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Abstract: The bending analysis of thick and moderately thick functionally graded square and
rectangular plates as well as plates on Winkler–Pasternak elastic foundation subjected to sinusoidal
transverse load is presented in this paper. The plates are assumed to have isotropic, two-constituent
material distribution through the thickness, and the modulus of elasticity of the plate is assumed
to vary according to a power-law distribution in terms of the volume fractions of the constituents.
This paper presents the methodology of the application of the high order shear deformation theory
based on the shape functions. A new shape function has been developed and the obtained results
are compared to the results obtained with 13 different shape functions presented in the literature.
Also, the validity and accuracy of the developed theory was verified by comparing those results
with the results obtained using the third order shear deformation theory and 3D theories. In order
to determine the procedure for the analysis and the prediction of behavior of functionally graded
plates, the new program code in the software package MATLAB has been developed based on the
theories studied in this paper. The effects of transversal shear deformation, side-to-thickness ratio,
and volume fraction distributions are studied and appropriate conclusions are given.

Keywords: functionally graded plate; power-law distribution; high order shear deformation theory;
elastic foundation

1. Introduction

Failure and delamination at the border between two layers are the biggest and the most frequently
studied problem of the conventional composite laminates. Delamination of layers due to high local
inter-laminar stresses causes a reduction of stiffness and a loss of structural integrity of a construction.
In order to eliminate these problems, improved materials such as functionally graded materials (FGM),
which are getting more and more popular, are used for innovative engineering constructions.

FGM is a composite material consisting of two or more constituents with the continuous change
of properties in a certain direction. In other words, these materials can also be defined as materials
which possess a gradient change of properties due to material heterogeneity. A gradient property can
go in one or more directions and it can also be continuous or discontinuous from one surface to another
depending on the production technique [1–3]. One of the most common uses of FGM materials is found
in thermal barriers, one surface of which is in contact with high temperatures and is made of ceramic
which can provide adequate thermal stability, low thermal conductivity, and fine antioxidant properties.
The low-temperature side of the barrier is made of metal, which is superior in terms of mechanical
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strength, toughness, and high thermal conductivity. Functionally graded materials, which contain
metal and ceramic constituents, improve thermo-mechanical properties between layers, because of
which delamination of layers should be avoided due to continuous change between properties of
the constituents. By varying the percentage of volume fraction content of the two or more materials,
FGM can be formed so that it achieves a desired gradient property in specific directions. Figure 1 shows
schematic of continuously graded microstructure with metal-ceramic constituents [4].
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Figure 2. Different types of functionally graded materials based on nature of gradients: (а) fraction 
gradient type; (b) shape gradient type; (c) orientation gradient type; (d) size gradient type. 

With the expansion of the FGM material application area, it was necessary to improve fabrication 
methods for mentioned materials. Various fabrication methods have been developed for the 
preparation of bulk FGMs and graded thin films. The processing methods are commonly classified 
into four groups like powder technology methods (dry powder processing, slip vesting, tape casting, 
infiltration process or electrochemical gradation, powder injection molding and self-propagating 
high temperature synthesis, etc.), deposition methods (chemical vapor deposition, physical vapor 
deposition, electrophoretic deposition, slurry deposition, pulsed laser deposition, plasma spraying, 
etc.), in-situ processing methods (laser cladding, spray forming, sedimentation and solidification, 
centrifugal casting, etc.), and rapid prototyping processes (multiphase jet solidification, 3D-printing, 
laser printing, laser sintering, etc.) [6]. The basic difference between the mentioned production 
methods can be made according to whether the obtained materials have a stepwise or continuous 

Figure 1. Schematic of continuously graded microstructure with metal-ceramic constituents: (a) smoothly
graded microstructure; (b) enlarged view; (c) ceramic-metal functionally graded materials (FGM).

Depending on the nature of gradient, functionally graded materials may be grouped into fraction
gradient type, shape gradient type, orientation gradient type and size gradient type (Figure 2) [5].
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Figure 2. Different types of functionally graded materials based on nature of gradients: (a) fraction
gradient type; (b) shape gradient type; (c) orientation gradient type; (d) size gradient type.

With the expansion of the FGM material application area, it was necessary to improve fabrication
methods for mentioned materials. Various fabrication methods have been developed for the
preparation of bulk FGMs and graded thin films. The processing methods are commonly classified
into four groups like powder technology methods (dry powder processing, slip vesting, tape casting,
infiltration process or electrochemical gradation, powder injection molding and self-propagating
high temperature synthesis, etc.), deposition methods (chemical vapor deposition, physical vapor
deposition, electrophoretic deposition, slurry deposition, pulsed laser deposition, plasma spraying,
etc.), in-situ processing methods (laser cladding, spray forming, sedimentation and solidification,
centrifugal casting, etc.), and rapid prototyping processes (multiphase jet solidification, 3D-printing,
laser printing, laser sintering, etc.) [6]. The basic difference between the mentioned production methods
can be made according to whether the obtained materials have a stepwise or continuous structure.
The main disadvantage of the methods based on powder metallurgy is that it is very difficult to obtain
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FGM with a continuous change in properties. Continuous graded structures are produced by methods
based on casting. Taking this fact into consideration, it was necessary to develop functions which
would, with a smaller degree of approximation and in the best way possible, describe a gradient
change of properties in a desired direction [7,8].

The majority of already existing software for the analysis of the composite materials are based
on the classical plate theory (CPT) [9] and first-order shear deformation theories (FSDT), which were
developed by Mindlin [10] and, in a similar way, by Reissner [11,12]. Although classical theory does
not consider the effect of transverse shear stresses, it can provide acceptable predictions of the behavior
and the results for thin FGM plates where the effects of shear and normal strains across the thickness
of the plate are negligible.

Static problems of buckling and bending of FGM plates by using the CPT for different cases of
boundary conditions were studied by the authors of the following papers [13–15]. Considering von
Karman’s type of geometric nonlinearity, FGM behavior was analyzed in [16,17]. The effect of
a gradient distribution of materials in thin square and rectangular FGM plates was studied in terms of
different cases of dynamic load. The papers [18,19] analyze free vibrations of the FGM plates using CPT
for different boundary conditions in the area of geometric linearity. Von Karman’s type of nonlinearity
has been used in the papers [20,21].

Mindlin’s and Reissner’s theories take into consideration the effect of shear stresses across the
thickness of the plate and require the use of correctional factors which generally depend on the shape
and geometry. FSDT theory has been widely used in numerous papers mainly for solving nonlinear
problems [22,23]. Static problems due to introducing geometric nonlinearity have been studied in [24],
using Green’s strain tensor, and in [25] using von Karman’s strain tensor.

