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Abstract: The research of fractographic images of metals is an important method that allows
obtaining valuable information about the physical and mechanical properties of a metallic specimen,
determining the causes of its fracture, and developing models for optimizing its properties. One of the
main lines of research in this case is studying the characteristics of the dimples of viscous detachment,
which are formed on the metal surface in the process of its fracture. This paper proposes a method
for detecting dimples of viscous detachment on a fractographic image, which is based on using a
convolutional neural network. Compared to classical image processing algorithms, the use of the
neural network significantly reduces the number of parameters to be adjusted manually. In addition,
when being trained, the neural network can reveal a lot more characteristic features that affect
the quality of recognition in a positive way. This makes the method more versatile and accurate.
We investigated 17 models of convolutional neural networks with different structures and selected the
optimal variant in terms of accuracy and speed. The proposed neural network classifies image pixels
into two categories: “dimple” and “edge”. A transition from a probabilistic result at the output of
the neural network to an unambiguously clear classification is proposed. The results obtained using
the neural network were compared to the results obtained using a previously developed algorithm
based on a set of filters. It has been found that the results are very similar (more than 90% similarity),
but the neural network reveals the necessary features more accurately than the previous method.

Keywords: image processing; convolutional neural network; dimples of tearing; fracture mechanisms

1. Introduction

For the non-destructive visual analysis of surfaces, the systems of machine vision are widely used.
They are aimed at recognizing visual patterns that are characteristic for defective and undamaged
surface fragments. The industrial application of such systems requires reliability, accuracy and speed
of response. The methods for detecting defects are classified into four main categories: statistical [1],
structural, filter-based [2], and model-based. The techniques based on the analysis of histograms [3,4],
co-occurrence matrices [5], and local binary patterns [6,7] are also used. The approaches based on
the use of neural networks are used increasingly more often. The latest advances in the field of
convolutional neural networks and use of the graphics processors to perform parallel calculations
ensure the practical use of such approaches in real production conditions.

Weimer et al. [8] developed a method to identify common features of the image surface,
implemented with a two-layer neural network. Features of image are generated by combining
multi-resolution analysis and grayscale patch statistics. The detection scheme consists of two major
sections. In the training mode, the algorithm uses a dataset of labeled training examples with and
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without defect regions and extracts random patches from defective and non-defective regions. In the
last step, the neural network classifier uses all training examples to learn a hypothesis (model).
For practical suitability, the authors focused on a micro cold forming scenario, where a micro cold
forming machine produces micro cups. Evaluation with different parameters showed good defect
detection results.

In Reference [9], authors presented an application of deep convolutional neural networks (DCNNs)
for automatic detection of rail surface defects. For classification, a DCNN was used, based on the
classical convolutional neural network proposed by LeCun et al. [10]. The authors developed three
models of convolutional networks, which contained 2–3 convolutional layers and 2–3 fully connected
layers with different numbers of neurons. After each convolutional layer, max-pooling was used.
Samples were classified into three classes. The first class represented the normal rail. The second class
contained all types of small defects, and finally the third class only consisted of rail joints. With the
proposed DCNNs, the rail defect classes can be successfully classified with almost 92% accuracy.

Malekzadeh et al. [11] proposed an automatic-image-based aircraft defect detection method using
Deep Neural Networks. Dataset images were taken in a straight view of the airplane fuselage. For each
image, a binary mask was created by an experienced inspector to represent defects. Each image
was partitioned into the 65 × 65 patches with respect to image resolution to include the smallest
defect within a single patch. There were two classes of patches: defect and no-defect. Authors have
used a convolutional neural network pre-trained on ImageNet as a feature extractor: AlexNet [12]
and VGG-F [13] networks. The proposed algorithm achieves about 96.37% accuracy. The proposed
algorithm is able to detect almost all the defects of the aircraft fuselage and significantly reduce the
workload of manual inspection.

An algorithm for surface defect detection of steel plates was proposed by Tian and Xu [14].
For this purpose, authors used extreme learning machine (ELM)—a fast machine learning algorithm,
implemented by a hidden matrix generated with random initialization parameters. The ELM algorithm
was proposed by Huang et al. [15] as a kind of single-hidden-layer feedforward neural network.
The accuracy of defect detection on testing dataset is 90–94%. CPU time needed for analyzing one
image is from 0.03 to 250 s.

