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Abstract: Cadmium telluride (CdTe) films were deposited on glass substrates by direct current (DC)
magnetron sputtering, and the effect of substrate-target distance (Dts) on properties of the CdTe films
was investigated by observations of X-ray diffraction (XRD) patterns, atomic force microscopy (AFM),
UV-VIS spectra, optical microscopy, and the Hall-effect measurement system. XRD analysis indicated
that all samples exhibited a preferred orientation along the (111) plane, corresponding to the zinc
blende structure, and films prepared using Dts of 4 cm demonstrated better crystallinity than the
others. AFM studies revealed that surface morphologies of the CdTe films were strongly dependent on
Dts, and revealed a large average grain size of 35.25 nm and a high root mean square (RMS) roughness
value of 9.66 nm for films fabricated using Dts of 4 cm. UV-VIS spectra suggested the energy band
gap (Eg) initially decreased from 1.5 to 1.45 eV, then increased to 1.68 eV as Dts increased from 3.5
to 5 cm. The Hall-effect measurement system revealed that CdTe films prepared with a Dts of 4 cm
exhibited optimal electrical properties, and the resistivity, carrier mobility, and carrier concentration
were determined to be 2.3 × 105 Ω·cm, 6.41 cm2·V−1·S−1, and 4.22 × 1012 cm−3, respectively.

Keywords: CdTe films; substrate-target distance; pinhole; optical properties; Hall-effect measurement
system

1. Introduction

In recent years, silicon (Si) has been considered as the most important material for preparing
film-form solar cells, due to its well-established preparation process and its theoretical conversion
efficiency of Si-based solar cells being approximately 25% [1,2]. However, Si films exhibit low
absorptivity in the range of 0.5–1.0 µm, and improving the absorptive capacity requires thicker
films which would increase costs [3]. Furthermore, the energy band gap of Si films is only 1.12 eV,
which cannot completely cover the radiation spectrum of sunlight [4]. Therefore, Si is not an optimal
candidate for the fabrication of high-performance film-form solar cells. Due to their suitable energy
band gap (1.45 eV) and high absorption coefficient (>105 cm−1 in the visible range), CdTe films
demonstrate distinctive merit among photovoltaic materials and achieve high photoelectric conversion
performance, with a film thickness of only 1~2 µm [5–8]. However, some studies have proved that
pinholes often appear on the surface of CdTe films and result in a leakage current, which increase
the recombination rate of carriers in the pinhole defects, leading to a decrease in the filling factor
(FF) and open-circuit voltage (Voc) [9,10]. In order to reduce the effect of pinholes, thick CdTe films
were adopted as an absorption layer in solar cells. However, if the thickness of such films exceeds the
diffusion length of the carriers, recombination of electron-hole pairs becomes significant and results in
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a decline in the performance of CdTe solar cells. Many techniques were implemented to prepare CdTe
films, such as close-spaced sublimation (CSS) [11], molecular beam epitaxy (MBE) [12], pulsed laser
deposition (PLD) [13], and magnetron sputtering technology [14]. Typically, CdTe films are deposited
on substrates by CSS, due to the fast rate of growth within a few minutes and high material usage (up
to 70%). However, this process requires a high temperature of 550–625 ◦C [15]. Magnetron sputtering
technology is a good alternative candidate for fabricating CdTe films because of its high deposition
rate, better adherence between the film and the substrate, and homogeneous coating for large areas,
as well as the possibility of deposition at a low temperature [16–18].

In previous studies, sputtering conditions, including substrate temperature [19], discharge
current [15], substrate bias [20], and other factors [21–23] were systematically investigated by many
researchers, indicating that the crystallinity of CdTe films can be optimized by adjusting the sputtering
parameters; however, the function of substrate-target distance on propertied of CdTe films was few
reported. Shin et al. proved that substrate-target distance was a critical parameter affecting the growth
of films, due to the kinetic energy of arrived atoms on the substrate [24]. Thus, research on the influence
of substrate-target distance on properties of CdTe films should be further discussed.

In this study, CdTe films were deposited on glass substrates by direct-current (DC) magnetron
sputtering technology using different sputtering distances. The results suggested that the structural,
morphological, optical, and electrical properties of CdTe films were strongly affected by the
substrate-target distance (Dts), and films prepared using Dts of 4 cm demonstrate optimal performance
in various aspects. This research provides a straightforward method for preparing CdTe films with
high crystallinity, and provides a reference for preparing high-performance CdTe solar cells.

