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Abstract: In powder bed fusion additive manufacturing, the powder feedstock quality is of
paramount importance; as the process relies on thin layers of powder being spread and selectively
melted to manufacture 3D metallic components. Conventional powder quality assessments for
additive manufacturing are limited to particle morphology, particle size distribution, apparent density
and flowability. However, recent studies are highlighting that these techniques may not be the most
appropriate. The problem is exacerbated when studying aluminium powders as their complex
cohesive behaviors dictate their flowability. The current study compares the properties of three
different AlSi7Mg powders, and aims to obtain insights about the minimum required properties for
acceptable powder feedstock. In addition to conventional powder characterization assessments,
the powder spread density, moisture sorption, surface energy, work of cohesion, and powder
rheology, were studied. This work has shown that the presence of fine particles intensifies the
pick-up of moisture increasing the total particle surface energy as well as the inter-particle cohesion.
This effect hinders powder flow and hence, the spreading of uniform layers needed for optimum
printing. When spherical particles larger than 48 µm with a narrow particle distribution are present,
the moisture sorption as well as the surface energy and cohesion characteristics are decreased
enhancing powder spreadability. This result suggest that by manipulating particle distribution,
size and morphology, challenging powder feedstock such as Al, can be optimized for powder bed
fusion additive manufacturing.

Keywords: additive manufacturing; metal powders; powder flowability; powder properties;
aluminum; water absorption

1. Introduction

Laser powder bed fusion (LPBF), an additive manufacturing (AM) process that allows the
fabrication of complex geometries, is creating opportunities to fabricate innovative parts with enhanced
functionality [1]. Aluminum alloys have shown to be of great interest in the AM sector acting as
an economical method to manufacture parts that cannot be produced through traditional casting or
forging routes. However, aluminum powders are amongst the most difficult powders to process via
LPBF due to the lack of repeatability associated with the quality of powder feedstock [2].

The powder feedstock quality can be assessed by its extrinsic and intrinsic properties.
Extrinsic properties refer to the relationship between powder morphology, including particle size
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distribution and shape, to the final part performance. While intrinsic properties refer to the influence
of the powder composition and microstructure on the final quality of the additively manufactured
part [3].

In terms of extrinsic properties, it is well accepted that spherical powder particles positively
contribute towards powder flowability and higher particle packing densities in the powder bed [4].
Spherical morphologies are also typically associated with low levels of particle-particle friction which
results in enhanced powder flow. Another important extrinsic property is the apparent density of the
powder feedstock; some reports in literature have suggested that this factor has the most significant
effect on the final density of the manufactured parts [5,6]. Apparent density is directly influenced
by a variety of factors such as particle size distribution (PSD), particle shape, inter-particle friction,
surface chemistry, and agglomeration. However, among these factors, the particle shape, size and
distribution are suggested to be the most influential [7]. Secondarily to this, it has recently been reported
that even with powder feedstock optimisation, particle segregation can occur within a powder bed
affecting the local apparent density [8,9] and the mechanical properties of the produced part.

For LPBF, suppliers typically provide powders in the size range of 15–45 µm. However,
selecting an appropriate powder size and size distribution is a key factor as even within this range,
competitive powder interactions can occur. Theoretically, the presence of fine particles in the powder
feedstock (smaller than the recoating layer thickness) would be beneficial. As this would lead to an
increase in the powder density which would improve the surface roughness and reduce the number
of defects in the printed parts [10,11]. Smaller particle sizes are also known to have increased laser
energy absorption, thus improving their processing. The advantages gained from fine particles are
contradicted by the significant disadvantages associated with their use, such as their high tendency to
agglomerate [12], and their large surface area to mass ratio. The agglomeration of fine powders are
more likely to promote pore and void formation during processing due to the irregular shapes and
variable sizes of the agglomerates formed [13]. Additionally, agglomerated powders are known to
increase the reflectivity of the powder bed resulting in less energy absorption during the manufacturing
process [12,14]. The discussed factors makes the spreading of uniform powder layers more challenging
thus compromising the process stability since inhomogeneous powder bed densities give rise to
non-uniform heating increasing the risk of defect formation [12,13,15].