Cha et al. [16] proposed a vision-based method using a deep architecture of convolutional neural
networks for detecting concrete cracks without calculating the defect features. Analyzed images
were cropped into small images with 256 × 256 pixel resolutions for training and validation.
The small images were used as the dataset to train the CNN. The test images were scanned by
the trained CNN using a sliding window technique, which facilitated the scanning of any images
with resolutions higher than 256 × 256 pixel, and the crack maps were consequently obtained.
Subsequently, the authors expanded their methodology by offering the Faster-R-CNN-based structural
visual inspection method [17]. The method allows detecting five types in the five types of surface
damages: concrete cracks, steel corrosion (medium and high levels), bolt corrosion, and steel
delamination. Authors showed that Faster R-CNN has better computation efficiency based on the
optimized architecture of the network, and it provides more flexible sizes of the bounding boxes to
accommodate for different sizes and scales of the input images. In addition, a video-based damage
detection framework using the Faster R-CNN was developed, which can provide quasi real-time,
autonomous vision-based structural damage detection.

A separate line of research on images is the fractographic analysis, the main tools of which are
physics of a solid body (the theory of dislocations, etc.), material science (in the case of building
correlations between fracture parameters and the size of grains, inclusions, etc.), optical–digital
methods, etc. [18,19].

Until recently, fracture surface parameters of materials and structures were measured, either manually
or automatically, but the measurement software was adjusted by the operator. This brought a significant
subjectivity and complexity to measurements. Therefore, the need to develop and test new approaches to
the automated fractographic analysis of material fractures is very important [20,21].
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The peculiarity of working with fractographic images is that, for their analysis, it is necessary
not only to identify the area, in which the objects are located, but also to evaluate the morphological
features of the objects. The calculation of quantitative parameters of dimples of viscous detachment
(their count, size, shape, etc.) will not only allow establishing the causes of material fracture, but will be
informative input parameters for models aimed at optimizing their properties. In addition, with a view
to fractodiagnostics and the establishment of the causes that lead to fracture of load-bearing structures
(especially in aviation and space technology, and nuclear energy), algorithms are needed that make
it possible to identify, recognize and calculate the parameters of dimples of detachment, which will
provide for their further statistical analysis and high accuracy and repeatability of the experiment.

We should note that in the context of fractographic analysis of the surface of tearing,
the disadvantage of the previously considered approaches is either their narrow focus on the solution
of a particular task (classification of images, etc.) [8–15], or a zonal result in the form of bounding boxes,
which makes it impossible to calculate the morphological parameters of the objects found [16,17].
Therefore, the task of developing a methodology that would enable effective automation of the process
of fractographic research remains relevant.

In this paper, we proposed a method for detecting dimples of viscous detachment on fractograms
of titanium alloys, which was based on the use of a DCNN. For this purpose, a number of models
of neural networks with various sets of hyperparameters have been developed and investigated.
Their accuracy and speed were investigated, and the optimal neural network model was selected.
The proposed network contained two convolution layers, two subsampling layers, and two fully
connected layers. The neural network classified the pixels into two categories: “dimples” and “edges”,
and admitted the affiliation of each pixel to one of these classes. To study the neural network, a known
algorithm for analyzing fractograms was used. A series of images of the rupture surface of a titanium
alloy was analyzed using the proposed neural network. The result obtained was compared to the
basic method.

2. Methods

To identify dimples of viscous detachment, a convolutional neural network was used for
fractograms of the rupture surface of the titanium alloy VT23. All pixels of the image were divided
into two classes: these that belong to the dimples of detachment, and those that do not belong to them.
To study the neural network, the result of detecting dimples by the previously developed algorithm [22]
was used. The essence of this algorithm is in finding the edges of dimples of detachment. It contains
the operations of filtering with a set of filters for identify edges, adaptive thresholding, skeletonization,
dilation and segregation of connected areas. Each of these steps needs to be customized in practice.
Using a trained neural network allows reducing the number of parameters that need to be adjusted
manually, which simplifies the process of image analysis.