2. Materials and Methods

Before the sputtering process, glass substrates were cleaned according to Reference [25]. CdTe
(99.9% purity, Dumoers New Materials Inc., Beijing, China) was used as raw target material, and
argon (99.99% purity, Niuruide Inc., Wuhan, China) was used as the sputtering gas. The argon was
ionized by an electrostatic field, producing Ar+ ions and secondary electrons, after which the CdTe
target was sputtered by the Ar+ ions at high kinetic energy, producing Cd+ and Te− ions, which
were deposited on the glass substrates and ultimately formed CdTe. Referring to Lu et al. [26], and
Natarajan et al. [27], it has been found that if the sputtering distance exceeds 6 cm, the crystallinity of
films deteriorates. Therefore, appropriate distances varying from 3.5 to 5 cm with intervals of 0.5 cm
were implemented to deposit the CdTe films. A schematic diagram of the sputtering process is shown
in Figure 1, and specific sputtering parameters are exhibited in Table 1.

Materials 2018, 11, x FOR PEER REVIEW  2 of 13 

 

exceeds the diffusion length of the carriers, recombination of electron-hole pairs becomes significant 
and results in a decline in the performance of CdTe solar cells. Many techniques were implemented 
to prepare CdTe films, such as close-spaced sublimation (CSS) [11], molecular beam epitaxy (MBE) 
[12], pulsed laser deposition (PLD) [13], and magnetron sputtering technology [14]. Typically, CdTe 
films are deposited on substrates by CSS, due to the fast rate of growth within a few minutes and 
high material usage (up to 70%). However, this process requires a high temperature of 550–625 °C 
[15]. Magnetron sputtering technology is a good alternative candidate for fabricating CdTe films 
because of its high deposition rate, better adherence between the film and the substrate, and 
homogeneous coating for large areas, as well as the possibility of deposition at a low temperature 
[16–18]. 

In previous studies, sputtering conditions, including substrate temperature [19], discharge 
current [15], substrate bias [20], and other factors [21–23] were systematically investigated by many 
researchers, indicating that the crystallinity of CdTe films can be optimized by adjusting the 
sputtering parameters; however, the function of substrate-target distance on propertied of CdTe films 
was few reported. Shin et al. proved that substrate-target distance was a critical parameter affecting 
the growth of films, due to the kinetic energy of arrived atoms on the substrate [24]. Thus, research 
on the influence of substrate-target distance on properties of CdTe films should be further discussed.  

In this study, CdTe films were deposited on glass substrates by direct-current (DC) magnetron 
sputtering technology using different sputtering distances. The results suggested that the structural, 
morphological, optical, and electrical properties of CdTe films were strongly affected by the 
substrate-target distance (Dts), and films prepared using Dts of 4 cm demonstrate optimal performance 
in various aspects. This research provides a straightforward method for preparing CdTe films with 
high crystallinity, and provides a reference for preparing high-performance CdTe solar cells. 

2. Materials and Methods 

Before the sputtering process, glass substrates were cleaned according to Reference [25]. CdTe 
(99.9% purity, Dumoers New Materials Inc., Beijing, China) was used as raw target material, and 
argon (99.99% purity, Niuruide Inc., Wuhan, China) was used as the sputtering gas. The argon was 
ionized by an electrostatic field, producing Ar+ ions and secondary electrons, after which the CdTe 
target was sputtered by the Ar+ ions at high kinetic energy, producing Cd+ and Te− ions, which were 
deposited on the glass substrates and ultimately formed CdTe. Referring to Lu et al. [26], and 
Natarajan et al. [27], it has been found that if the sputtering distance exceeds 6 cm, the crystallinity of 
films deteriorates. Therefore, appropriate distances varying from 3.5 to 5 cm with intervals of 0.5 cm 
were implemented to deposit the CdTe films. A schematic diagram of the sputtering process is shown 
in Figure 1, and specific sputtering parameters are exhibited in Table 1.  

 
Figure 1. Schematic diagram of the sputtering process of cadmium telluride (CdTe) films. Figure 1. Schematic diagram of the sputtering process of cadmium telluride (CdTe) films.