Intrinsic properties are those which relate to the powder composition and microstructure of the
resulting part. Here, issues arise due to powder stability. Metallic powder composition during storage,
handling and building (including re-use), can have significant changes over time due to oxygen and
moisture exposure. This phenomenon is significantly influenced by the surface-to-volume ratio of the
powder. Both oxygen and moisture contamination are known to produce reaction products that can
change and degrade the microstructure of the particles, resulting in an increased particle porosity and
ultimately reducing the mechanical properties such as ductility and toughness of 3D printed parts [2].

Some factors affect both the extrinsic and intrinsic properties. One of these factors is the likelihood
of elemental evaporation of alloying elements during the LBPF process. Smaller powder particles are
more susceptible to this phenomenon due to their high laser absorptivity [15,16]. As discussed there
are a wide number of aspects which need to be considered when looking to optimize suitable powder
feedstock for the LPBF process. Reaching the perfect balance in terms of particle size distribution,
contamination and printability is not a trivial process.

Recently, a new atomization technique has been developed that produces metallic powders with
high sphericity, narrow PSD and uniform microstructure [17]. The powders formed are expected to
provide superior properties compared to typical gas atomized powders for AM applications, leading to
a higher density and improved mechanical properties in the final part.

The purpose of this paper is to compare the powder properties of various AlSi7Mg powders
obtained from different production methods. Different characterization techniques have been
employed to obtain information regarding the apparent density, powder flow, spread density,
moisture sorption, surface energy and work of cohesion of the studied powders. The conclusions
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contribute to the growing knowledge on powder characterization methods and optimum powder
feedstock properties for AM processing.

2. Materials and Methods

Three powders produced using the gas atomization principle were used in the current study.
The powders are termed A, B, and C, and are all based on the A356-A357 systems. Scanning electron
microscopy (SEM) was used to characterize the morphology of the powders using a Hitachi SU3500
Scanning Electron Microscope, Tokyo, Japan. The powder PSD was obtained by a Horiba laser particle
size analyser (Model LA-920, Kyoto, Japan). The log-normal slope parameter method was used to
calculate the dimensionless PSD width (Sw) which represents the breadth of the PSD [18]. In this
method, the standard deviations of the cumulative distribution were plotted against the logarithmic
particle size resulting in a linear plot. The slope of the linear plot represents the Sw while the intersection
with the x-axis is equivalent to the median particle diameter, D50. If the particle size is very narrow,
high values of Sw are expected.

Powder flowability was measured using Hall and Carney funnels (QPI-HFM1800SS,
Qualtech Products Industry, Denver, CO, USA) according to the ASTM standards [19,20].
Apparent density was assessed using the Hall and Carney funnels, as well as the Arnold meter
according to the ASTM standards B212, B417, and B703, respectively [21–23]. The latter method,
not commonly studied for AM characterization, is representative of a gravity fed powder delivery
mechanism. Theoretical densities used for the calculation of the apparent density were 2.70 g/cm3 for
powders A and B and 2.68 g/cm3 for powder C.

Powder spread density was studied using a single layer of powder with a thickness of ~100 µm
CT scanned by a Zeiss Xradia 520 Versa 3D X-ray microscope, Oberkochen, Germany. A bespoke
testing holder made of stainless steel 316L was printed using a Renishaw AM250 (Gloucestershire,
UK) to simulate the build plate. The testing holder was then stuck onto a cylindrical aluminum
mounting rod. Once the testing holder was fixed in the CT holder, the powder from the batch of
interest was spread over the simulated built plate region using the doctor blade technique and covered
by a centrifuge tube to limit movement of the powders during testing. Each tomography scan was
collected using the HE2 filter with sample rotation of 360◦, voltage of 60 KV, current of 82 µA, and an
exposure time of 18 s. A magnification of 4× objective was selected to provide a 3D isotropic voxel
size of 1 µm across the scanned volume. After scanning, the acquired micro-computed tomography
images were segmented using the open source image-processing platform imageJ Fiji (ImageJ 1.52b,
National Institute of Health, Bethesda, MD, USA) [24] and reconstructed using the Dragonfly software
version 3.1.0.319 from Object Research Systems (ORS, Montreal, QC, Canada) [25]. Finally, the total
particle volume as a percentage occupied within the scanned area was considered as the powder
spread density.