2.1. Training DataSet of the Neural Network

Figure 1 shows the image of the rupture surface of the titanium alloy obtained from the electronic
scanning microscope REM-106I (JSC «SELMI», Sumy, Ukraine). On the basis of the initial images
(Figure 1a) and the results of finding dimples by the algorithm [22] (Figure 1b), a training dataset for
the convolutional network was created.
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Figure 1. (a) Dimples of viscous detachment on the surface of a specimen from titanium alloy VT23; 
(b) the result of their detection using the algorithm [22]; (c) a diagram illustrating the principle of 
training the neural network: (1) training image, (2) image with correct answer labels, (3) zoomed 
fragment of training image with the size 2wk + 1 × 2wk + 1, which is an element of the training set, 
(4) fragment of the image with labels, which by its position and size corresponds to (3), (5) the central 
pixel of (3), and (6) the pixel containing the correct answer label for (3). 

Let the initial greyscale image be described by the function io(x, y) , and the binary image 
showing the result be expressed by the function is(x, y).  For each pixel (x, y) of the initial image, a 
square window with the size 2wk + 1 × 2wk + 1 and the coordinates of the angles (x − wk, y − wk), 
(x + wk, y − wk), (x − wk, y + wk), (x + wk, y + wk) was used. The fragment of the initial image 
io(x, y) that belonged to this window was a single test sample for the neural network (Figure 1c). The 
label indicating the correct answer for such a fragment was the value of is(x, y). Thus, a fragment of 
the initial image with some central pixels (x, y) was provided at the input sample of the neural 
network, and the result was obtained at the output, indicating the affiliation of this pixel to one of the 
two classes: “dimple” (label 0) or “edge” (label 1). To provide a greater variety of training data, the 
fragments were selected with a step of 3 pixels in both axes.  

Based on 46 fractograms measuring 400 × 277 pixels, a training dataset for the neural network 
was created, which contained 562,856 image fragments measuring 31 × 31 pixels (wk = 15). Another 
11 fractograms were used for testing. On this basis, a test dataset of 134,596 specimens was generated. 
Subsequently, the neural networks of different architectures were investigated at different values of 
wk. For wk= 7 and wk= 10, we used a central portion of the desired size (15 × 15 pixels at wk = 7 and 
21 × 21 pixels at wk= 10) from the initial fragment size, which was performed as follows. After 

Figure 1. (a) Dimples of viscous detachment on the surface of a specimen from titanium alloy VT23;
(b) the result of their detection using the algorithm [22]; (c) a diagram illustrating the principle of
training the neural network: (1) training image, (2) image with correct answer labels, (3) zoomed
fragment of training image with the size 2wk + 1 × 2wk + 1, which is an element of the training set,
(4) fragment of the image with labels, which by its position and size corresponds to (3), (5) the central
pixel of (3), and (6) the pixel containing the correct answer label for (3).

Let the initial greyscale image be described by the function io(x, y), and the binary image
showing the result be expressed by the function is(x, y). For each pixel (x, y) of the initial
image, a square window with the size 2wk + 1 × 2wk + 1 and the coordinates of the angles
(x − wk, y − wk), (x + wk, y − wk), (x − wk, y + wk), (x + wk, y + wk) was used. The fragment
of the initial image io(x, y) that belonged to this window was a single test sample for the neural
network (Figure 1c). The label indicating the correct answer for such a fragment was the value of
is(x, y). Thus, a fragment of the initial image with some central pixels (x, y) was provided at the input
sample of the neural network, and the result was obtained at the output, indicating the affiliation of
this pixel to one of the two classes: “dimple” (label 0) or “edge” (label 1). To provide a greater variety
of training data, the fragments were selected with a step of 3 pixels in both axes.

Based on 46 fractograms measuring 400 × 277 pixels, a training dataset for the neural network was
created, which contained 562,856 image fragments measuring 31 × 31 pixels (wk = 15). Another 11
fractograms were used for testing. On this basis, a test dataset of 134,596 specimens was generated.
Subsequently, the neural networks of different architectures were investigated at different values of
wk. For wk = 7 and wk = 10, we used a central portion of the desired size (15 × 15 pixels at wk = 7
and 21 × 21 pixels at wk = 10) from the initial fragment size, which was performed as follows. After
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training the neural network, we used a floating window measuring 2wk + 1 × 2wk + 1, which was
moved along the fractogram with a step of 1 pixel in both axes of the image. Each section that got into
the window was fed on the input of the neural network. Thus, we obtained a prediction for the central
pixel of the window whether it belongs to one of the classes.