Materials 2018, 11, 2496 3 of 12

Table 1. Deposition parameters of CdTe films prepared by magnetron sputtering.

Item Parameter

Sputtering power 40 W
Deposition time 60 min
Substrate temperature Room temperature
Sputtering gas Ar: 50 sccm
Target CdTe (diameter: 100 mm, thickness: 4 mm, 99.999%)
Dts 3.5, 4, 4.5, 5 cm

The crystal structure and crystallization were analyzed by X-ray diffraction (XRD) (SIEMENS
D500 system, SIEMENS, Beijing, China) using Cu Ka radiation (λ = 0.1541 nm) and a scanning rate
of 2◦/min. The surface morphologies and roughness of the CdTe films were studied by atomic force
microscopy (AFM) (Asylum Research Cypher, Oxford Instruments Technology Co., Ltd., Shanghai,
China). Optical properties were investigated by the spectrophotometer (JASCO, V-670, Jiashike Trading
Co., Ltd., Shanghai, China), and the electrical properties of films were measured using the Hall-effect
measurement system (HMS-5000. Shanghai Zaide Semiconductor Technology Co., Ltd., Shanghai, China).

3. Results and Discussion

Figure 2 displays the deposition rate of the CdTe films using different values of Dts. It can be
clearly seen that the deposition rate of films was strongly affected by Dts and exhibits a maximum of
24.4 nm/min at Dts = 4 cm. There are a greater number of collisions and a large amount of scattering
between the sputtering particles, such as Cd+, Te−, and Ar+ in the glow discharge area when Dts

= 5 cm, resulting in detectable energy loss for Ar+ and CdTe molecules [28,29]. This effect reduces
sputtering yield and decreases the kinetic energy of CdTe molecules, which inhibits the growth of
CdTe films and leads to a low deposition rate. However, when Dts decreased, the adverse effect caused
by the large Dts value lessened, and the deposition rate of the films improved. It is noted that when
Dts decreased from 4 to 3.5 cm, the deposition rate of the films did not improve any further, due to the
excessive kinetic energy of the CdTe molecules [30]. The CdTe film thicknesses were 2024, 3843, 1798,
and 1167 nm, respectively, as Dts increased from 3.5 to 5 cm.
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Figure 2. Deposition rate of CdTe films prepared by different sputtering distances. 
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peaks for each sample, representing planes (111), (220), and (311), respectively [31,32]. The peak 
corresponding to the (111) plane shows a significantly larger diffraction intensity compared to the 
other peaks, confirming that the CdTe films exhibit a preferred orientation along the (111) plane, 
which indicates the close packing direction of the zinc blende structure [33]. The observed preference 
for this orientation shows that it gradually strengthens when Dts decreases from 5 to 4 cm, but 

Figure 2. Deposition rate of CdTe films prepared by different sputtering distances.

The crystal structures of the CdTe films are shown in Figure 3a and exhibit three distinguishable
peaks for each sample, representing planes (111), (220), and (311), respectively [31,32]. The peak
corresponding to the (111) plane shows a significantly larger diffraction intensity compared to the
other peaks, confirming that the CdTe films exhibit a preferred orientation along the (111) plane, which
indicates the close packing direction of the zinc blende structure [33]. The observed preference for
this orientation shows that it gradually strengthens when Dts decreases from 5 to 4 cm, but abruptly
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weakens at Dts = 3.5 cm, indicating that high crystallinity is achieved by the CdTe films at Dts = 4 cm.
A shift of the (111) plane peak is observed in Figure 3b, which indicates a change in interplanar distance
(d) of the (111) plane, caused by lattice distortion [34]. The average crystallite size (D) can be calculated
by Scherrer’s equation [35]:

D =
0.9λ

βcosθ
(1)

where λ is the X-ray wavelength (λ = 1.5406 Å), β is the full width at half maximum of the main peak
in radians, and θ is the Bragg diffraction angle in degrees. The micro-strain (ε) and dislocation density
(σ) were evaluated by the following equations [36]:

ε =
βcosθ

4
(2)

σ =
1

D2 (3)