In order to study the particle segregation within a single 50 µm thick layer, the surface of an Al
built plate was patterned by rastering the laser of a Renishaw AM400 to simulate the surface roughness
created in a part during printing. The powder was then spread over the Al plate using the Renishaw
AM400 spreading system, Gloucestershire, UK). Once the powder layer was deposited over the plate,
representative samples were collected from the top and bottom sections for PSD analysis by SEM to
determine if powder segregation occurred.

The moisture sorption behavior of the studied powders was evaluated using the gravimetric
dynamic vapor sorption (DVS) technique (DVS Intrinsic Plus, from Surface Measurement Systems,
London, UK). The DVS Intrinsic apparatus measures mass change (±0.1 µg) under controlled
temperature and humidity. Prior to testing, samples were individually dried under vacuum at 200 ◦C.
Dried powder samples (~100 mg) were loaded into an aluminum pan and placed into a chamber kept
at 25 ◦C, and allowed to reach equilibrium, i.e., until the change in mass as a function of time was less
than 0.002% per minute. Testing started by reaching 0% relative humidity (RH) and soaked for 12 h.
Then, the RH was increased in steps of 10% until 80% RH was reached. Each RH step was held until
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equilibrium. Once 80% RH had been reached, the RH was ramped down to 0% in steps of 10 mirroring
the ramp up.

To evaluate the effect of humidity on the flowability of the tested powders, a multiple cycle
flowability test using the Carney funnel was performed. The test consisted on drying 50 g of each
powder at 200 ◦C under vacuum for a period of 2 h. Immediately after drying, Carney flow tests
were carried out continuously using the same powder at a 40% RH environment until a total of
30 measurements were obtained.

The surface energy, defined as the energy per unit area required to create a new interface
and described as the sum of the dispersive component (London dispersion forces) and the specific
component (dipole-dipole, induced dipole, and hydrogen bonding interactions), was determined using
inverse gas chromatography (IGC) [26,27]. Details of the method can be found in ref. [28]. Pre-salinized
glass columns (300 mm length, 4 mm inner diameter) were filled with the different powders (A, B,
and C), and the ends plugged with salinized glass wool. The columns were then placed in a surface
energy analyser (IGC-SEA, from Surface Measurement Systems, London, UK), with helium flowing
through at 10 mL·min−1 as an inert carrier gas. Methane was used for dead volume corrections.
All measurements were carried out at 30 ◦C and 0% RH. In order to determine the specific surface area
of the samples, octane was passed through each column at set molecular amounts, and an isotherm
was produced. From this isotherm, the BET equations were used to determine the specific surface
area. To determine the dispersive component of the surface energy, alkane probes with increasing
chain length from heptane to nonane (HPLC grade, Sigma Aldrich, St. Louis, MO, USA), were passed
through the sample at a set (fractional) surface coverages from 0.1 to 0.3. Sufficient time was allowed
between injections as to allow for the probe to pass completely through the column. For the specific
surface energy component, dichloromethane and toluene (both HPLC grade, Sigma Aldrich, St. Louis,
MO, USA) were used as the polar probes.

Two different techniques, static and dynamic angles of repose, were also used to assess the
powders cohesiveness. The static angle of repose consists on freely flowing powders through a funnel
to form a characteristic conical heap onto a horizontal plate. The angle developed between the surface
of the conical heap and the plate represents the static angle of repose. For this purpose, 50 g of
as-received powders were dispensed through a Carney funnel onto the center of a plate. The angle of
repose was then measured between the surface of the powder heap and the plate. This procedure was
repeated three times for each powder and the average values are reported.