2.2. Architecture of Convolutional Neural Network

Seventeen models of convolutional neural networks were designed and investigated to detect
dimples of viscous detachment on surface images. The best neural network architectures are shown in
Figure 2. A complete list of the investigated networks is given in Table 1. The neural networks were
implemented using the Keras library on the basis of Theano tools [23] and the CUDA Toolkit [24].
CUDA is a parallel computing platform and programming model developed by NVIDIA for general
computing on graphical processing units (GPUs). For training and testing of the neural networks,
we used a normal desktop PC with GPU NVIDIA GeForce GT 630 M.
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convolutional and fully connected layers, the linear activation function Rectified Linear Unit (ReLU) 
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It was found that the best accuracy was provided by the activation function ReLU, and therefore, it 
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Figure 2. Best by accuracy/speed ratio neural network architectures. (a)—neural network with 2
convolutional layers and 3 intermediate fully connected layers; (b)—network with single convolutional
layer and the stack of 7 small fully connected layers; (c)—network with 2 convolutional layers
and 2 big fully connected layers (this model showed the best performance); (d)—model with 2
convolutional layers and the stack of 6 intermediate fully connected layers; CV—convolutional layers;
MP—max-pooling layers; FC—fully connected layers.

In general terms, the structure of these networks contains two blocks of layers: (a) convolutional
layers (in pairs with max-pooling layers) to detect spatial features, and (b) fully connected layers to
generalize the found features. The input layer in all models consisted of 2wk + 1 × 2wk + 1 neurons,
and the output layer was composed of two neurons with the activation function Softmax. The first
and second output neurons show the probabilities that the central pixel of the image fragment fed
at the input belong to the classes “dimple” and “edge”, respectively. For the neurons of the hidden
convolutional and fully connected layers, the linear activation function Rectified Linear Unit (ReLU)
was used. It can be defined as f(x) = max(0, x). In the previous analysis of the images, the accuracy of
the neural network with activation functions such as Sigmoid, Tanh and ReLU was investigated. It was
found that the best accuracy was provided by the activation function ReLU, and therefore, it was used
in further research.
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Table 1. Structure and characteristics of the investigated neural networks. CV—convolutional layers
(the brackets indicate the number of feature maps and the size of the kernels), MP—max-pooling layers
(the brackets show the size of the pooling window), FC—fully connected layers (the brackets indicate
the number of neurons).

No CNN Model Description wk, px Average Test
Accuracy, %

Diagnostic
Time, s

1. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 ×
3)–CV(32 × 3 × 3)–FC(1024) 15 92.81 45

2. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 ×
3)–FC(250)–FC(250)–FC(250) 10 92.41 19

3. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 ×
2)–FC(100)–FC(100)–FC(100)–FC(100)–FC(100)–FC(100) 10 92.39 17

4. CV(32 × 5 × 5)–MP(2 × 2)–CV(64 × 3 × 3)–MP(2 × 2)–CV(32 × 3 ×
3)–FC(1024) 15 92.23 61

5. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–FC(400)–FC(400) 10 92.11 12

6. CV(32 × 3 × 3)–MP(2 ×
2)–FC(60)–FC(60)–FC(60)–FC(60)–FC(60)–FC(60)–FC(60) 10 92.08 8

7. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–FC(1024) 10 92.00 17

8. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–CV(32 × 3
× 3)–FC(1024) 10 91.91 24

9. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 ×
3)–FC(1024) 10 91.91 19

10. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 ×3 ×
3)–FC(200)–FC(200) 10 91.70 19

11. CV(32 × 3 × 3)–MP(2 × 2)–FC(100)–FC(100)–FC(100) 10 91.50 9

12. CV(48 × 3 × 3)–MP(2 ×
2)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50) 10 91,44 11

13. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 ×
3)–FC(1024) 10 91.22 19

14. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(20 × 3 ×
3)–FC(400)–FC(400) 7 90.70 11

15. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–CV(32 × 3
× 3)–FC(1024) 7 90.60 13

16. CV(20 × 3 × 3)–MP(2 × 2)–CV(30 × 3 × 3)–MP(2 × 2)–FC(200)–FC(200) 7 89.95 7

17. CV(20 × 5 × 5)–MP(4 × 4)–CV(32 × 3 × 3)–MP(4 × 4)–FC(1024) 15 85.21 18

As loss, the function used categorical cross-entropy. If our model predicts q(x) while the target
is P(x), then the categorical cross-entropy is defined as follows: H(P, q) = −∑x P(x) log (q(x)).
The cross-entropy measures the performance of a classification model, of which output is a probability
value between 0 and 1. As metrics, we use accuracy: the proportion of correct predictions with respect
to the targets. For training, CNNs used the optimizer Adam [25], which implements an algorithm for
first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates
of lower-order moments.

The investigated models of neural networks differed in the number and size of convolutional and
fully connected layers, as well as in the size of the input layer. The training process was stopped if,
after 15 epochs, the accuracy of the validation data did not exceed the maximum accuracy attained
during the previous period.

2.3. Comparison of the Developed Neural Networks

The main criteria for choosing the optimal neural network architecture were: the recognition
accuracy of the test data and the time of analysis. It was found that for the investigated type of images,
the use of more than two convolutional layers does not lead to a significant increase in accuracy,
but significantly increases both the training time and the analysis time. Moreover, neural networks
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with a single convolutional layer and a sufficient number of feature maps are also quite efficient.
However, in this case, deep block of fully connected layers is required. A need for a small number
of convolutional layers suggests that the features allocated for diagnosis by the neural network are
simple. It was also found that it is more efficient to use a bigger number of fully connected layers
with a small number of neurons than one fully connected layer with a large number of neurons.
This reduces not only the number of training parameters of the neural network, but also the time of its
work. The accuracy of the diagnosis remains high.

Figure 3 shows the averaged accuracy at of detecting dimples in test images for the investigated
neural networks with a different number of training parameters P. The results obtained show that
a bigger number of neurons is not a guarantee of high accuracy of the neural network. In Figure 3,
we can distinguish three groups of neural networks: A—simple, with a small number of parameters
and lower accuracy; B—more complex, with more parameters and higher accuracy; C—the most
complex, with the biggest number of parameters and highest accuracy. Most valuable from a practical
point of view are neural networks of group B, which combine simplicity of structure and accuracy
of diagnostics.
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At the input of the neural network, fragments of size 2wk + 1 × 2wk + 1 pixels were fed.
The networks were investigated at wk = 7, wk = 10 and wk = 15. It was found that for the
analyzed images, wk = 10 is optimal. With a small window (wk = 7), the accuracy of the diagnosis
is low. The large window (wk = 15) allows getting higher accuracy, but its increment is very small
compared to the middle window (wk = 10).

Figure 4 illustrates the relationship between the accuracy and time of diagnostics of the neural
networks. Of all the architectures, we have four, which combine good performance and accuracy
of diagnostics. Their structures are shown in Figure 2. For further practical use and analysis of the
dimples of detachment of the titanium alloy according to the fractograms, the neural network with
architecture shown in Figure 2c (also Table 1, network #5) was chosen. On average, it ensured the
diagnostic accuracy of 92.11% for the test data. The network was trained during 77 epochs. For this
network (wk = 10), the number of training parameters was 108,622, and the time of diagnostics of the
image with a size of 400 × 277 pixels was 12 s (on the above equipment).
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shown in Figure 2 are highlighted.

The processing time of an image can be reduced if we apply a step larger than 1 pixel to a floating
window in the analysis of the fractogram. In this case, interpolation of missed values should be
performed after the analysis. However, at the same time, the accuracy of detection of the boundary
elements of objects will be lost. Since the proposed neural network is used for laboratory analysis of
test specimens, the selected processing time was considered acceptable.