Changes in the crystal parameters of the CdTe films are shown in Figure 4. Films prepared at Dts =
4 cm exhibited a large crystallite size and low micro-strain, corresponding to 21.2 nm and 4.06 × 10−3,
respectively. This indicates that the crystal structures of CdTe films are strongly dependent on Dts,
attributing to the effect of the number of collisions and scattering among sputtering particles on the
growth of the films. The suitable value of kinetic energy and weaker collisions of CdTe molecules
were found to improve crystallinity. The films’ growth most likely developed compressive stress that
pushed the films’ surface outwards, thereby making the curvature of the thin film/substrate system
more convex and increasing the value of the lattice constant, which explains how the increase in lattice
constant was observed with an improvement in the CdTe films’ crystallinity [6]. The specific crystal
parameters of the CdTe films are shown in Table 2.
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(a) XRD patterns, and (b) comparison of the main peak for all samples.

Table 2. Crystal parameters of CdTe films prepared at different substrate-target distances, Dts.

Dts (cm) 2θ (◦) d (Å) FWHM 1 (◦) D (nm) E × 10−3 σ × 1015 (lines/m2)

3.5 23.54 3.776 1.03 17.7 4.39 3.2
4 23.52 3.778 0.95 21.2 4.06 2.2

4.5 23.56 3.771 1.42 11.6 6.12 7.4
5 24.00 3.700 2.29 6.3 9.54 25.2

1 FWHM: full width at half maximum.

The two- and three-dimensional surface morphologies of the CdTe films are exhibited in Figures 5
and 6. The average grain size and root mean square (RMS) roughness of the films were calculated by
Gwyddion image software, revealing a smooth and flat CdTe film surface for Dts = 5 cm that yielded
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an average grain size of 7.88 nm and an RMS roughness of 2.29 nm. As Dts decreases from 5 to 4 cm,
the outline of the grains becomes distinguishable and exhibits a spherical morphology. Additionally,
compact films deposited at Dts = 4 cm (with an average grain size of 35.25 nm and RMS roughness
of 9.66 nm) are obtained, which effectively prevent the occurrence of pinholes on the film surface.
However, for Dts = 3.5 cm, the surface state of the CdTe films (with an average grain size of 16.26 nm
and RMS roughness of 3.89 nm) was not a further improvement, due to the excessive kinetic energy
of the CdTe molecules and significant bombardment from sputtering particles. The inset images in
Figure 5 represent the profiles of film surfaces that demonstrate the fluctuation of morphology and
surface roughness. Furthermore, the specific parameters are listed in Table 3.Materials 2018, 11, x FOR PEER REVIEW  5 of 13 
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Table 3. Surface morphology parameters of CdTe films prepared at different substrate-target distances.

Dts (cm) Average Grain Size (nm) RMS Roughness (nm)

3.5 16.26 3.89
4 35.25 9.66

4.5 8.62 2.34
5 7.88 2.29

CdTe films are used as the absorbing layer in solar cells, and their optical properties directly affect
device performance and play a critical role in photoelectric conversion efficiency [37]. CdTe, with its
narrow energy band gap (Eg) and high extinction coefficient, is an optimal candidate for the fabrication
of high-efficiency solar cells. Transmission spectra of CdTe films are presented in Figure 7a, revealing
no obvious change in transmittance for wavelengths (λ) shorter than 650 nm. However, if λ increases,
the transmittance rises dramatically to greater than 80%, as λ exceeds 850 nm. This result is mainly
determined by the relationship between the energy of the incident light and the band gap of CdTe
films. The band gap of the samples was calculated by the following formula [25]:

(αhv)2 = A
(
hv − Eg

)
(4)

α =
ln
(

1
T

)
d

(5)

where α is the absorption coefficient, Eg is the energy band gap, hv is the photon energy, A is a constant,
d is the film thickness, and T represents the transmittance. The results are shown in Figure 7b. CdTe
films prepared at a Dts of 4 cm exhibited the minimum value (Eg = 1.45 eV) due to the quantum size
effect [38,39]. It is believed that a decrease in Eg can improve the optical properties and expand the
spectral response range. Meanwhile, the refractive index (n) of the CdTe films was calculated based on
the Swanepoel method [40]:

n =

√
H +

√
H2 − S2 (6)
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H =
4S2

(S2 + 1)T2 +
S2 + 1

2
(7)

