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Abstract: The multi-relaxation time lattice Boltzmann method (MRT-LBM) has an excellent
performance in dealing with the complex flow in many different areas. According to the specific
behavior of the fluids, it also has some shortcomings when applied to some special flow like as the
non-Newtonian flow. In Cement-3D printing, the fluids always exhibit according to the yielding
behavior. When using the standard MRT-LBM, the simulation maybe divergent. In order to solve
the problem, this work presents an improved MRT-LBM considering the non-Newtonian effect as
a special forcing term to ensure the stable and accurate simulation. Finally, the Poiseuille flow was
used to validate the feasibility of the proposed method.
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1. Introduction

3-D printing is an advanced technology to model parts with complex structures [1,2]. It has
been widely applied in the mechanical engineering, art, bioengineering, and construction fields [3–5].
When it is used in the construction field, the materials are always inorganic mixtures. The fluids are
typically non-Newtonian fluids [6–9]. The flow of the materials in the pipes cannot be measured easily,
so simulations are required.

In recent years, lattice Boltzmann method (LBM) has developed into a more popular method
for fluid simulation. It can be applied in flow simulation with complex fluid types or various
structures [10–12]. Although LBM has been widely applied in many areas, it is not stable or accurate
in certain cases such as the non-Newtonian flow, fluids with lower or higher Reynolds number, and so
on. For Newtonian fluids, the viscosity is a constant, while the viscosity of non-Newtonian fluids
will change with the shearing rate. When the viscosity is close to 0 or bigger than 1, the simulation
process will be unstable or inaccurate. Power-law fluids are the most common non-Newtonian
fluids [13–16]. Many researchers have modified LBM for the power-law flow to achieve stable and
accurate simulations. Niu et al. showed that if the relaxation time can be kept in (1/2, 1), a better
stability and higher accuracy will be guaranteed [17]. Based on the above theory, Gabbanelli applied a
truncated LBM in a power-law flow, which shows a better simulation [18]. Boyd conducted a local
method for the power-law tunnel flow, and the results show a higher accuracy than the truncated
method [19]. Nejat et al. applied a second-order lattice Boltzmann method in a power-law flow
simulation [20]. Orestis et al. presented a local lattice Boltzmann method for power-law fluids to
avoid divergence. It should be noted that the power-index should be kept in a certain range to
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ensure the validity [21]. In addition to the power-law flow, some other yielding fluids have also
been studied. Tang et al. incorporated the Papanastasiou exponential improved method to simulate
Bingham flow [22]. Chen Songgui et al. used MRT-LBM to study Bingham flow, which obtains stable
simulations [23]. Wu Weiwei et al. proposed a truncated method for Herschel–Bulkley fluids by using
LBM and MRT-LBM, and the effectiveness has been validated by theoretical solutions of Poiseuille
flow [24,25]. In Cement-3D printing, the cement paste represents the yielding fluids characteristic,
which belongs to Herschel–Bulkley fluids.

Compared with power-law fluids, the researches on yielding fluids are insufficient. Although
some researchers proposed improved methods for Bingham fluids, they are not well suited for
Herschel–Bulkley fluids. The power-index has an important impact on the simulation. In this work, an
improved method was proposed for substituting the non-Newtonian influence of a Herschel–Bulkley
fluid into external forcing term. Then cement paste flow in 3-D printing was numerically simulated
using the proposed method. Finally, the improved method was validated using a Poiseuille flow.

2. Improved MRT-LBM for Yielding Fluids

2.1. Rheological Equation of Yielding Fluids

Common yielding fluids mainly include Bingham fluids and Herschel–Bulkley fluids. They can
be expressed using a universal equation:{ .

γ = 0, |τa| < τ0

τa = τ0 + K
.
γ

n, |τa| ≥ τ0
(1)

where
.
γ is the shearing rate, τa is the shearing stress, K is the viscosity coefficient, τ0 is the initial

yielding stress, and n is the power-law index. When n = 1, the fluids will be Bingham fluids; otherwise,
it corresponds to Herschel–Bulkley fluids. The kinematic viscosity ν can be calculated using:{ .

γ = 0, |τa| < τ0

ν = τ0
| .
γ| + K

∣∣ .
γ
∣∣n−1, |τa| ≥ τ0

(2)

In 1997, Papanastasiou and Boudouvis proposed a modified equation to simplify the constitutive
model [26]:

νap = K
∣∣ .
γ
∣∣n−1

+
τ0

ρ
∣∣ .
γ
∣∣ [1− exp(−m

∣∣ .
γ
∣∣)] (3)

where ρ is the density, and m is used to control the increase of stress. When m approaches zero, the
equation will become the constitutive model of power-law fluids.