The dynamic angle of repose measurement was obtained using the granular material flow analyzer,
Granudrum® (Granutools™, Awans, Belgium). The analysis consists of a transparent drum that is filled
with 50 cm3 of powder and rotated at an angular velocity to induce powder flow. The rotating drum is
backlight and a camera is used to capture images of the avalanche at different times. Angular velocities
ranging from 2–20 rpm were used. For each angular velocity, 50 images of the drum separated by
1000 ms were acquired. The interface location between the air and powder was automatically detected
and the average position as well as the deviations around this average position were automatically
computed for each velocity. The dynamic angle of repose was determined from the center of the
flow and the deviations from the interface was directly related to the cohesion inside the drum and
denominated as the cohesion index [29]. The process was repeated three times and the average values
are presented.

3. Results

3.1. Powder Morphology and Particle Size Distribution

The powder morphology corresponding to powders A, B, C imaged by SEM are shown in
Figure 1a–f. Spherical particles with regular morphologies, smooth surfaces, and a limited number of
satellites were observed for powders A and B. In comparison, the particles present in powder C were
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more varied in their nature with irregular surfaces; the smaller particles were spherical, but the larger
particles were distorted with satellites present.Materials 2018, 11, x FOR PEER REVIEW  5 of 15 
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B, (f) small particles of powder C. The red square in image (f), corresponds to the high magnification 
image of large particles encountered on image (c). 
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Sw of powders A, B, and C is depicted in Figure 2. It was clearly seen that powder C presents the 
lowest gradient with finer modal particles when it was compared with powders A and B. The 
corresponding PSD D10, D50, D90, and the dimensionless Sw values are summarised in Table 1. Powders 
A and B present a narrow PSD distribution with Sw values of 10.6 and 10.8 respectively, while powder 
C shows a Sw of 4.2 indicating a wide PSD. 

 
Figure 2. Graphical representation of the cumulative logarithmic particle size versus the standard 
deviation of powders A, B, and C. 

Table 1. Particle size distribution of the tested powders A, B, and C. 

Powder D10 (µm) D50 (µm) D90 (µm) Sw 
Powder A 48 63 83 10.6 
Powder B 54 70 91 10.8 
Powder C 14 31 58 4.2 

Figure 1. Representative micrographs of the powders tested within this study: (a) powder A,
(b) powder B, (c) powder C, and corresponding high magnification images of (d) powder A, (e) powder
B, (f) small particles of powder C. The red square in image (f), corresponds to the high magnification
image of large particles encountered on image (c).

The PSD expressed in terms of the “log-normal slope” parameter method is a way to easily
compare and identify in a single plot the Sw and the median value of the PSD. A graphical
representation of the cumulative particle size against the standard deviations used to determine the Sw

of powders A, B, and C is depicted in Figure 2. It was clearly seen that powder C presents the lowest
gradient with finer modal particles when it was compared with powders A and B. The corresponding
PSD D10, D50, D90, and the dimensionless Sw values are summarised in Table 1. Powders A and B
present a narrow PSD distribution with Sw values of 10.6 and 10.8 respectively, while powder C shows
a Sw of 4.2 indicating a wide PSD.
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Table 1. Particle size distribution of the tested powders A, B, and C.

Powder D10 (µm) D50 (µm) D90 (µm) Sw

Powder A 48 63 83 10.6
Powder B 54 70 91 10.8
Powder C 14 31 58 4.2

3.2. Density and Flow Characteristics

Apparent density and flow characteristics are reported to provide useful insight into how the
powders will pack in a loose state, which simulates the powder layer spreading during AM processing
where no compression or tapping forces are applied [30]. Table 2 presents the flow characteristics
of powders A, B, and C, obtained by the Hall and Carney funnels. The measured flow times under
these characterization methods indicate no statistical difference between powders A and B. In contrast,
powder C showed a lack of flow through the Hall funnel while for the Carney funnel, the measured flow
corresponds to 15.3 ± 0.4 s for 50 g of powder. The results obtained by both techniques, indicate that
powders A and B exhibit better flow behaviors than powder C.