Here, S refers to the substrate refractive index (1.52 for glass), T is the transmittance, and H is the
Swanepoel coefficient. It can be seen in Figure 7c that the refractive index gradually increases as Dts

drops from 5 to 4 cm, which we attributed to the increase in grain size and decrease in porosity of
the CdTe films. However, where Dts decreases from 4 to 3.5 cm, the refractive index of the films only
dropped slightly due to the reduced crystallinity. Additionally, a decrease in Eg can effectively increase
the refractive index [6]. It is well-known that the extinction coefficient (K) provides information about
the absorption of light in a medium due to inelastic scattering [32]. The extinction coefficient of the
CdTe films was calculated by the following formula [41]:

K =
αλ

4π
(8)

As shown in Figure 7d, changes in the extinction coefficient exhibited a similar trend to changes
in the refractive index. CdTe films deposited with Dts of 4 cm featured a higher extinction coefficient,
because highly crystalline films with low porosities can effectively enhance the interaction between the
film and incident light. A lower k value was observed for films prepared at Dts = 5 cm, which indicates
excellent surface homogeneity and smoothness of these deposited CdTe films [32].Materials 2018, 11, x FOR PEER REVIEW  8 of 13 
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Figure 7. Optical properties of CdTe films prepared at different substrate-target distances. (a) 
Transmission spectrum; (b) energy band gap; (c) refractive index (n); and (d) extinction coefficient. 

Research has proven that the formation of pinholes in CdTe films reduces the efficiencies of solar 
cells based on CdTe films due to shunting effects that produce short-circuits. Pinhole areas contain 
various defects that enhance the process of capturing electron-hole pairs, resulting in a lower effective 
number of photo-generated carriers [42–44]. Before investigating the influence of pinholes on the 
electrical properties of CdTe films, the mechanism of pinhole formation should first be explained. 
Pinholes can be divided into two categories: natural and artificial [45]. The former is mainly 
associated with the coalescence of grains, while the latter is attributed to damage from handling after 
deposition, resulting in scuffs and scratches on the film surface. The distribution of pinholes on the 
film surface are shown in Figure 8. It was found that the number of pinholes formed dropped 
significantly to the lowest density of pinholes (defined as the number of the pinholes area divided by 
the total area), which was 0.026 when Dts was 4 cm. It was concluded that the number of pinholes on 
the CdTe film surface could be significantly decreased by adjusting the sputtering distance, instead 
of requiring technology such as pinhole fillers with negative photoresist. 

Figure 7. Optical properties of CdTe films prepared at different substrate-target distances.
(a) Transmission spectrum; (b) energy band gap; (c) refractive index (n); and (d) extinction coefficient.
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Research has proven that the formation of pinholes in CdTe films reduces the efficiencies of solar
cells based on CdTe films due to shunting effects that produce short-circuits. Pinhole areas contain
various defects that enhance the process of capturing electron-hole pairs, resulting in a lower effective
number of photo-generated carriers [42–44]. Before investigating the influence of pinholes on the
electrical properties of CdTe films, the mechanism of pinhole formation should first be explained.
Pinholes can be divided into two categories: natural and artificial [45]. The former is mainly associated
with the coalescence of grains, while the latter is attributed to damage from handling after deposition,
resulting in scuffs and scratches on the film surface. The distribution of pinholes on the film surface
are shown in Figure 8. It was found that the number of pinholes formed dropped significantly to the
lowest density of pinholes (defined as the number of the pinholes area divided by the total area), which
was 0.026 when Dts was 4 cm. It was concluded that the number of pinholes on the CdTe film surface
could be significantly decreased by adjusting the sputtering distance, instead of requiring technology
such as pinhole fillers with negative photoresist.Materials 2018, 11, x FOR PEER REVIEW  9 of 13 
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Figure 8. Optical images of CdTe films prepared at different sputtering distances. (a) 3.5 cm; (b) 4 cm;
(c) 4.5 cm; and (d) 5 cm.