In order to avoid the use of shear correctional factors, high-order shear deformation theories
(HSDT) have been introduced. HSDT theories can be developed by developing displacement
components into power series at the coordinate of thickness. Generally, in the theories developed
in this way, desired precision of the analysis can be achieved by introducing a sufficient number
of terms in the power series. The most frequently used HSDT theory is the third-order shear
deformation theory (TSDT) developed for composite laminates [26,27], which takes into consideration
the effects of shear strains by satisfying the condition of keeping the upper and lower surface of
the laminates free of stresses. Later, that theory was used in the analysis of FGM plates [28,29] for
solving buckling problems [30,31], free vibrations and dynamic stability [32,33]. In addition to TSDT,
there are HSDT theories based on the shape functions which represent a special group of HSDT
theories introduced in order to eliminate the need for correctional factors [34,35]. Contrary to CPT
and FSDT, the supposed displacement shapes in this theory do not foresee that the normal to the
middle plane of the laminate plate remain a straight line, but that during deformation the normal will
become curved. Generally, shape functions can be polynomial, hyperbolic, exponential, parabolic etc.
Polynomial HSDTs usually diverge from other types of these theories and in accordance to the order
of a polynomial at the thickness coordinate they are categorized into the group of second-order
shear deformation theories (SSDT) or third-order shear deformation theories. Polynomial theories
are those that are most common in the articles, which deal with FG plates’ analysis using HSDT.
According to [36,37] all polynomial HSDT of third order can be classified so that the supposed
displacement fields contain eleven unknowns. The above-mentioned formulation has been expanded
in [38,39] by supposing that the displacements are cubic functions of the thickness coordinate of
the plate, that is, the supposed displacements contain twelve independent variables. In [40–42] the
authors have proposed a shear deformation theory of n-series, which was obtained by modifying
the displacement field of TSDT, in order to explain polynomial elements of n-series. Unlike HSDT
based on polynomial shape functions, some authors have dealt with researching and introducing
different hyperbolic, exponential, parabolic, and other shape functions [43–51]. Proposed functions
were applied in the analysis of conventional laminate composites with the aim to describe the behavior
of moderately thick and thick under different static and dynamic loads.
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On the other hand, continuum-based 3D elasticity theory could be used for the analysis of these
plates. However, 3D solution methods are mathematically complex which consequently results in
prolonged calculation time and the need for high performance hardware. Taking the aforementioned
into consideration, developing and using 2D shear deformation plate theories, which consider the
effects of previously mentioned shear and normal strains and provide the precision in the same way as
3D models do, represents a trend in the process of analysis of FGM plates.

This paper presents, in detail, the methodology of the application of the HSDT theory based on
the shape functions. A new shape function has been developed and the obtained results are compared
to the results obtained with 13 different shape functions presented in the papers from the reference
list. Also, the results have been verified through comparison with the results obtained with TSDT
and 3D theories. In order to determine a procedure for the analysis and the prediction of behavior of
FGM plates, the new program code in the software package MATLAB (MATrix LABoratory) has been
developed based on theories studied in this paper.

Finally, the ultimate goal and the purpose of all the previously mentioned studies and analyses
is the application of FGM in different areas of engineering and branches of industry. Although FGM
were initially used as materials for thermal barrier in space shuttles, today they are becoming widely
used in the field of medicine, dentistry, energy and nuclear sector, automotive industry, military,
optoelectronics etc.

2. Description of the Problem

The subject of the analysis in this paper are FGM plate (Figure 3a) and FGM plate on elastic
foundation (Figure 3b). The plate (length a, width b and height h) is made of functionally graded
material consisting of the two constituents, namely, metal and ceramics.
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It is assumed that mechanical properties of the FGM in the thickness direction of the plate change
according to the power law distribution (Figure 4a):

P(z) = Pm + Pcm

(
1
2
+

z
h

)p
, Pcm = Pc − Pm. (1)
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This law defines the change of the mechanical properties as the function of the volume fraction of
the FGM constituents in the thickness direction of the plate.

In the Equation (1), h represents total thickness of the plate, and P(z) represents a material
property in an arbitrary cross-section z, −h/2 < z < h/2. Pc represents the material property at the
top of the plate z = h/2 − ceramic, and Pm represents the material property at the bottom of the plate
z = −h/2 −metal. Index p is the exponent of the equation which defines the volume fraction of the
constituents in FGM. Practically, by varying the index p, homogenous plates as well as FGM plate with
precisely determined gradient structure could be obtained, as it is presented in Figure 4b:

• when p = 0 the plate is homogenous, made of ceramics,
• when 0 < p < ∞ the plate has a gradient structure,
• theoretically, when p = ∞ the plate becomes homogenous again, made of metal, although the plate

can be considered homogenous even when p > 20.

3. Kinematic Displacement-Strain Relations and Constitutive Equation of Elasticity for FGM

According to HSDT based on the shape functions, displacements could be presented in the
following way:

u(x, y, z, t) = u0(x, y, t)− z ∂w0(x,y,t)
∂x + f (z)θx,

v(x, y, z, t) = v0(x, y, t)− z ∂w0(x,y,t)
∂y + f (z)θy,

w(x, y, z, t) = w0(x, y, t),

(2)

where: u0, v0, w0 are displacement components in the middle plane of the plate, ∂w0
∂x , ∂w0

∂y are rotation
angles of transverse normal in relation to x and y axes, respectively, θx, θy are rotations of the transverse
normal due to transverse shear and f (z) is the shape function.

In the reference literature there are many shape functions which can be polynomial, trigonometric,
exponential, hyperbolic. Some examples of the shape functions are given in Table 1.
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Table 1. Shear deformation shape functions.

Number of Shape
Function (SF) Names of Authors Shape Function f (z)

SF 1 Ambartsumain [52] (z/2)
(
h2/4− z2/3

)
SF 2 Kaczkowski, Panc and

Reissner [53] (5z/4)
(
1− 4z2/3h2)

SF 3 Levy, Stein, Touratier [54] (h/π) sin(πz/h)
SF 4 Mantari et al. [55] sin(πz/h)ecos (πz/h)/2 + (πz/2h)

SF 5–6 Mantari et al. [45] tan(mz)− zm sec2(mh/2), m = {1/5h, π/2h}

SF 7 Karama et al. [56],
Aydogdu [44] z exp

(
−2(z/h)2

)
, z exp

(
−2(z/h)2/ ln α

)
, ∀α> 0

SF 8 Mantari et al. [46] z · 2.85−2(z/h)2
+ 0.028z

SF 9 El Meiche et al. [47] ξ[(h/π) sin(πz/h)− z], ξ = {1, 1/ cosh(π/2)− 1}
SF 10 Soldatos [43] hsinh(z/h)− z cosh(1/2)
SF 11 Akavci and Tanrikulu [49] z sec h

(
z2/h2)− z sec h(π/4)[1− (π/2)tanh(π/4)]

SF 12 Akavci and Tanrikulu [49] (3π/2)htanh(z/h)− (3π/2)z sec h2(1/2)
SF 13 Mechab et al. [48] z cos(1/2)

−1+cos(1/2) −
h sin(z/h)
−1+cos(1/2)

This paper proposes a new shape function as follows:

f (z) = z
(

cosh
( z

h

)
− 1.388

)
(3)

The introduced shape function is an odd function of the thickness coordinate z and satisfies zero
stress conditions for out of plane shear stresses. Observing the shape functions in the Table 1, may see
that the proposed function belongs to the group of simple mathematic functions. This fact makes the
integration process easier and thus reduces considerably the calculation time. Having in mind that the
function is analytically integrable, there is no need to switch to numeric integration, which additionally
increases the precision of the obtained results. The verification of the above claims is shown in the
comparative diagrams (Figure 5) of the newly introduced shape function and the shape functions
given in the Table 1. These shape functions’ diagrams can be categorized into two groups of functions.
In both cases it can be seen in the diagram that, in the case of the ratio z/h = 0.5, all shape functions
have extreme values, which are different (Figure 5a). The proposed new shape function (3) belongs
to the second group (Figure 5b), together with the functions of Soldatos and Mechab which are also
analytically integrable functions.
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For small displacements and moderate rotations of a transverse normal in relation to x axis and
y axis, normal and shear strain components are obtained by well-known relations in linear elasticity
between displacements and strains:

ε = ε(0) + zk(0) + f (z)k(1), γ = f ′(z)k(2), (4)
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where:

ε =


εxx

εyy

γxy

, γ =

{
γxz

γyz

}
, ε(0) =


ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

 =


u0,x
v0,y
u0,y + v0,x

,

k(0) =


k(0)xx

k(0)yy

k(0)xy

 =


−w0,xx
−w0,yy
−2w0,xy

, k(1) =


k(1)xx

k(1)yy

k(1)xy

 =


θx,x

θy,y

θx,y + θy,x

, k(2) =

{
k(2)xz

k(2)yz

}
=

{
θx

θy

}
,

(5)

where f ′(z) = d f (z)
dz is the first derivative of the shape function in the thickness direction of the plate.