Table 2. Summarises the powder flowability of powders A, B, and C determined by Hall and
Carney funnels.

Powder Hall Flow (s/50 g) Carney Flow (s/50 g)

Powder A 33.0 ± 0.4 6.1 ± 0.1
Powder B 32.7 ± 0.7 6.1 ± 0.1
Powder C No flow 15.3 ± 0.4

Table 3 summarizes the apparent density values obtained by three different traditional techniques
recommended for powder metallurgy, i.e., Hall funnel, Carney funnel, and Arnold meter. Powder A
presents the highest apparent density followed by powder B and powder C. It is known that
the hall funnel is unable to quantify the apparent density of non-flowing powders. However,
alternative techniques used in the powder metallurgy field such as the Carney funnel and Arnold meter
are able to provide consistent values with a difference of approximately 1% between each technique.

Table 3. Apparent density of powders A, B, and C estimated by the Hall and Carney funnels as well as
the Arnold meter.

Powder Hall Apparent Density (%) Carney Apparent Density (%) Arnold Apparent Density (%)

Powder A 54.8 ± 0.5 55.5 ± 0.1 56.3 ± 0.1
Powder B 53.3 ± 0.5 54.8 ± 0.1 55.8 ± 0.1
Powder C - 51.6 ± 0.4 52.7 ± 0.2

3.3. Spread Density

The laser-powder interactions during LPBF processing influence the melt pool dynamics. Ideally,
during powder spreading, a homogeneous powder bed with high packing density would be preferred.
In order to evaluate the spread density, X-ray micro-computed tomography. This technique provides
a 3D visualization of particles, which allows the determination of the internal porosity as well as
the packing density of powders contained in a powder bed, commonly known as spread density.
Figure 3a–c depicts the 2D and 3D reconstructed images of powders A, B, and C, respectively.
Trapped gas was evident in powders A and B with a volume fraction of 0.7 and 0.2% respectively
while no evidence of porosity was found in powder C. Trapped gas within the powder feedstock is an
important quality parameter since it has been demonstrated that during AM processing, trapped gas
can be released into the molten metal leading to rounded residual porosity in as-built parts [31].
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Figure 4. Particle segregation in a powder bed from the top and bottom sections of the building plate. 

Figure 3. 2D and 3D reconstructed images of (a) powder A, (b) powder B, and (c) powder C used to
determine the spread density.

The spread density obtained from powders A and B was consistent with the apparent density
measurements obtained by the Hall, Carney, and Arnold meter methods with 54.7 and 53.6%,
respectively. However, the apparent density obtained for powder C of 41.4% using micro-CT differs
significantly from the traditional methods used.

3.4. Particle Segregation in A Powder Bed

Little attention has been paid to particle segregation occurring during the powder recoating
process. Differences in local PSD within a powder bed can have the potential to produce local
variations of powder bed density during manufacturing and process instability in terms of melt pool
signature [15]. In order to study the particle segregation during powder coating, a layer of 50 µm
of powder C was spread over a previously laser rastered Al plate and the PSD was then analyzed
at different locations over the plate. Figure 4, depicts the PSD of samples from powder C collected
from the top and bottom sections of the Al plate. The top section corresponds to a position close to the
beginning of the powder spreading while the bottom section corresponds to a position at the end of
powder spreading. Differences in PSD between the top and bottom section of the powder bed were
observed. Large particles with a D50 of 13.0 µm segregated in the region where spreading starts while
smaller particles with a D50 of 9.8 µm, segregate at the end of the powder bed.
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3.5. Water Vapor Adsorption Characteristics

The water vapor adsorption test results of powders A, B, and C determined by means of DVS
are shown in Figure 5a–c. In order to see the effect of PSD on the moisture adsorption, powder C
was sieved to obtain a PSD of D10 = 48 µm, D50 = 65 µm, and D90 = 92 µm as to be comparable to
powders A and B. The DVS isotherm for the sieved powder is presented in Figure 5d. Powder C has a
significantly larger degree of vapor sorption compared to powders A and B. By eliminating the fine
particles present in powder C, the degree of vapor sorption for the sieved powder C was reduced.
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3.6. Multiple Cycle Flowability Test