The electrical properties, including resistivity, carrier mobility, and carrier concentration of CdTe
films are key parameters for their implementation in solar cells, and were tested by a Hall-effect
measurement system. Wang et al. reported that the resistivity, Hall mobility, and carrier concentration
of films were mainly dependent on crystallinity and grain boundaries [46]. High crystallinity and a
low number of grain boundaries in films typically improve electrical properties, because the grain
boundaries act as a source of trap states, resulting in more charge carriers recombining in these regions,
effectively increasing resistivity and also determining carrier mobility by structural defects due to
carrier scattering and trapping [46,47]. The optimal resistivity, Hall mobility, and carrier concentration
of the CdTe films prepared using a Dts of 4 cm were determined as 2.3 × 105 Ω·cm, 6.41 cm2·V−1·S−1,
and 4.22 × 1012 cm−3, respectively, due to the full growth of CdTe films. The results are shown
in Figure 9 and Table 4. Furthermore, the electrical properties of films optimized by adjusting the



Materials 2018, 11, 2496 9 of 12

substrate-target distance are comparable to or better than others [48,49], indicating the effectiveness of
this approach.Materials 2018, 11, x FOR PEER REVIEW  10 of 13 
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Figure 9. Electrical properties of CdTe films prepared at various substrate-target distances. (a) 
Resistivity; (b) carrier mobility. 

Table 4. Specific electrical parameters of CdTe films. 

Dts (cm) Resistivity (Ω∙cm) Carrier Mobility (cm2∙V−1∙S−1) Carrier Concentration (cm−3) 
3.5 9.7 × 105 4.73 1.36 × 1012 
4 2.3 × 105 6.41 4.22 × 1012 
4.5 1.78 × 106 3.97 8.87 × 1011 
5 3.2 × 106 3.06 6.43 × 1011 

4. Conclusions 

CdTe films were successfully deposited on glass substrates by direct-current magnetron 
sputtering technology, and the effect of sputtering distance on the structural, morphological, optical 
and electrical properties of CdTe films were investigated and discussed. The findings suggest that 
CdTe films prepared using a Dts of 4 cm exhibited the best crystallinity, attributed to a suitable kinetic 
energy value of CdTe molecules and weak collisions between the sputtering particles. CdTe films 
deposited at a Dts of 4 cm showed better optical properties in terms of refractive index and extinction 
coefficient, due to larger grain size and lower porosity. It was also found that modifying the substrate-
target distance could effectively reduce pinhole formation on the film surface. Finally, the electrical 
properties of the CdTe films were tested using the Hall-effect measurement system, and films made 
with Dts = 4 cm that exhibited better electrical properties with the resistivity, carrier mobility, and 
carrier concentration of CdTe films, measured to be 2.3 × 105 Ω∙cm, 6.41 cm2∙V−1∙S−1, and 4.22 × 1012 
cm−3, respectively, due to high crystallinity and few grain boundaries. Overall, this work provides a 
meaningful reference for the preparation of CdTe solar cells demonstrating high performance of 
photoelectric conversion efficiency. 
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Figure 9. Electrical properties of CdTe films prepared at various substrate-target distances.
(a) Resistivity; (b) carrier mobility.

Table 4. Specific electrical parameters of CdTe films.

Dts (cm) Resistivity (Ω·cm) Carrier Mobility (cm2·V−1·S−1) Carrier Concentration (cm−3)

3.5 9.7 × 105 4.73 1.36 × 1012

4 2.3 × 105 6.41 4.22 × 1012

4.5 1.78 × 106 3.97 8.87 × 1011

5 3.2 × 106 3.06 6.43 × 1011

4. Conclusions

CdTe films were successfully deposited on glass substrates by direct-current magnetron sputtering
technology, and the effect of sputtering distance on the structural, morphological, optical and electrical
properties of CdTe films were investigated and discussed. The findings suggest that CdTe films
prepared using a Dts of 4 cm exhibited the best crystallinity, attributed to a suitable kinetic energy value
of CdTe molecules and weak collisions between the sputtering particles. CdTe films deposited at a Dts

of 4 cm showed better optical properties in terms of refractive index and extinction coefficient, due to
larger grain size and lower porosity. It was also found that modifying the substrate-target distance
could effectively reduce pinhole formation on the film surface. Finally, the electrical properties of the
CdTe films were tested using the Hall-effect measurement system, and films made with Dts = 4 cm
that exhibited better electrical properties with the resistivity, carrier mobility, and carrier concentration
of CdTe films, measured to be 2.3 × 105 Ω·cm, 6.41 cm2·V−1·S−1, and 4.22 × 1012 cm−3, respectively,
due to high crystallinity and few grain boundaries. Overall, this work provides a meaningful
reference for the preparation of CdTe solar cells demonstrating high performance of photoelectric
conversion efficiency.
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