The visualization of the weights of 20 kernels of the trained model (Figure 5) shows that the best
response will be provided by the above convolutional layer for the pixels that correspond to the edges
of the dimples. Here, both the kernels that correspond to vertical/horizontal brightness gradient,
and the kernels with a diagonal gradient were presented.
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3. Results and Discussion

Figure 6a shows the fractograms from the test dataset and Figure 6b presents the diagnostic result
using the selected neural network model. Fractograms were obtained by an electron microscopy of
the rupture surface of titanium alloys VT23 and VT23M. Although during the training of the network,
only two labels were used: 0 (affiliation to the dimple) and 1 (affiliation to the edge), a value within the
range (0–1) was obtained at the output for each pixel, which indicates the probability belonging to the
some class according to the selected neural network model. Let an array of output values obtained for
all pixels of image for class “edge” be denoted by Pcnn(x, y). Visualization of this array is shown in
Figure 6b.

To make an explicit decision on the affiliation of pixels to one of the classes, a specific threshold
T needs to be selected. Pixels, for which icnn(x, y) ≤ T, is considered to belong to the “dimple” class,
otherwise to the “edge” class. A typical normalized histogram of the distribution of values Pcnn(x, y)
for one of the investigated images is given in Figure 7. The values Pcnn close to 0 correspond to
pixels that are highly likely to belong to the “dimple” class. Values close to 1 correspond to pixels
that are highly likely to belong to the “edge” class. As is seen from the histogram, two peaks are
grouped around two opposite values—0 and 1. This is a sign of a successful operation of the neural
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network. The first (higher) peak for Pcnn ≈ 0, . . . , 0.15 corresponds to the “dimple” class, and the
second (smaller) peak for Pcnn ≈ 0.85, . . . , 1 corresponds to the “edge” class. In total, these two zones
belong to more than 80% of all pixels. The remaining 20% of the pixels are distributed in the range
Pcnn ≈ 0.15, . . . , 0.85. Thus, the choice of the boundary T in this range has a negligible effect on
the result.
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Figure 8 shows the visual representation of the array Pcnn(x, y) for one of the images and gives its
cross-sections along two coordinate axes. The cross-sections show that the peaks corresponding to the
edges of the dimples recognized by neural network have a high slope. This confirms the conclusion
that choosing the boundary from the middle range of Pcnn has a slight effect on the final result. It is
also evident that the heights of these peaks are different in the sections, so the choice of T in the
upper range causes loss of some edges. At the same time, even at very low values, i.e., Pcnn < 0.1,
individual dimples are highlighted, since the line slop in the section is high.Materials 2018, 11, x FOR PEER REVIEW  10 of 13 
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Thus, the choice of the boundary value T in the upper range of values (Pcnn ≥ 0.85; see Figure 7)
results in the allocation of pixels that are very likely to belong to the edges, but not all edges can be
detected. This can lead to the “coalescence” of adjacent objects—the dimples. Choosing T in the lower
range (Pcnn ≤ 0.15) will provide for the allocation of pixels that are very likely to belong to the dimples.
Since the aim of this research is to study the dimples, the boundary value T was chosen in this lower
range. For the studied group of images, T = 0.1 was used. This corresponds to the pixel allocation to
the “dimple” class, for which the neural network has calculated a probability of more than 90%.

Figure 6c shows the results of detecting dimples superimposed on the original images (in order to
increase the contrast, we increased brightness in the initial images). The trained neural network clearly
identifies the image areas that correspond to the dimples. Interestingly, the visual expert analysis
of the results obtained has revealed that the neural network often allocates dimples better than the
original method. The most probable explanation for this phenomenon is that the neural network of the
selected architecture allocates 40 feature maps, while the original method [22] uses only two spatial
filters (therefore, it focuses on two features only).

Comparison of the Results Obtained Using the Proposed Neural Network with the Results Obtained Using the
Initial Algorithm

The developed neural network performs pixel-by-pixel processing of the image, making predictions
for each pixel concerning its affiliation to one of the classes. However, the practical value is the calculation
of the dimple parameters in the image: their distinct and total area, equivalent diameter, angle of
inclination, etc. A comparison of the results obtained on the basis of the proposed neural network with
the results obtained by the initial algorithm [22,27,28] shows their high similarity (Table 2).
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Table 2. Comparison of the results obtained using the neural network and method [22].