In order to evaluate the effect of humidity on powder flow, a multiple cycle flowability test was
carried out at a RH of 40% using 50 g of dried powders. Figure 6 shows the Carney flow corresponding
to powders A, B, and C as a function of measurement sequence. No significant variation in flow was
observed between powders A and B which remained stable over time with an average flow of 6 s.
However, powder C showed a strong variation in flow within the first 5 min after removal from the
furnace. During this time, the flow time increased from 16 s to approximately 22 s. The flow time
then subsequently decreased continuously until reaching a flow time of 14 s after 30 consecutive
measurements. The vapor sorption characteristics of the tested powders depicted by the previous DVS
analysis (Figure 5) plays an important role in the powder flowability. It is well known that the surface
of aluminum powders reacts with oxygen during powder production to form a passivation alumina
layer. During powder handling, the passivated aluminum powders can absorb humidity and form
a hydrated aluminum oxide [32,33]. The high surface area present in powder C due to the greater
number of fine particles, increases the amount of adsorbed water which decreases the powder flow
and/or contributes to the development of powder agglomerates [34]. After the first 5 min, it is believed
that the observed increment in flowability may be related to the breaking up of the agglomerates due
to the shearing strength produced by continuously flowing the same powder.
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3.7. Particle Cohesiveness

Figure 7a–c, shows the surface energy as a function of surface coverage for powders A, B, and C,
respectively. For all powders, the dispersive component of the surface energy was the most dominant.
It can be seen that powder C displayed a much greater degree of surface energy heterogeneity,
as indicated by the decrease in surface energy (dispersive and specific, leading to a decrease in total)
with increasing surface coverage. The surface energy of powder C was also much greater than the
other two powders at low surface coverage, which was likely to be due to the finer particle range
present having a higher energy. Powders A and B have a higher degree of surface energy homogeneity,
with the general trend of powder A having a greater surface energy across the entire surface.
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The work of cohesion gives an indication of the natural affinity of the powders for agglomeration.
Figure 8 shows the Work of Cohesion (Wco) of the powders A, B, and C. It can be seen that at the
lowest surface coverage, powder C had a much greater Wco, which is most likely dominated by the
fine particles present. Thus suggest that the presence of fine powders favors cohesion giving rise
to powder agglomeration [34]. From this result, it would indicate that powder C would have the
lowest flowability.
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3.8. Static and Dynamic Angle of Repose

During AM powder layer spreading, the powder is typically deposited in two steps: (1) the
powder is piled up by gravity in front of a re-coating blade, and (2) the powder is spread over the
powder bed by the horizontal movement of the re-coater. The first recoating step, may be properly
represented by static flow tests while the second step, which is subjected to shear stresses due to the
horizontal movement of the re-coater, might be better represented by studying the dynamic angle
of repose. The static flow behavior for each powder characterized by the conical angle of repose is
summarized in Table 4. It can be seen that the powder containing spherical and coarser particles,
powder B, presents the lowest static angle of repose followed by powder A. In contrast, powder C
which contains the largest amount of fine and irregular particles showed the highest static angle
of repose.

Table 4. Static angle of repose of particles A, B, and C.

Powder Static Angle of Repose (◦)