The elastic constitutive relations for FGM are given as follows:

σxx

σyy

τxz

τyz

τxy


=


C11(z) C12(z) 0 0 0
C12(z) C22(z) 0 0 0

0 0 C44(z) 0 0
0 0 0 C55(z) 0
0 0 0 0 C66(z)





εxx

εyy

γxz

γyz

γxy


, (6)

where the coefficients of the constitutive elasticity tensor could be defined through engineering constants:

C11(z) = C22(z) =
E(z)

1− ν2 , C44(z) = C55(z) = C66(z) =
E(z)

2(1 + ν)
, C12(z) =

νE(z)
1− ν2 . (7)

Due to the gradient change of the plate structure in the direction of the z coordinate, based on (1),
the modulus of elasticity could be defined as:

E(z) = Em + Ecm

(
1
2
+

z
h

)p
, Ecm = Ec − Em, (8)

while Poisson’s ratio ν is considered constant due to a small value variation in the thickness direction
of the plate, ν = const.

As it could be seen, the coefficients of the constitutive tensor are functionally dependent on the
z coordinate which practically means that for p 6= 0 there is a finite number of planes parallel to the
middle plane, where each of these planes has different values of the constitutive tensor Cij.

4. Bending of FGM Plates and FGM Plates on Elastic Foundation

It is assumed that the plate is loaded with an arbitrary transverse load q(x, y). Work under
external load is defined as:

V = −1
2

∫
A

qwdA, (9)

where:
q(x, y) = q0 sin

(πx
a

)
sin
(πy

b

)
, (10)

is the sinusoidal transverse load with an amplitude q0.
Plate strain energy is defined as:

U =
∫
A
(Nxxε

(0)
xx + Nyyε

(0)
yy + Nxyγ

(0)
xy + Mxxk(0)xx + Myyk(0)yy + Mxyk(0)xy

+ Pxxk(1)xx + Pyyk(1)yy + Pxyk(1)xy + Rxk(2)xz + Ryk(2)yz )dA,
(11)
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where force, moments and higher order moments vectors are obtained in the following form:

N =
h/2∫
−h/2

σdz =
h/2∫
−h/2

CPεdz =
h/2∫
−h/2

CPε
(0)dz +

h/2∫
−h/2

CPk(0)zdz +
h/2∫
−h/2

CPk(1) f (z)dz,

M =
h/2∫
−h/2

σzdz =
h/2∫
−h/2

CPεzdz =
h/2∫
−h/2

CPε
(0)zdz +

h/2∫
−h/2

CPk(0)z2dz +
h/2∫
−h/2

CPk(1)z f (z)dz,

P =
h/2∫
−h/2

σ f (z)dz =
h/2∫
−h/2

CPε f (z)dz =
h/2∫
−h/2

CPε
(0) f (z)dz +

h/2∫
−h/2

CPk(0)z f (z)dz +
h/2∫
−h/2

CPk(1)( f (z))2dz,

R =
h/2∫
−h/2

τ f ′(z)dz =
h/2∫
−h/2

CSk(2)( f ′(z))2dz,

(12)

Matrices in the developed form could be presented in the following way:

N =


Nxx

Nyy

Nxy

, M =


Mxx

Myy

Mxy

, P =


Pxx

Pyy

Pxy

, R =

{
Rx

Ry

}
,

CP =

 C11 C12 0
C12 C22 0

0 0 C66

, CS =

[
C44 0

0 C55

]
, σ =


σxx

σyy

τxy

, τ =

{
τxz

τyz

}
.

(13)

In the Equation (12) by grouping the terms with the elements of constitutive tensor, new matrices
with the following components could be defined:

Aij =
h/2∫
−h/2

Cijdz, Bij =
h/2∫
−h/2

Cijzdz,

Dij =
h/2∫
−h/2

Cij f (z)dz, Eij =
h/2∫
−h/2

Cijz2dz, (i, j) = (1, 2, 6),

Fij =
h/2∫
−h/2

Cijz f (z)dz, Gij =
h/2∫
−h/2

Cij( f (z))2dz,

Hlr =
h+∫

h−
Clr( f ′(z))2dz, (l, r) = (4, 5),

(14)

Therefore, load vectors could now be defined in the following form:
N
M
P

 =

 Aij Bij Dij
Bij Eij Fij
Dij Fij Gij



ε(0)

k(0)

k(1)

, {R} = [Hlr]
{

k(2)
}

, (15)

By exchanging plate strain energy (11) and work under external load (9) into the equation which
defines the minimum total potential energy principle:

δU + δV = δ(U + V) ≡ δΠ = 0, (16)

The following form is obtained:

δΠ =
∫
A
(Nxxδε

(0)
xx + Nyyδε

(0)
yy + Nxyδγ

(0)
xy + Mxxδk(0)xx + Myyδk(0)yy + Mxyδk(0)xy

+Pxxδk(1)xx + Pyyδk(1)yy + Pxyδk(1)xy + Rxδk(2)xz + Ryδk(2)yz )dA−
∫
A

qδwdA = 0.
(17)
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By exchanging the strain components (5) and by applying the calculus of variations, the following
equilibrium equations are obtained:

δu0 : Nxx,x + Nxy,y = 0,
δv0 : Nyy,y + Nxy,x = 0,
δw0 : Mxx,xx + 2Mxy,xy + Myy,yy + q = 0,
δθx : Pxx,x + Pxy,y − Rx = 0,
δθy : Pxy,x + Pyy,y − Ry = 0.

(18)

which could be further solved through analytical and numerical methods.
In the case of a plate on elastic foundation, in the Equation (16) deformation energy of the elastic

foundation should be taken into consideration, which is defined using Winkler–Pasternak model in
the following way:

Ue =
1
2

∫
A

{
k0w2 + k1

[(
∂w
∂x

)2
+

(
∂w
∂x

)2
]}

dA. (19)

Using the previously mentioned the minimum total potential energy principle, the equilibrium
equations of the plate on elastic foundation are the following:

δu0 : Nxx,x + Nxy,y = 0,
δv0 : Nyy,y + Nxy,x = 0,
δw0 : Mxx,xx + 2Mxy,xy + Myy,yy + Nxxw0,xx + 2Nxyw0,xy + Nyyw0,yy

+ q− k0w0 + k1
(
w0,xx + w0,yy

)
= 0,

δθx : Pxx,x + Pxy,y − Rx = 0,
δθy : Pxy,x + Pyy,y − Ry = 0.

(20)

5. Analytical Solution of the Equilibrium Equations

Although analytical solution methods are limited to simple geometrical problems,
boundary conditions and loads, they can provide a clear understanding of the physical aspect of
the problem and its solutions are very precise. Since analytical solutions are extremely important
for developing new theoretical models, primarily due to their understanding of the physical aspects
of the problem, and considering that a new HSDT theory based on a new shape function has been
developed in this paper, the analytical solution of the equilibrium equations for a rectangular plate will
be presented in the following part of the paper. For complex engineering calculations, which include
solving the system of a large number of equations, it is necessary to use numerical methods which
provide approximate, but satisfactory results.