2.2. Improved MRT-LBM

Standard MRT-LBM in two-dimensional space (D2Q9 model) with a forcing term can be expressed
as [27]:

f(r + eiδt, t + δt)− f(r, t) = −M−1SM[f(r, t)− feq(r, t)] + δtF′ (4)

where r is the displacement vector, ei is the discrete velocity, F′ is an external force, and δt is the time
step size, which is always set as δt = 1. The second item on the right side relates to the external force.

f is a distribution function and feq is an equilibrium distribution function, which is defined as:

feq(r, t) = ωiρ

[
1 +

ei · u
c2

s
+

(ei · u)2

2c4
s
− u2

2c2
s

]
(5)

where cs represents the lattice sound speed, where c2
s = c2/3; u is the velocity vector; ωi is the weight

coefficient, given by ω0 = 4/9, ωi = 1/9 for i = 1–4, and ωi = 1/36 for i = 5–8. M is a transformation matrix:
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M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 1 1 1 −1 −1
0 0 −2 0 −2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


(6)

The discrete velocity ei is expressed as:

ei =


(0, 0), i = 0
c(cos i−1

2 π, sin i−1
2 π), i = 1, 2, 3, 4√

2c(cos 2i−9
4 π, sin 2i−9

4 π), i = 5, 6, 7, 8
(7)

The lattice speed c = δx/δt, δx represents the lattice step size, whose value is always set as 1.
The principal diagonal symmetric matrix S mainly has an important effect on the relaxation

process. The specific expression is given by:

S = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8) (8)

where s0, s3, s5, s7, and s8 are common relaxation factors, s3 and s5 have the same meaning, and s7 and
s8 have the same meaning. s1 is related to the viscosity, and s2 can be used to adjust the stability of
numerical simulation. s4 and s6 can be used to improve the accuracy of MRT-LBM. The factors have
the following relations: s3 = s5, where they have no influence on macroscopic process; s4 = s6, where
they affect the accuracy of MRT model; and s7 = s8, where they represent relaxation factors. Then, s0 is
an important related factor to the density, and it also has no effect on the macroscopic process. s1 is
usually related to viscosity. The stability can also be improved by adjusting it. The factor s2 also has
an impact on the stability. Here, s1 and s2 are set to be 0.8. According to the above description, s0, s3,
and s5 are selected arbitrarily as 0. s4 and s6 are equal to 1.9. s7 and s8 will be discussed further below.

With MRT-LBM, kinematic viscosity is defined as:

ν = c2
s

(
1
s8
− 1

2

)
δt (9)

For a standard single relaxation time LBM (LBM mentioned below refers to a standard single
relaxation time LBM), the strain rate tensor is described as:

Sαβ = − 1
2ρτc2

s

8

∑
i=0

eiαeiβ

(
fi − feq

i

)
(10)

where ρ is the density, and τ is the relaxation time, where is τ = 1/s8. However, the strain rate tensor
in standard MRT-LBM is different from LBM, which is expressed as:

Sαβ = − 1
2ρc2

s δt

[
8

∑
i=0

eiαeiβ

8

∑
j=0

(
M−1SM

)
ij

(
fj − feq

j

)]
(11)

Then, the second invariant of strain rate tensor can be acquired using Equation (11) as:

DI I =
l

∑
α,β=1

SαβSαβ (12)
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With Equation (12), the shearing rate can be calculated as:

.
γ =

√
2DI I (13)

According to the equality of two different expressions in Reference [21], then substituting viscosity
into the related equation, the stress tensor σαβ can be described as:

σαβ = −Pδαβ + 2KSαβ +

{
2K
[∣∣ .

γ
∣∣n−1 − 1

]
+

τ0∣∣ .
γ
∣∣ [1− exp

(
−m

∣∣ .
γ
∣∣)]}Sαβ (14)

where δαβ is a Kronecker delta, K is the viscosity coefficient, and P is the pressure. In the following
section, the forcing term will be used to explain the non-Newtonian effect. For standard MRT-LBM
with external force, the forcing term is expressed as [23]:

F′ = M−1

(
I − S

2

)
MF (15)

Further, the item F in Equation (15) can be calculated using:

Fi = ωi

[
ei · F

c2
s

+
(uF + Fu) : (eiei − c2

s I)
2c4

s

]
(16)

The Navier–Stokes equation would be expanded by Chapman–Enskog at incompressible limit as:

ρ∂t(uβ) + (ρuα)∂αuβ = −∂βP + 2µ∂αSαβ (17)

where uα and uβ are the components of u, and µ is the dynamic viscosity. The relation between
kinematic viscosity and dynamic viscosity is ν = µ/ρ. Also, the above equation can also be described
using the following equation, which includes the forcing term:

ρ∂t
(
uβ

)
+ (ρuα)∂αuβ = −∂βP + 2K∂αSαβ + F (18)

Combining Equations (3) and (14), with Equation (17), the force related term F in Equation (18)
can be obtained as:

Fi =

{
2µ0

[(√
2DI I

)n−1
− 1
]
+

τ0(√
2DI I

) [1− exp
(
−m

√
2DI I

)]}
∂αSαβ (19)

Thus, the non-Newtonian effect described as a special external force will be achieved. Combining
the shearing rate obtained from Equation (13) with Equation (3), the parameter s8 for next iteration
could be calculated. The specific programming process based on software MATLAB 2014a (MathWorks,
Natick, MA, USA) can be conducted according to the following steps:

(1) Conduct the physical transformation according to the dimension theory. The Reynolds number is
taken as the key criteria, and then the other parameters used in simulation can be obtained.

(2) Set the simulation domain and initial conditions, especially the initial value of the factor s8.
(3) Calculate the equilibrium distribution function according to Equation (5).
(4) Conduct the collision step, where the specific function is shown as:

f+(r, t) = f(r, t) + M−1S[$(r, t)− $eq(r, t)] + δF′ (20)

where $(r,t) = Mf(r,t), $eq(r,t) = Mfeq(r,t), and the force term is mainly used to explain the
non-Newtonian effect of yielding fluids. The calculations can be seen in Equations (15), (16), and (19).
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(5) Calculate the strain rate tensor and shearing rate by using Equations (11)–(13), then the kinetic
viscosity can be obtained using Equation (3) and the relaxation factor s8 will be updated.

(6) Conduct the streaming step, where the streaming function is shown as:

f(r + eiδt, t + δt) = f+(r, t) (21)

(7) Process the boundary condition, where the non-equilibrium bounce-back scheme is taken as the
boundary method.

(8) Conduct the next calculation from Step (3).
(9) Calculate the density and velocity, where the corresponding equations are:

ρ = ∑
i

fi(r, t), ρu = ∑
i

eifi(r, t) +
δt
2

F′ (22)

3. Flow Analysis for the Mixture Fluids in Cement-3D Printing

3.1. Rheological Equation of Fluids

Many experiments have been done to determine the detailed types and proportions of materials.
The specific components are ordinary Portland cement, water, polycarboxylate water reducing agent,
modified rod soil, and cellulose ether. The corresponding proportion were 1:0.4:1.5h:0.4h:1.2h.
The rheological equation for mixture fluids can be obtained using a viscometer, which is described as:{

τa = 3.899 + 1.103
.
γ

0.633 , |τa| > 3.899
.
γ = 0 , |τa| < 3.899

(23)

With Equation (23), it can be found that the mixture fluids were Herschel–Bulkley fluids. It belongs
to typical yielding non-Newtonian fluids.

3.2. Structure of Extruding Head

In the Cement-3D printing experiment, the structure of the printing head is the key technology.
According to repeated testing, the single screw extruder was taken as the printing head. The detailed
structure is shown as Figure 1a. When expanded along a spiral, a cavity can be obtained, as seen in
Figure 1b.
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Figure 1. Structure of the extruder: (a) diagram of the extruder, and (b) spreading structure of the extruder.

The specific meanings and values of the key parameters have been listed in Table 1.
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Table 1. The key parameters of the extruder.

Factor Meaning Value

W the width of the channel 30 mm
h the depth of the channel 10 mm
θ angle of lead 20◦

3.3. Flow Simulation using Improved MRT-LBM

The lattice number was set as 480 × 160. The rotation speed of the screw was 40 r/min.
The diameter of the screw was designed to be 50 mm. The velocity was only set at the upper surface in
Figure 1b and the velocities at other three surfaces were 0. With the above description, flow simulations
were conducted. A streamlines figure could be obtained as seen in Figure 2. The simulation of the paste
flow using standard MRT-LBM was also conducted, while the result was divergent. It was mainly
caused by the non-Newtonian effect.
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In addition, velocity components were also analyzed. The velocity distributions of the 
component u at different directions are given in Figure 3. In Figure 3a, it can be found that the 
biggest velocity u was near the inner wall of the barrel and the smallest velocity u was near the outer 
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Figure 2. Streamlines figure.