Powder A 30 ± 4
Powder B 26 ± 3
Powder C 39 ± 4

Figure 9a presents the evolution of the dynamic angle of repose as a function of the rotating speed
for powders A, B, and C. Dynamic powder flow measurements clearly show reproducible differences
between the tested powders up to a rotating speed of 14 rpm. Below this speed, the spherical and
coarser powders (A and B) show the lowest dynamic angles while the fine and non-spherical powders
(C) present the highest angles of repose. At rotating speeds higher than 14 rpm, no statistical difference
was observed. Specifically, powders A and B present a typical shear thinning behavior due to the
slipping layers passing each other at rotating speeds between 2 and 6 rpm with a minimum dynamic
angle of 26 ◦ and 30 ◦, respectively. At rotating speeds higher than 6 rpm, there was a transition from
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shear thinning to shear thickening behavior in both powders associated to the breakdown of layers
and the formation of large aggregates [35]. The maximum angle of repose was obtained at 20 rpm for
powders A and B with values of 37◦ and 36◦, respectively. In contrast, powder C presents the highest
dynamic angle of repose at the lower rotating speeds, i.e., between 2 and 6 rpm, with a maximum
value of 38◦. After 6 rpm, powder C shows a slight shear thinning behavior decreasing its angle of
repose to an average minimum of 35◦ between 14 and 20 rpm.
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Quantification of the cohesion which occurs in the powders during drum rotation, can be carried
out by studying the cohesive index which is determined from the fluctuations of the avalanche
interface [29]. Higher values of cohesive index represent higher cohesion while a lower cohesion
index represents lower cohesion between particles. Figure 9b depicts the evolution of the cohesive
index as a function of the rotating speed for the tested powders. The coarser and spherical powder
B, produced the lowest cohesion index whereas the finest and non-spherical powder C, presents the
highest cohesion index. It was clearly seen that the particle cohesion of the Al powders was affected
by the surface properties and PSD. The high surface energy and water adsorption characteristics
measured in powder C compared with powders A and B, evidently increased the particle cohesiveness.
Additionally, as the particles become smaller, the gravitational force contribution become negligible
compared to the cohesive forces causing the powders to agglomerate and to reduce their flow [36,37].

4. Discussion

Ensuring process reliability and quality of additive manufactured components is one of the key
challenges for widespread adoption of AM technologies. In LPBF, factors associated to laser optics,
process parameters, and powder feedstock quality, have a direct effect on the process repeatability
and quality of manufactured parts. Among these factors, powder feedstock quality is of paramount
importance since changes in powder characteristics influence the laser-powder interactions resulting in
process defects [38]. Baitimerov et al. [39], has shown the complex relationship between powder
feedstock quality and printed part porosity. In their work powders with equivalent chemical
compositions but different flow and apparent density characteristics, produced parts with relative
densities between 94.4 ± 2.3% and 99.4 ± 0.3% using the same processing conditions. Thus, it has
been demonstrated that flow and apparent density are important characteristics to consider due to
the fact that homogeneous and highly packed powder layers are typically desired to enhance laser
absorption [15].

Powder flow and apparent density are not independent properties, they are extrinsically
related to other powder characteristics such as morphology, PSD, porosity, and surface chemistry.
The particularities of powders A and B such as mono-sized PSD, high sphericity, good flowability and
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lack of satellite particles, produced a homogeneous powder bed with high apparent density similar
to the one obtained by traditional powder characterization methods. However, the presence of large
amounts of small and irregular particles such as the ones present in powder C, decreases the powder
flow resulting in an inhomogeneous powder bed with low apparent density which is not comparable
with traditional test results.

One of the main factors that influence the apparent density of a powder bed, is the presence of
inter-particle forces which lead to cohesion [37]. It has been reported that non-cohesive and mostly
spherical particles provide high apparent densities [40]. However, when cohesion between particles is
present, agglomerates are likely to form giving rise to lower apparent densities [41,42]. The formation
of agglomerates in the form of cage-like structures during packing have been observed by means of
discrete element simulations when cohesive forces are taken into account. Such structures produce
low apparent densities and are generated due to the presence of particles with high surface energy
and cohesive forces typically larger than gravitational forces present [40].

The cohesiveness of the particles studied based on the measure of total surface energy,
was evaluated by means of IGC. The total surface energy and work of cohesion measured in powders
A, B, and C indicated that the PSD plays an important role in the total surface energy of these powders.
Hence contributing to their cohesion behavior and consequently their flow. Powder C has a wide size
distribution, with high surface energy at lower surface coverages, which was most likely due to the
fine particles dominating. As the surface coverage increased, the lower energy sites of the fine particles
adsorb the probe molecules, as do the larger particles in the system. It can be seen in Figure 7a that as
the surface coverage increased the total surface energy of powder C tends towards that of the other
two powders which contain the least quantity of fine particles.