For a simply supported rectangular FGM plate, boundary conditions are defined based on [57] as:

v0 = w0 = θy = Nxx = Mxx = Pxx = 0, on the edges where x = 0 or x = a,
u0 = w0 = θx = Nyy = Myy = Pyy = 0, on the edges where y = 0 or y = b.

(21)

In order to satisfy these kinematic boundary conditions, assumed forms of Navier’s solutions are introduced:

u0(x, y, t) =
∞
∑

m=1

∞
∑

n=1
Umn cos mπx

a sin nπy
b , v0(x, y, t) =

∞
∑

m=1

∞
∑

n=1
Vmn sin mπx

a cos nπy
b ,

w0(x, y, t) =
∞
∑

m=1

∞
∑

n=1
Wmn sin mπx

a sin nπy
b ,

θx(x, y, t) =
∞
∑

m=1

∞
∑

n=1
Txmn cos mπx

a sin nπy
b , θy(x, y, t) =

∞
∑

m=1

∞
∑

n=1
Tymn sin mπx

a cos nπy
b .

(22)
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The equilibrium equation is further developed into:
L11 L12 L13 L14 L15

L12 L22 L23 L24 L25

L13 L23 L33 L34 L35

L14 L24 L34 L44 L45

L15 L25 L35 L45 L55


︸ ︷︷ ︸

L



Umn

Vmn

Wmn

Txmn

Tymn

︸ ︷︷ ︸
U

=



0
0
q0

0
0

︸ ︷︷ ︸
Pp

(23)

or:
LU = PP (24)

Through the matrix multiplication of the Equation (24) with L−1, the following is obtained:

L−1L︸ ︷︷ ︸
I

U = L−1PP → U = L−1PP. (25)

The Equation (25) fully defines the amplitudes of the assumed displacement components.
The displacement components are obtained if the displacement amplitude matrix is multiplied with
the vector from trigonometric functions which depend on x and y.

6. Numerical Results

In order to apply the previously obtained theoretical results to a simulation of real problems,
a new program code for static analysis of FGM plates has been developed within the software package
MATLAB. Material properties of the used materials are shown in Table 2 [58].

Table 2. Material properties of FGM constituents.

Material
Material Properties

Elasticity Modulus, E[GPa] Poisson’s Ratio, ν

Aluminum (Al) Em = 70 ν = 0.3
Alumina (Al2O3) Ec = 380 ν = 0.3

Normalized values of a vertical displacement w (deflection), normal stresses σxx and σyy, shear stress
τxy, and transverse shear stresses τxz and τyz are given by using HSDT theory based on the new shape
function. Normalization of the aforementioned values has been conducted according to (26) as:

w = 10Ech3

q0a4 w
(

a
2 , b

2

)
, σxx(z) = h

q0a σxx

(
a
2 , b

2 , z
)

, σyy(z) = h
q0a σyy

(
a
2 , b

2 , z
)

,

τxy(z) = h
q0a τxy(0, 0, z), τxz(z) = h

q0a τxz

(
0, b

2 , z
)

, τyz(z) = h
q0a τyz

( a
2 , 0, z

)
.

(26)

Table 3 shows comparative results of the normalized values of displacement and stresses of
square plate for two different ratios of length and thickness of the plate (a/h = 5 and a/h = 10) and for
different values of the index p. Verification of the results obtained in this paper has been conducted
by comparing them to the results from the reference papers when a/h = 10. Based on that, the results
when a/h = 5 are provided for different values of the index p, i.e., different volume fraction of the
constituents in FGM. Using HSDT theory with the new shape function, the obtained results are
compared to the results obtained using 13 different shape functions as well as to the results obtained
using quasi 3D theory of elasticity [59] and TSDT theory [58]. The results based on the CPT theory
are also presented [60] in order to find certain disadvantages of the theory. Based on the comparative
results of displacement and stresses, which are provided in this paper and in previously mentioned
theories, it could be seen that there is a match with both TSDT theory and quasi 3D theory of elasticity.
On the other hand, it is clearly seen that there are some significant differences in the results obtained
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by CPT theory, especially related to the stress σxx which shows that CPT theory does not provide
satisfying results in the analysis of thick and moderately thick FGM plates. A comparative review of
these results with the results obtained using 13 different shape functions shows that the newly given
shape function provides almost identical results. However, since these results are given for the plane
on a certain height z (for example, stress σxx on the height of h/3 etc.), a real insight into the values
obtained by varying the new function could be offered by presenting stress distribution across the
thickness of the plate, which is done through appropriate diagrams.

Figure 6 shows the distribution of normal stresses σxx and σyy across the thickness of the plate
for different values of the index p. By analyzing the diagrams, it could be noticed that the curves
representing both stresses are identical. Also, the basic property of FGM could be noticed, namely, the
shift of a neutral plane in relation to the plane z/h = 0. It can also be seen that for the planes at the
height z/h = 0.1–0.15 (depending on the chosen value of the index p) normal stresses have a positive
sign which clearly indicates extension, and then they change the sign. In case when p = 0, (homogenous
material made of ceramics) stress distribution is a familiar linear function with the neutral plane when
z/h = 0. Maximum values of normal stresses due to compression are on the lower edge of the plate
while the maximum values of normal stresses due to extension are on the upper edge of the plate.
It could be noticed that with the increase of the index p value, maximum values of stresses due to
extension are significantly increased.
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Table 3. Normalized values of displacement and stresses of square plate for different values of the index p and the ratio a/h (a/b = 1). CPT: classical plate theory;
TSDT: third-order shear deformation theory.

p Theory

-
w

-
σxx(h/3)

-
τxy(−h/3)

-
τxz(h/6)

a/b = 1

a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5

1

Present study 0.5889 0.6687 1.4899 0.7345 0.6111 0.3034 0.2604 0.2599
CPT [60] 0.5623 —– 2.0150 —– —– —– —– —–

Quasi 3D [59] 0.5876 —– 1.5061 —– 0.6112 —– 0.2511 —–
TSDT [58] 0.5890 —– 1.4898 —– 0.6111 —– 0.2599 —–

SF 1 0.5889 0.6687 1.4898 0.7344 0.6111 0.3034 0.2607 0.2602
SF 2 0.5889 0.6687 1.4898 0.7344 0.6111 0.3034 0.2607 0.2602
SF 3 0.5889 0.6685 1.4894 0.7336 0.6110 0.3033 0.2621 0.2615
SF 4 0.5880 0.6648 1.4888 0.7323 0.6109 0.3030 0.2566 0.2554
SF 5 0.5889 0.6687 1.4898 0.7344 0.6111 0.3034 0.2607 0.2601
SF 6 0.5888 0.6683 1.4908 0.7363 0.6113 0.3038 0.2551 0.2547
SF 7 0.5887 0.6679 1.4891 0.7330 0.6109 0.3031 0.2624 0.2616
SF 8 0.5887 0.6679 1.4891 0.7330 0.6109 0.3031 0.2623 0.2615
SF 9 0.5887 0.6679 1.4891 0.7330 0.6109 0.3031 0.2623 0.2615

SF 10 0.5889 0.6687 1.4898 0.7344 0.6111 0.3034 0.2605 0.2600
SF 11 0.5887 0.6679 1.4902 0.7352 0.6112 0.3036 0.2569 0.2566
SF 12 0.5889 0.6686 1.4895 0.7338 0.6110 0.3033 0.2617 0.2611
SF 13 0.5889 0.6687 1.4898 0.7343 0.6111 0.3034 0.2609 0.2603