Parameter Deviation of the Result of the Developed Neural
Network in Relation to the Result of Method [22]

The total area of the dimples <4.0%

The number of dimples <4.0%

Average equivalent diameter of the dimple <3.0%

Figure 9 shows a distribution diagram of equivalent diameters for one of the investigated images
calculated using both methods. The diagram illustrates several features of the proposed approach
compared to those of the original method:

• The neural network detects a smaller amount of small dimples. This can be explained by the fact
that the old method is focused on finding brightness differences; therefore, dimples are sometimes
erroneously detected on homogeneous parts of the image;

• The neural network also detects a smaller amount of large dimples. This is due to the greater
sensitivity of the neural network, which takes into account significantly more feature maps. As a
result, large dimples become divided into several smaller ones;

• The neural network detects a bigger amount of middle-sized dimples. This amount is likely to
increase due to the division of some large dimples and the coalescence of some small dimples.
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4. Conclusions

In this paper, we proposed a method for detecting dimples of viscous detachment on fractographic
images using a 4-layer convolutional neural network, which allocates each pixel of the input image to
one of two classes: “dimple” or “edge”. The neural network was trained on the basis of the results
obtained using the previously developed algorithm. The neural network was tested on surface images
of titanium alloys VT23 and VT23M. Experimental results show high accuracy of the method and
indicate the possibility of its practical application. It is revealed that in the general case, the neural
network recognizes the sought objects better than the original method based on the set of filters.
Based on the results obtained with the model, dimple parameters such as their area, number, equivalent
diameter, shape factor, visual depth, inclination, etc., are calculated. Having these parameters for the
whole set of surface dimples, it is possible to perform their statistical analysis and make conclusions
about the properties of the material.



Materials 2018, 11, 2467 12 of 13

Author Contributions: Conceptualization, P.M.; Formal analysis, I.K. and O.P.; Investigation, I.K., P.M., O.P.,
R.J.; Methodology, I.K.; Project administration, O.P.; Validation, I.K., P.M., O.P., R.J.; Visualization, O.P.;
Writing—original draft, P.M. and I.K.; Writing—review & editing, P.M. and O.P.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [CrossRef]
2. Yun, J.P.; Choi, S.; Seo, B.; Park, C.H.; Kim, S.W. Defects detection of billet surface using optimized gabor

filters. In Proceedings of the 17th World Congress the International Federation of Automatic Control, Seoul,
Korea, 6–11 July 2008.

3. Vidal, M.; Ostra, M.; Imaz, N.; Garcia-Lecina, E.; Ubide, C. Analysis of SEM digital images to quantify crack
network pattern area in chromium electrodeposits. Surf. Coat. Technol. 2016, 285, 289–297. [CrossRef]

4. Hassani, A.; Ghasemzadeh Tehrani, A.H. Crack detection and classification in asphalt pavement using image
processing. In Proceedings of the 6th Rilem International Conference on Cracking in Pavements, Chicago, IL,
USA, 16–18 June 2008.

5. Dutta, S.; Das, A.; Barat, K.; Roy, H. Automatic characterization of fracture surfaces of AISI 304LN stainless
steel using image texture analysis. Measurement 2012, 45, 1140–1150. [CrossRef]

6. Hu, Y.; Zhao, C.-X. A local binary pattern based methods for pavement crack detection. J. Pattern Recognit. Res.
2010, 1, 140–147. [CrossRef]

7. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification
with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

8. Weimer, D.; Thamer, H.; Scholz-Reiter, B. Learning defect classifiers for textured surfaces using neural
networks and statistical feature representations. Procedia CIRP 2013, 7, 347–352. [CrossRef]

9. Faghih-Roohi, S.; Hajizadeh, S.; Nunez, A.; Babuska, R.; De Schutter, B. Deep convolutional neural networks
for detection of rail surface defects. In Proceedings of the 2016 International Joint Conference on Neural
Networks, Vancouver, BC, Canada, 24–29 July 2016.

10. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation
applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

11. Malekzadeh, T.; Abdollahzadeh, M.; Nejati, H.; Cheung, N. Aircraft Fuselage Defect Detection using Deep
Neural Networks. Available online: https://arxiv.org/ftp/arxiv/papers/1712/1712.09213.pdf (accessed on
4 December 2018).

12. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
Available online: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf (accessed on 4 December 2018).

13. Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into
convolutional nets. Available online: https://arxiv.org/pdf/1405.3531.pdf (accessed on 4 December 2018).

14. Tian, S.; Xu, K. An algorithm for surface defect identification of steel plates based on genetic algorithm and
extreme learning machine. Metals 2017, 7, 311. [CrossRef]

15. Huang, G.; Zhu, Q.; Siew, C. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70,
489–501. [CrossRef]

16. Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural
networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]

17. Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection
using region-based deep learning for detecting multiple damage types. Comput.-Aided Civ. Infrastruct. Eng.
2018, 33, 731–747. [CrossRef]

18. Zhong, Q.P.; Zhao, Z.H.; Zhang, Z. Develpment of "Fractography" and research of fracture micromechansim.
J. Mech. Strength 2005, 27, 358–370.

19. Azevedo, C.R.F.; Marques, E.R. Three-dimensional analysis of fracture, corrosion and wear surfaces.
Eng. Fail. Anal. 2010, 17, 286–300. [CrossRef]

20. Bastidas-Rodriguez, M.X.; Prieto-Ortiz, F.A.; Espejo, E. Fractographic classification in metallic materials by
using computer vision. Eng. Fail. Anal. 2016, 59, 237–252. [CrossRef]

http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.1016/j.surfcoat.2015.11.049
http://dx.doi.org/10.1016/j.measurement.2012.01.026
http://dx.doi.org/10.13176/11.167
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1016/j.procir.2013.05.059
http://dx.doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/ftp/arxiv/papers/1712/1712.09213.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/pdf/1405.3531.pdf
http://dx.doi.org/10.3390/met7080311
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1111/mice.12263
http://dx.doi.org/10.1111/mice.12334
http://dx.doi.org/10.1016/j.engfailanal.2009.06.010
http://dx.doi.org/10.1016/j.engfailanal.2015.10.008


Materials 2018, 11, 2467 13 of 13

21. Kosarevych, R.Y.; Student, O.Z.; Svirs’ka, L.M.; Rusyn, B.P.; Nykyforchyn, H.M. Computer analysis of
characteristic elements of fractographic images. Mater. Sci. 2013, 48, 474–481. [CrossRef]

22. Konovalenko, I.; Maruschak, P.; Prentkovskis, O. Automated method for fractographic analysis of shape and
size of dimples on fracture surface of high-strength titanium alloys. Metals 2018, 8, 161. [CrossRef]

23. Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing: Birmingham, UK, 2017.
24. CUDA Zone. Available online: https://developer.nvidia.com/cuda-zone (accessed on 22 April 2018).
25. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. Available online: https://arxiv.org/pdf/

1412.6980.pdf (accessed on 4 December 2018).
26. Chausov, M.G.; Maruschak, P.O.; Pylypenko, A.P.; Berezin, V.B. Features of Deformation and Fracture of Plastic

Materials Under Impact-Oscillatory Loading; Ternopil: Terno-Graf, Ukraine. (in Ukrainian)
27. Maruschak, P.; Konovalenko, I.; Chausov, M.; Pylypenko, A.; Panin, S.; Vlasov, I.; Prentkovskis, O. Impact of

dynamic non-equilibrium processes on fracture mechanisms of high-strength titanium alloy VT23. Metals
2018, 8, 983. [CrossRef]

28. Konovalenko, I.V.; Maruschak, P.O. Application of the properties of fuzzy sets in the computer analysis of
the shapes and sizes of tear pits. Mater. Sci. 2018, 53, 548–559. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11003-013-9527-0
http://dx.doi.org/10.3390/met8030161
https://developer.nvidia.com/cuda-zone
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://dx.doi.org/10.3390/met8120983
http://dx.doi.org/10.1007/s11003-018-0108-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Training DataSet of the Neural Network 
	Architecture of Convolutional Neural Network 
	Comparison of the Developed Neural Networks 

	Results and Discussion 
	Conclusions 
	References