The cohesiveness of the particles has also been determined using the rotating drum technique
which provides a cohesion index based on the variation of the dynamic angle of repose. The results
show that powder C presents the largest dynamic angle of repose and cohesive index followed
by powder A and B. These results are in good agreement with the work of cohesion obtained by
IGC. Additionally, this technique provides useful information regarding the flow of the powders
at different shear rates. In the tested powders, shear thinning and shear thickening behaviors are
observed depending on the rotation speed (shear rate). This observation provides insights into the
critical powder spreading speed required to obtain the best flow characteristics for specific powders.
This approach to obtain a value of ‘spreading speed’ cannot be obtained by traditional static flow
measurements which only provide qualitative insight to the powder flow.

The presence of liquid bridges has been reported to increase the cohesion between particles due
to the coalescence of the bridges leading to poor flow and low apparent densities [43]. In the present
study, water adsorption tests have been carried out to investigate the water adsorption characteristics
of powders A, B, and C. From the results, it was evident that a wide PSD with a large amount of fine
particles such as powder C, led to higher amounts of adsorbed water. By sieving powder C to a PSD
similar to that of powders A and B, the water adsorption behavior tends towards those of powders
A and B. Fine particles would be more likely to adsorb a higher degree of water vapor relative to
their mass due to the higher specific surface area. Multiple powder flow measurements carried out at
constant RH of 40% indicate that humidity has an important effect on powder flowability depending
on the PSD. Powder C, which adsorbed the highest amount of water, shows a significant change in
flowability while powders A and B remained constant over time.

Powder segregation occurring within the powder bed has a direct effect on the local apparent
density. Discrete element method simulation results of the powder spreading process during AM
processing [8,9], have shown evidence of particle segregation. Specifically, fine particles are segregated
at the beginning of the spreading process while coarser particles are deposited at the end. In the present
study, the cohesive powder C was tested to observe if particle segregation was likely to occur during
the spreading process. In the present study, fine particles are segregated at the end of the powder bed
while larger particles are present at the beginning. The simulation results provided in the literature
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contradict the ones observed experimentally within the present study. However, it is important to note
that the discrete element simulations were carried out assuming free flowing spherical particles where
the effect of surface energy and particle–particle interactions such as cohesion, were not considered.
The flow behavior observed in non-cohesive and cohesive granular material differs significantly [44].
For the case of non-cohesive particles, axial segregation of larger particles is observed while in cohesive
powders a lower degree of segregation is present [45]. Assuming that the shear strength during
recoating between the coater and the particles is higher than the cohesion force of the agglomerates,
the segregation observed in the present study could be explained by the breaking up of agglomerates
during powder spreading resulting in the deposition of finer particles at the end of the powder bed.

5. Conclusions

Traditional and non-traditional quantitative powder characterization techniques were used to
evaluate the properties of different AlSi7Mg powders. The traditional characterization techniques
are able to provide quantitative measurements of the powder performance in terms of flowability
and apparent density. However, if the powders do not flow through the Hall and Carney funnels,
no metrics can be obtained. In contrast to the traditional techniques, non-traditional techniques, such as
CT scanning, dynamic vapor sorption, inverse gas chromatography, and the rotating drum technique,
provide quantitative metrics of properties for free and non-free flowing powders. Additionally,
they can be used to gain insight into characterisation parameters such as flow and apparent density.
The results of this study have suggested that the presence of a PSD with a high number of fine particles
facilitates water absorption and powder cohesion due to high surface energy. Such characteristics may
hinder the spreading of uniform powder layers, which may lead to defects in AM parts. In contrast,
when a narrow PSD and particles larger than 48 µm are present, water absorption and powder cohesion
was decreased improving powder flow and apparent density.
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