2

Present study 0.7572 0.8670 1.3961 0.6838 0.5442 0.2696 0.2732 0.2726
CPT [60] —– —– —– —– —– —– —– —–

Quasi 3D [59] 0.7571 —– 1.4133 —– 0.5436 —– 0.2495 —–
TSDT [58] 0.7573 —– 1.3960 —– 0.5442 —– 0.2721 —–

SF 1 0.7573 0.8671 1.3960 0.6836 0.5442 0.2695 0.2736 0.2730
SF 2 0.7573 0.8671 1.3960 0.6836 0.5442 0.2695 0.2736 0.2730
SF 3 0.7573 0.8671 1.3954 0.6824 0.5440 0.2693 0.2763 0.2755
SF 4 0.7563 0.8629 1.3940 0.6797 0.5437 0.2687 0.2741 0.2726
SF 5 0.7572 0.8671 1.3961 0.6836 0.5442 0.2695 0.2735 0.2729
SF 6 0.7568 0.8656 1.3975 0.6865 0.5444 0.2701 0.2653 0.2649
SF 7 0.7572 0.8667 1.3949 0.6813 0.5439 0.2691 0.2777 0.2767
SF 8 0.7572 0.8666 1.3948 0.6812 0.5439 0.2691 0.2777 0.2768
SF 9 0.7572 0.8666 1.3948 0.6812 0.5439 0.2691 0.2777 0.2768

SF 10 0.7572 0.8670 1.3961 0.6837 0.5442 0.2696 0.2733 0.2727
SF 11 0.7567 0.8649 1.3969 0.6854 0.5444 0.2699 0.2667 0.2663
SF 12 0.7573 0.8672 1.3956 0.6827 0.5441 0.2694 0.2755 0.2748
SF 13 0.7573 0.8671 1.3960 0.6835 0.5442 0.2695 0.2739 0.2733
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Table 3. Cont.

p Theory

-
w

-
σxx(h/3)

-
τxy(−h/3)

-
τxz(h/6)

a/b = 1

a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5

4

Present study 0.8814 1.0406 1.1795 0.5707 0.5669 0.2799 0.2529 0.2523
CPT [60] 0.8281 —– 1.6049 —– —– —– —– —–

Quasi 3D [59] 0.8823 —– 1.1841 —– 0.5671 —– 0.2362 —–
TSDT [58] 0.8815 —– 1.1794 —– 0.5669 —– 0.2519 —–

SF 1 0.8814 1.0409 1.1794 0.5704 0.5669 0.2798 0.2537 0.2529
SF 2 0.8814 1.0409 1.1794 0.5704 0.5669 0.2798 0.2537 0.2529
SF 3 0.8818 1.0423 1.1783 0.5684 0.5667 0.2795 0.2580 0.2571
SF 4 0.8815 1.0402 1.1756 0.5630 0.5662 0.2784 0.2623 0.2606
SF 5 0.8814 1.0408 1.1794 0.5705 0.5669 0.2799 0.2535 0.2528
SF 6 0.8802 1.0360 1.1816 0.5749 0.5673 0.2807 0.2421 0.2417
SF 7 0.8820 1.0429 1.1774 0.5666 0.5665 0.2791 0.2612 0.2601
SF 8 0.8820 1.0429 1.1773 0.5664 0.5665 0.2791 0.2614 0.2603
SF 9 0.8820 1.0429 1.1773 0.5664 0.5665 0.2791 0.2614 0.2603

SF 10 0.8814 1.0407 1.1795 0.5706 0.5669 0.2799 0.2532 0.2525
SF 11 0.8798 1.0346 1.1811 0.5739 0.5672 0.2805 0.2427 0.2423
SF 12 0.8817 1.0420 1.1786 0.5690 0.5668 0.2796 0.2568 0.2559
SF 13 0.8815 1.0411 1.1793 0.5702 0.5669 0.2798 0.2541 0.2534

8

Present study 0.9745 1.1828 0.9478 0.4544 0.5858 0.2886 0.2082 0.2076
CPT [60] —– —– —– —– —– —– —– —–

Quasi 3D [59] 0.9739 —– 0.9622 —– 0.5883 —– 0.2261 —–
TSDT [58] 0.9747 —– 0.9747 —– 0.5858 —– 0.2087 —–

SF 1 0.9746 1.1832 0.9476 0.4541 0.5858 0.2886 0.2087 0.2081
SF 2 0.9746 1.1832 0.9476 0.4541 0.5858 0.2886 0.2087 0.2081
SF 3 0.9749 1.1845 0.9465 0.4520 0.5856 0.2881 0.2120 0.2113
SF 4 0.9739 1.1794 0.9435 0.4461 0.5850 0.2871 0.2139 0.2125
SF 5 0.9745 1.1831 0.9477 0.4542 0.5858 0.2886 0.2086 0.2080
SF 6 0.9730 1.1774 0.9500 0.4589 0.5863 0.2895 0.1995 0.1991
SF 7 0.9751 1.1848 0.9455 0.4500 0.5854 0.2877 0.2143 0.2134
SF 8 0.9751 1.1848 0.9454 0.4498 0.5854 0.2877 0.2145 0.2135
SF 9 0.9751 1.1848 0.9454 0.4498 0.5854 0.2877 0.2145 0.2135

SF 10 0.9745 1.1830 0.9477 0.4543 0.5858 0.2886 0.2084 0.2078
SF 11 0.9727 1.1763 0.9496 0.4581 0.5861 0.2893 0.2006 0.2003
SF 12 0.9749 1.1842 0.9469 0.4526 0.5856 0.2883 0.2111 0.2104
SF 13 0.9746 1.1833 0.9475 0.4539 0.5858 0.2885 0.2091 0.2084

20

Present study 1.1377 1.3727 0.7710 0.3721 0.6079 0.2993 0.2011 0.2005
CPT [60] —– —– —– —– —– —– —– —–

Quasi 3D [59] —– —– —– —– —– —– —– —–
TSDT [58] —– —– —– —– —– —– —– —–

SF 1 1.1377 1.3727 0.7709 0.3720 0.6078 0.2993 0.2013 0.2008
SF 2 1.1377 1.3727 0.7709 0.3720 0.6078 0.2993 0.2013 0.2008
SF 3 1.1374 1.3712 0.7702 0.3707 0.6076 0.2989 0.2025 0.2019
SF 4 1.1338 1.3561 0.7687 0.3677 0.6073 0.2982 0.1979 0.1966
SF 5 1.1377 1.3727 0.7709 0.3720 0.6078 0.2993 0.2013 0.2007
SF 6 1.1375 1.3723 0.7723 0.3748 0.6083 0.3002 0.1963 0.1960
SF 7 1.1368 1.3686 0.7697 0.3696 0.6075 0.2986 0.2028 0.2019
SF 8 1.1367 1.3683 0.7696 0.3695 0.6075 0.2986 0.2027 0.2019
SF 9 1.1367 1.3683 0.7696 0.3695 0.6075 0.2986 0.2027 0.2019

SF 10 1.1377 1.3727 0.7709 0.3721 0.6079 0.2993 0.2012 0.2006
SF 11 1.1375 1.3722 0.7720 0.3741 0.6081 0.2998 0.1983 0.1979
SF 12 1.1375 1.3718 0.7704 0.3711 0.6077 0.2990 0.2022 0.2016
SF 13 1.1377 1.3726 0.7708 0.3718 0.6078 0.2993 0.2015 0.2009



Materials 2018, 11, 2381 14 of 24

Figure 7 shows the distribution of the shear stress τxy across the thickness of the plate for different
values of the index p (Figure 7a) and for different shape functions (Figure 7b), but for the unchanging
values of a/h = 10 and a/b = 1. While analyzing the diagrams, it should be considered that when p = 0
the plate is homogenous made of ceramics, when p = 20 the plate is homogenous made of metal,
and when 0 < p < 20 the plate is made of FGM. By analyzing the diagram in the Figure 7a, it could be
noticed that for all values of the index p, the stress τxy achieves the maximum value on the upper edge
of the plate. Ceramic plate has the lowest maximum value. Therefore, with an increase of the metal
volume fraction when p = 1, maximum stress value also increases and the highest value is achieved
when the plate is homogenous made of metal. Moreover, apart from affecting the maximum stress
values, the variation of the index p value also affects the shape of the τxy stress distribution curve
across the thickness of the plate.
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In order to conduct a comparative analysis of the results for different shape functions and to
estimate the application of the new shape function to the given problems, Figure 7b shows the
distribution of the shear stress τxy by using newly developed shape function and the shape functions
given in Table 1. It is clearly seen that all the previously mentioned shape functions give identical
results to the results obtained with the new shape function.

