i - X_i$ is the displacement vector and X_i , x_i describe respectively the undeformed state and the state under the deformation [1]. Under constant isotropic pressure (*P*) the expansion of the change of free enthalpy (Gibbs free energy), ΔG , caused by deformation of a crystal has the form [2]:

$$\Delta G = \frac{1}{2} V_p B_{ijkl} \varepsilon_{ij} \varepsilon_{kl} + \dots$$
⁽²⁾

where B_{ijkl} are the components of the elastic constants tensor at fixed temperature and pressure P (the Einstein's summations is used). Under the isotropic pressure conditions, $\sigma_{ij} \equiv -P\delta_{ij}$, the elastic constans B_{ijkl} form the relation between the components of the strain tensor ε_{kl} and the stress tensor σ_{ii} [3] (the Hooke's law):

$$\Delta \sigma_{ij} = B_{ijkl} \varepsilon_{kl},\tag{3}$$

where $\Delta \sigma_{ij} \equiv \sigma_{ij} + P \delta_{ij}$. By inversion, the above reads:

$$\varepsilon_{ij} = S_{ijkl} \Delta \sigma_{kl},\tag{4}$$

where S_{ijkl} is the elastic compliance tensor, a fourth-rank tensor which remains unchanged when replacing *i*-*j*, *k*-*l* and *ij*-*kl*. The elastic compliances are related to the elastic constants tensor elements by the following equality [4]:

$$S_{iklm}B_{lmpq} = \frac{1}{2} \left(\delta_{ip}\delta_{kq} + \delta_{iq}\delta_{kp} \right).$$
⁽⁵⁾

In computer simulations the strain tensor is obtained from two matrices - the **h** matrix describing the system's state (under pressure *P*) and reference box matrix [5,6] \mathbf{h}_0 ($\mathbf{h}_0 \equiv \langle \mathbf{h} \rangle$):

$$'' = \frac{1}{2} \left(\mathbf{h}_0^{-1} \cdot \mathbf{h} \cdot \mathbf{h} \cdot \mathbf{h}_0^{-1} - \mathbf{I} \right),$$
(6)

where **I** is the unit matrix of the dimensionality 3. Both **h** and **h**₀ are kept symmetric during simulations. Considering that at equilibrium $\varepsilon_{ij} = 0$, it has been shown [5] that fluctuations of ε_{ij} are related to the elastic compliance tensor S_{ijkl} :

$$S_{ijkl} = \left\langle \Delta \varepsilon_{ij} \Delta \varepsilon_{kl} \right\rangle \frac{V_p}{k_{\rm B}T},\tag{7}$$

where $\Delta \varepsilon_{ij}$ is the difference between reference and instantaneous states, and the $\langle ... \rangle$ denotes the averaging in the isothermal–isobaric ensemble:

$$\langle f \rangle = \frac{\int d\varepsilon^{(6)} f \exp(-G/k_{\rm B}T)}{\int d\varepsilon^{(6)} \exp(-G/k_{\rm B}T)}$$
(8)

(for more details see [3,7,8]).

3. \vec{n} and \vec{m} directions

Based on the knowledge of the full tensor of elastic compliances one can calculate the Poisson's ratio for arbitrary direction [9]

$$\nu_{nm} = -\frac{m_i m_j S_{ijkl} n_k n_l}{n_p n_r S_{prst} n_s n_t} , \qquad (9)$$

In the equation (9) $\vec{\mathbf{n}}$ and $\vec{\mathbf{m}}$ are unit vectors indicating selected pair of directions (illustrated in the Figure 1) for which the Poisson's ratio is calculated. The $\vec{\mathbf{n}} = (n_x, n_y, n_z)$ vector is oriented in the direction of the applied stress (according to the definition of the Poisson's ratio). The $\vec{\mathbf{m}}$ represents the direction in which the reaction of the system on the applied stress is observed. It is located on the plane orthogonal to $\vec{\mathbf{n}}$, spanned by vectors $\vec{\mathbf{m}}_1$ and $\vec{\mathbf{m}}_2$:

$$\hat{\mathbf{m}}_1 = \frac{\hat{\mathbf{k}} \times \hat{\mathbf{n}}}{\sqrt{(\hat{\mathbf{k}} \times \hat{\mathbf{n}}) \cdot (\hat{\mathbf{k}} \times \hat{\mathbf{n}})}} = \frac{1}{\sqrt{n_x^2 + n_y^2}} \left(-n_y, n_x, 0 \right), \qquad (10)$$

$$\hat{\mathbf{m}}_{2} = \hat{\mathbf{n}} \times \hat{\mathbf{m}}_{1} = \frac{1}{\sqrt{n_{x}^{2} + n_{y}^{2}}} \left(-n_{x}n_{z}, -n_{y}n_{z}, n_{x}^{2} + n_{y}^{2} \right),$$
(11)

where $\hat{\mathbf{k}}$ is the versor of the *Oz* axis. The versor is the unit vector denoted by symbol $\hat{\mathbf{k}}$. The α angle describes the orientation of $\vec{\mathbf{m}}$ vector on that plane:

 $\vec{\mathbf{m}} = \hat{\mathbf{m}}_1 \cos \alpha + \hat{\mathbf{m}}_2 \sin \alpha \ .$

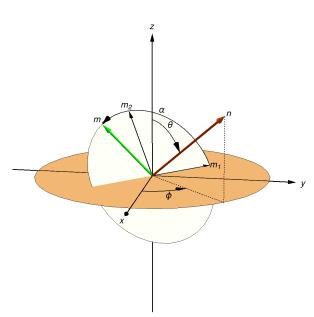


Figure 1. Spherical coordinates: \vec{n} (described by polar and azimuthal angles θ , ϕ) and \vec{m} (described by α angle). α is the angle between \vec{m} and \hat{m}_1 (\hat{m}_1 is the versor created by plane *Oxy* and plane orthogonal to \vec{n}).

References

- 1. L. D. Landau and E. M. Lifshitz. Theory of Elasticity. Pergamon Press, London, 1986.
- K. W. Wojciechowski. Negative Poisson ratios at negative pressures. *Molecular Physics Reports*, 10: pp. 129–136, 1995.
- 3. K. W. Wojciechowski, K. V. Tretiakov, and M. Kowalik. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions. *Phys. Rev. E*, 67: 036121, 2003.
- 4. J. H. Weiner. Statistical Mechanics of Elasticity. Wiley, New York, 1983.
- 5. M. Parrinello and A. Rahman. Polymorphic transitions in single crystals: A new molecular dynamics method. *J. Appl. Phys.*, 52: pp. 7182–7190, 1981.
- M. Parrinello and A. Rahman. Strain fluctuations and elastic constants. J. Chem. Phys., 76: pp. 2662–2666, 1982.
- K. W. Wojciechowski, K. V. Tretiakov, A. C. Brańka, and M. Kowalik. Elastic properties of two-dimensional hard disks in the close-packing limit. *J. Chem. Phys.*, 119: 939, 2003.

(12)

- 8. K. W. Wojciechowski. Computer simulations of elastic constants without calculating derivatives of the interaction potential. *Comp. Meth. Sci. Technol.*, 8(2): pp. 77–83, 2003.
- 9. S. P. Tokmakova. Stereographic projections of Poisson's ratio in auxetic crystals. *Phys. Status Solidi B-Basic Solid State Phys.*, 242(3): pp. 721–729, 2005.

 \odot 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).