Figure 8 shows the distribution of transverse shear stresses τxz and τyz across the thickness of
the plate for different values of the index p and for different shape functions. By analyzing transverse
shear stresses in Figure 8a,c, a basic distinction between homogenous and FGM plates can be noticed.
When plates are made of ceramics (p = 0) or metal (p = 20), it can be noticed that both stresses achieve
maximum values in the plane at the height z/h = 0, due to the homogeneity of the material. On the
other hand, when FGM plates are considered, there is an asymmetry in relation to the plane z/h = 0,
therefore, when p = 1 stresses achieve maximum values in the plane z/h = 0.15, and when p = 5 stresses
achieve maximum values when z/h = 0.3. In contrast to the homogenous ceramic plate, where stress
distribution curve is a parabola with the maximum value in the plane z/h = 0, plates with the larger
volume fraction of metal (p = 10) also achieve the maximum value of stress when z/h = 0, but the
distribution curve is not a parabola. With the further increase of the metal volume fraction (p = 20),
and although the plate can be practically considered homogenous, the diagram still shows the curve
which is not a parabola. Generally, due to insignificant but still present ceramic fractions in the upper
part of the plate, there is a slight deformity of the curve.
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(b) a/h = 10, a/b = 1, p = 5; (c) a/h = 10, a/b = 1; (d) a/h = 10, a/b = 1, p = 5.

By conducting comparative analysis of the stresses τxz and τyz for different shape functions,
and with fixed values of a/h = 10, a/b = 1 and p = 5, it could be seen in Figure 8b,d that, unlike the
stress τxy, the results do not match for all the shape functions. The most significant deviation could
be noticed in the results for the El Meiche’s and Karama’s shape functions. The Akavci’s function
also shows a slight deviation and it achieves maximum stress value at the height z/h = 0.25, while the
results for all the other shape functions are almost identical, achieving the maximum stress value in
the plane z/h = 0.25.

In order to understand the effects of increasing the index p as well as the effect of the thickness
and geometry, Figure 9 shows the diagram of the normalized values of the displacement w for different
a/h and a/b ratios and values of the index p. By analyzing Figure 9a,b, it could be noticed that
the displacement values w for the metal plate (p = 20) are the highest, for the ceramic plate they
are the lowest, and for the FGM plate they are somewhere in between. Moreover, by varying the
volume fraction of metal or ceramics, a desired bending rigidity of the plate could be achieved.
In Figure 9a, it could be seen that the curves gradually become closer when a/b > 4. In contrast
to that, Figure 9b shows that with an increase of the ratio a/h the curves do not become closer,
namely, the difference of the displacement ratio remains constant regardless of the index p change.
This conclusion comes from the fact that in thin plates it is less possible to vary the volume fraction of
the FGM constituents in the thickness direction of the plate and, thus, the index p has no effects.
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In order to determine the effect of the elastic foundation on the displacements and stresses of the
FGM plate, the results of different combinations of the FGM constituents have been presented, as well
as different combinations of the Winkler (k0) and Pasternak (k1) coefficient of the elastic foundation.
Apart from the normalization given in (26), it is necessary to apply the normalization of the coefficients
k0 and k1, in the following form:

k0 = k0
a4

D
i k1 = k1

a2

D
, (27)

where the bending stiffness of the plate is D = Ech3

12(1−ν2)
.

The Tables 4 and 5 show the results of the normalized values of displacements and stresses of
the square plate on elastic foundation for p = 5, and p = 10, different values of k0 and k1 coefficients,
as well as for two different ratios length/thickness of the plate (a/h = 10 and a/h = 5). In order to
determine the effect of the elastic foundation on the displacements and stresses of the plate, the values
of displacements and stresses for k0 = 0 and k1 = 0 are first shown, which practically matches the case
of the plate without the elastic foundation. Afterwards, the values of the given coefficients are varied
in order to conclude which of the two has greater influence. Based on the results, it is concluded
that the introduction of the coefficient k0 has less influence on the change of the displacements
and stresses values then when only k1 coefficient is introduced. By introducing k0 and k1 coefficients,
bending stiffness of the plate increases, i.e., displacement and stresses values decrease and the influence
of the Winkler coefficient is smaller than the influence of the Pasternak coefficient. This phenomenon
is especially noticeable in the diagram dependency which is to be shown later.
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Table 4. Normalized values of displacement and stresses of square plate on elastic foundation for p = 5, different values of the k0 и k1 and the ratio a/h (a/b = 1).

p k0 k1 Theory

-
w

-
σxx

-
τxy

-
τxz

a/b = 1

a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5

5

0 0

Present study 0.9113 1.0882 4.2441 2.2107 0.5757 0.2840 0.1916 0.1911
SF 1 0.9113 1.0885 4.2447 2.2118 0.5756 0.2839 0.1929 0.1924
SF 2 0.9113 1.0885 4.2447 2.2118 0.5756 0.2839 0.1929 0.1924
SF 3 0.9118 1.0902 4.2488 2.2199 0.5754 0.2835 0.2016 0.2009
SF 4 0.9115 1.0885 4.2612 2.2443 0.5748 0.2824 0.2329 0.2313
SF 5 0.9113 1.0884 4.2445 2.2116 0.5756 0.2839 0.1927 0.1921
SF 6 0.9098 1.0826 4.2359 2.1945 0.5761 0.2848 0.1759 0.1756
SF 7 0.9121 1.0911 4.2527 2.2276 0.5752 0.2831 0.2104 0.2095
SF 8 0.9121 1.0911 4.2531 2.2284 0.5752 0.2831 0.2113 0.2104
SF 9 0.9121 1.0911 4.2531 2.2284 0.5752 0.2831 0.2113 0.2104

SF 10 0.9112 1.0883 4.2443 2.2110 0.5756 0.2839 0.1921 0.1916
SF 11 0.9094 1.0810 4.2359 2.1945 0.5760 0.2846 0.1668 0.1665
SF 12 0.9117 1.0898 4.2476 2.2175 0.5755 0.2836 0.1991 0.1985
SF 13 0.9114 1.0887 4.2450 2.2126 0.5756 0.2839 0.1937 0.1932

100 0

Present study 0.4967 0.5450 2.3135 1.1073 0.3138 0.1422 0.1045 0.0957
SF 1 0.4967 0.5451 2.3137 1.1076 0.3137 0.1422 0.1051 0.0963
SF 2 0.4967 0.5451 2.3137 1.1076 0.3137 0.1422 0.1051 0.0963
SF 3 0.4969 0.5455 2.3154 1.1108 0.3136 0.1418 0.1098 0.1005
SF 4 0.4968 0.5451 2.3225 1.1239 0.3133 0.1414 0.1269 0.1158
SF 5 0.4967 0.5451 2.3136 1.1076 0.3137 0.1422 0.1050 0.0962
SF 6 0.4963 0.5436 2.3107 1.1019 0.3142 0.1430 0.0960 0.0882
SF 7 0.4969 0.5457 2.3172 1.1142 0.3134 0.1416 0.1146 0.1048
SF 8 0.4969 0.5457 2.3174 1.1146 0.3134 0.1416 0.1151 0.1052
SF 9 0.4969 0.5457 2.3174 1.1146 0.3134 0.1416 0.1151 0.1052

SF 10 0.4967 0.5450 2.3135 1.1074 0.3138 0.1422 0.1047 0.0959
SF 11 0.4961 0.5432 2.3112 1.1028 0.3143 0.1430 0.0910 0.0837
SF 12 0.4968 0.5454 2.3148 1.1098 0.3136 0.1419 0.1085 0.0993
SF 13 0.4967 0.5451 2.3138 1.6370 0.3137 0.1421 0.1056 0.0967

0 10

Present study 0.3442 0.3668 1.6032 0.7451 0.2175 0.0957 0.0724 0.0644
SF 1 0.3442 0.3667 1.6033 0.7453 0.2174 0.0956 0.0728 0.0648
SF 2 0.3442 0.3667 1.6033 0.7453 0.2174 0.0956 0.0728 0.0648
SF 3 0.3443 0.3669 1.6043 0.7472 0.2172 0.0954 0.0761 0.0676
SF 4 0.3442 0.3667 1.6093 0.7562 0.2171 0.0951 0.0879 0.0779
SF 5 0.3442 0.3667 1.6033 0.7452 0.2174 0.0956 0.0727 0.0647
SF 6 0.3440 0.3661 1.6017 0.7421 0.2178 0.0963 0.0665 0.0594
SF 7 0.3443 0.3670 1.6055 0.7494 0.2171 0.0952 0.0794 0.0704
SF 8 0.3443 0.3671 1.6057 0.7496 0.2171 0.0952 0.0797 0.0707
SF 9 0.3443 0.3671 1.6057 0.7496 0.2171 0.0952 0.0797 0.0707

SF 10 0.3442 0.3667 1.6032 0.7451 0.2174 0.0957 0.0725 0.0645
SF 11 0.3439 0.3659 1.6022 0.7428 0.2178 0.0963 0.0631 0.0563
SF 12 0.3442 0.3669 1.6040 0.7466 0.2173 0.0955 0.0752 0.0668
SF 13 0.3442 0.3668 1.6034 1.2283 0.2174 0.0956 0.0731 0.0650

100 10

Present study 0.2617 0.2745 1.2190 0.5578 0.1654 0.0716 0.0550 0.0482
SF 1 0.2617 0.2745 1.2190 0.5579 0.1653 0.0716 0.0554 0.0485
SF 2 0.2617 0.2745 1.2190 0.5579 0.1653 0.0716 0.0554 0.0485
SF 3 0.2617 0.2746 1.2197 0.5592 0.1652 0.0714 0.0578 0.0506
SF 4 0.2617 0.2745 1.2236 0.5661 0.1650 0.0712 0.0668 0.0583
SF 5 0.2617 0.2745 1.2190 0.5661 0.1653 0.0716 0.0553 0.0484
SF 6 0.2616 0.2741 1.2180 0.5578 0.1656 0.0721 0.0506 0.0444
SF 7 0.2617 0.2747 1.2206 0.5608 0.1651 0.0712 0.0604 0.0527
SF 8 0.2617 0.2747 1.2207 0.5610 0.1651 0.0712 0.0606 0.0529
SF 9 0.2617 0.2747 1.2207 0.5610 0.1651 0.0712 0.0606 0.0529

SF 10 0.2617 0.2745 1.2190 0.5578 0.1653 0.0716 0.0551 0.0483
SF 11 0.2615 0.2740 1.2184 0.5564 0.1656 0.0721 0.0479 0.0422
SF 12 0.2617 0.2746 1.2195 0.5588 0.1652 0.0714 0.0571 0.0500
SF 13 0.2617 0.2745 1.2191 0.9722 0.1653 0.0716 0.0556 0.0487
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Table 5. Normalized values of displacement and stresses of square plate on elastic foundation for p = 10, different values of the k0 и k1 and the ratio a/h (a/b = 1).

p k0 k1 Theory

-
w

-
σxx

-
τxy

-
τxz

a/b =1

a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5

10

0 0

Present study 1.0086 1.2273 5.0843 2.6423 0.5896 0.2904 0.2101 0.2095
SF 1 1.0087 1.2275 5.0848 2.6434 0.5895 0.2903 0.2113 0.2107
SF 2 1.0087 1.2275 5.0848 2.6434 0.5895 0.2903 0.2113 0.2107
SF 3 1.0089 1.2282 5.0890 2.6515 0.5893 0.2899 0.2198 0.2190
SF 4 1.0071 1.2201 5.1006 2.6742 0.5888 0.2889 0.2488 0.2472
SF 5 1.0086 1.2275 5.0847 2.6431 0.5895 0.2903 0.2111 0.2104
SF 6 1.0074 1.2229 5.0758 2.6255 0.5900 0.2913 0.1944 0.1940
SF 7 1.0088 1.2277 5.0928 2.6590 0.5891 0.2895 0.2281 0.2272
SF 8 1.0088 1.2275 5.0931 2.6597 0.5891 0.2895 0.2290 0.2280
SF 9 1.0088 1.2275 5.0931 2.6597 0.5891 0.2895 0.2290 0.2280

SF 10 1.0086 1.2274 5.0845 2.6426 0.5896 0.2903 0.2105 0.2099
SF 11 1.0072 1.2222 5.0762 2.6263 0.5899 0.2910 0.1852 0.1849
SF 12 1.0088 1.2281 5.0877 2.6491 0.5894 0.2900 0.2174 0.2166
SF 13 1.0087 1.2276 5.0852 2.6442 0.5895 0.2903 0.2121 0.2115

100 0

Present study 0.5243 0.5779 2.6430 1.2440 0.3065 0.1367 0.1092 0.0986
SF 1 0.5243 0.5779 2.6432 1.2444 0.3064 0.1366 0.1098 0.0992
SF 2 0.5243 0.5779 2.6432 1.2444 0.3064 0.1366 0.1098 0.0992
SF 3 0.5244 0.5780 2.6451 1.2479 0.3063 0.1364 0.1142 0.1030
SF 4 0.5239 0.5762 2.6534 1.2630 0.3063 0.1364 0.1294 0.1167
SF 5 0.5243 0.5779 2.6432 1.2443 0.3064 0.1367 0.1097 0.0990
SF 6 0.5240 0.5768 2.6401 1.2385 0.3069 0.1374 0.1011 0.0915
SF 7 0.5243 0.5779 2.6471 1.2517 0.3062 0.1363 0.1186 0.1069
SF 8 0.5243 0.5779 2.6474 1.2521 0.3062 0.1363 0.1190 0.1073
SF 9 0.5243 0.5779 2.6474 1.2521 0.3062 0.1363 0.1190 0.1073

SF 10 0.5243 0.5778 2.6431 1.2441 0.3064 0.1367 0.1094 0.0988
SF 11 0.5239 0.5767 2.6405 1.2392 0.3068 0.1373 0.0963 0.0872
SF 12 0.5243 0.5780 2.6445 1.2468 0.3063 0.1365 0.1130 0.1019
SF 13 0.5243 0.5779 2.6434 1.2447 0.3064 0.1366 0.1102 0.0995

0 10

Present study 0.3573 0.3813 1.8008 0.8209 0.2088 0.0902 0.0744 0.0651
SF 1 0.3572 0.3813 1.8010 0.8212 0.2088 0.0902 0.0748 0.0654
SF 2 0.3572 0.3813 1.8010 0.8212 0.2088 0.0902 0.0748 0.0654
SF 3 0.3572 0.3814 1.8022 0.8234 0.2087 0.0900 0.0778 0.0680
SF 4 0.3570 0.3806 1.8084 0.8342 0.2087 0.0901 0.0882 0.0771
SF 5 0.3572 0.3813 1.8009 0.8211 0.2088 0.0902 0.0747 0.0653
SF 6 0.3571 0.3809 1.7992 0.8177 0.2091 0.0907 0.0689 0.0604
SF 7 0.3572 0.3813 1.8036 0.8259 0.2086 0.0899 0.0808 0.0705
SF 8 0.3572 0.3813 1.8038 0.8262 0.2086 0.0899 0.0811 0.0708
SF 9 0.3572 0.3813 1.8038 0.8262 0.2086 0.0899 0.0811 0.0708

SF 10 0.3572 0.3813 1.8009 0.8210 0.2088 0.0902 0.0745 0.0652
SF 11 0.3570 0.3808 1.7995 0.8183 0.2091 0.0906 0.0656 0.0576
SF 12 0.3572 0.3814 1.8018 0.8227 0.2087 0.0900 0.0770 0.0672
SF 13 0.3572 0.3813 1.8011 0.9376 0.2088 0.0901 0.0751 0.0657

100 10

Present study 0.2692 0.2826 1.3569 0.6084 0.1574 0.0669 0.0561 0.0482
SF 1 0.2691 0.2826 1.3570 0.6086 0.1573 0.0668 0.0564 0.0485
SF 2 0.2691 0.2826 1.3570 0.6086 0.1573 0.0668 0.0564 0.0485
SF 3 0.2692 0.2826 1.3579 0.6102 0.1572 0.0667 0.0586 0.0504
SF 4 0.2690 0.2822 1.3628 0.6186 0.1573 0.0668 0.0664 0.0571
SF 5 0.2691 0.2826 1.3570 0.6086 0.1573 0.0668 0.0563 0.0484
SF 6 0.2691 0.2823 1.3558 0.6062 0.1576 0.0672 0.0519 0.0448
SF 7 0.2692 0.2826 1.3590 0.6121 0.1572 0.0666 0.0608 0.0523
SF 8 0.2692 0.2826 1.3591 0.6123 0.1572 0.0666 0.0611 0.0525
SF 9 0.2692 0.2826 1.3591 0.6123 0.1572 0.0666 0.0611 0.0525

SF 10 0.2691 0.2826 1.3569 0.6085 0.1573 0.0668 0.0562 0.0483
SF 11 0.2690 0.2823 1.3561 0.6067 0.1575 0.0672 0.0494 0.0427
SF 12 0.2692 0.2826 1.3576 0.6097 0.1572 0.0667 0.0580 0.0498
SF 13 0.2692 0.2826 1.3571 0.6087 0.1573 0.0668 0.0566 0.0486
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Figure 10 shows the effect of the Winkler coefficient k0 on the distribution of the normal stress
σxx, shear stress τxy and transversal shear stresses τxz and τyz across the thickness of the plate on the
elastic foundation. By analyzing the diagram, it can be seen that the value of the stresses σxx and
τxy equals zero for z/h = 0.15. On the other hand, the maximum values of τxz and τyz stresses are at
z/h = 0.2 when the new proposed shape function is applied, while the maximum values of mentioned
stresses is respectively at z/h = 0.15 i.e., z/h = 0.25 for Karama’s shape function.
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Figure 11 shows a comparative review of shear transversal stresses τxz and τyz distribution
across the thickness of the plate on elastic foundation for different shape functions. As in the case of
bending the plate without the elastic foundation, the shape functions do not give the same results.
Therefore, it can be seen that for the Mantari’s and Akavci’s shape functions, stresses achieve their
maximum values in the plane z/h = 0.25, and for El Meiche’s function in the plane z/h = 0.15, while for
all the other shape functions as well as new proposed function, maximum values of the stresses are in
the plane z/h = 0.2.
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In order to get a clear insight on the effect of Winkler and Pasternak coefficients of the elastic
foundation, Figure 12 shows the diagram of the normalized values of the displacement w plate on
the elastic foundation for different values of the index p and coefficients k0 and k1. By comparing the
two diagrams, it can be seen that the change of the displacement value w is higher with the increase
of the coefficient k1 value than with the increase of the coefficient k0. For example, for the FGM plate
when p = 5, and the increase of the coefficient from k0 = 0 to k0 = 100, the value of deflection changes
twice its value. In the other case, with the change of the coefficient from k1 = 0 to k1 = 100, the value of
deflection changes 8 times its value.
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7. Conclusions

The results obtained in the previously published papers have been a starting point for developing
and applying the new shape function. They have emphasized the importance and topicality of the
research on the application of the functionally graded materials. A thorough and comprehensive
systematization and investigation of the literature on the matter have been conducted according to
the problem type which authors tried to solve during FGM plate analysis. Special attention and focus
have been given to different deformation theories which authors had used in their analyses. The new
shape function has been presented along with the comparative review of it with 13 different shape



Materials 2018, 11, 2381 21 of 24

functions which were primarily developed by different authors for the analysis of composite laminates
but, in this paper, they have been adjusted and implemented in appropriate relations for the analysis
of FGM plates. Based on the obtained results of the static analysis of moderately thick and thick
plates, it can be concluded that the newly developed shape function could be applied in the analysis of
FGM plates.

By analyzing the obtained results, the following could be concluded:

• the values of the vertical displacement w (deflection) and the corresponding stresses, which were
obtained in this paper by using HSDT theory based on the new shape function, match the results
of the same values obtained in the reference papers by using TSDT theory [58], quasi 3D theory
of elasticity [59] and HSDT theories based on 13 different shape functions. However, in contrast
to that, there are significant deviations of the results obtained for the values of the vertical
displacement, especially for stresses σxx, from the results obtained by CPT theory from the
reference papers [60].

• the diagram of the distribution of transverse shear stresses τxz and τyz across the thickness of
the plate shows the difference in behavior between a homogenous, ceramic or metal, plate and
FGM plate. A basic property of FGM can be clearly seen, and that is the asymmetry of the stress
distribution in relation to the middle plane of the plate (z = 0). The maximum values of stresses,
depending on the volume fraction of certain constituents, are shifted in relation to the plane z = 0,
which represents a neutral plane in homogenous plates.

• the highest values of the displacement w are obtained in a metal plate, the lowest in a ceramic
plate and in an FGM plate, the values are somewhere in between and they depend on the volume
fraction of the constituents. Based on that, it can be concluded that by varying the volume fraction
of metal and ceramic, a desired bending rigidity of the plate can be achieved.

• a comparative analysis of the change of transverse shear stresses τxz and τyz across the thickness
of the plate shows that, unlike the stress τxy, their values do not match for all the shape functions.

• by introducing FG plate on Winkler–Pasternak model of elastic foundation is shown that the influence
of the Winkler coefficient (k0) is smaller than the influence of the Pasternak coefficient (k1).
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