In addition, velocity components were also analyzed. The velocity distributions of the component
u at different directions are given in Figure 3. In Figure 3a, it can be found that the biggest velocity u
was near the inner wall of the barrel and the smallest velocity u was near the outer wall of the screw. In
Figure 3b, it shows that the biggest velocity u was near the center line of the channel and the smallest
velocity u was at the wall of swirling leaves.
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and (b) width W-velocity u.
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It can be found from Figure 4a that the biggest velocity v was at the midway between the barrel
and the screw. Then the velocity v was always 0 along the center line of channel. In Figure 4b, the
velocity v near the outer wall of the screw was approximately 0 and it fluctuated near the wall of the
swirling leaves. It was bigger when the position was closer to the inner wall of the barrel.
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4. Validation and Discussion

The obtained results demonstrate the stability of the new, improved MRT-LBM. To ensure accuracy,
we took the theoretical results of Poiseuille flow to compare with numerical results of the proposed
method. The theoretical solution of yielding fluids is shown as:

u(y) =


n

n+1

(
− 1

µ0
∂P
∂x

)1/n
[(

H
2 + τ0

∂P/∂x

)(n+1)/n
−
(

yτ +
τ0

∂P/∂x

)(n+1)/n
]

, 0 ≤ |y| ≤ yτ

n
n+1

(
− 1

µ0
∂P
∂x

)1/n
[(

H
2 + τ0

∂P/∂x

)(n+1)/n
−
(

y + τ0
∂P/∂x

)(n+1)/n
]

, yτ ≤ |y| ≤ H
2

(24)

where H represents the distance between the two parallel plates, and yτ is a critical point, which is
equal to:

yτ = −τ0/(∂P/∂x) (25)

We consider that the pivotal factors mainly included initial yielding stress, power-index, and lattice
number. The accuracy will be discussed using the result of the relative error. The equation of the error
er is:

er = ∑N
i=1 (1− νnumerical

i /νtheoretical
i )

2
(26)

The power index n was set as 0.5, 1, 2, where these values correspond to shear-thinning fluids,
Bingham fluids, and shear-thickening fluids, respectively. For different power indexes, the effect of
lattice numbers and initial yielding stresses were explored. To avoid the effect of other factors, we set
the pressure gradient ∂P/∂x = −1.0 × 10−5, viscosity coefficient µ0 = 0.01, density ρ = 1, and distance
H = 1. Lattice numbers were set in the range of 50–250 and the initial yielding stresses were selected as
1.0 × 10−6, 2.5 × 10−6, and 3.5 × 10−6.

In Figure 5, it shows the numerical velocities and theoretical velocities for different initial yielding
stresses when the power index n = 0.5 and lattice number was 200. It can be seen that the numerical
velocities were consistent with the theoretical velocities at different initial yielding stresses. In Figure 6,
it gives the relative error for each case of three initial yielding stresses with different lattice numbers.
The relative error decreased with increasing lattice number.
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When the power index n = 1, it corresponds to a special kind of yielding fluids named Bingham
fluids, and the velocities of the simulation and theory at three different initial yielding stresses are
shown in Figure 7. It shows that the numerical results also had a good consistency with the theoretical
results for all cases. The figure of relative errors are given in Figure 8 for three situations. It suggests
that the bigger the lattice number, the smaller the relative error will be.
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When the power index n = 2, it belongs to shear-thickening fluids. The velocities of simulation
and theory at three different initial yielding stresses are shown in Figure 9. In Figure 10, it gives the
tendency between relative error and lattice number. Both the good consistencies and small relative
errors demonstrate that the proposed method is effective.

In Figures 5, 7, and 9, the only difference of conditions is the power index. It was found that
the power index had an important effect on velocity. With the increasing of the power index, the
velocity increased rapidly. Also, the initial yielding stress affected the velocity significantly. The smaller
initial yielding stress led to a bigger velocity. For different initial yielding stresses and power indexes,
all results showed a good consistency. This indicates that the proposed method is stable and valid.

In Figures 6, 8, and 10, for different power indexes and initial yielding stresses, the similarity was
that the relative error decreased with increasing lattice number. The slope of each line was very close
to −1. The smaller errors indicated that the improved method is accurate.
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5. Conclusions

The non-Newtonian effect will result in a poor stability and accuracy when using standard LBM in
the numerical simulation of yielding fluids. To improve the situation, a modified multi-relaxation-time
lattice Boltzmann method was proposed. The non-Newtonian part was modeled with a special forcing
term. Then the improved method was applied in a simulation of mixed paste in the extruder of
Cement-3D printing. Stable streamlines and velocity distributions were obtained. For the velocity
component u, the biggest velocity in two directions occurred at the position of the inner wall of the
barrel and the center of the channel, respectively. The smallest velocity in two directions occurs at
the position of the outer wall of screw and the wall of swirling leaves, respectively. For the velocity
component v, it was 0 when the position was at the center of the channel and the outer wall of the screw.
In order to prove the stability and accuracy of the method, numerical solutions of the Poiseuille flow
were compared with theoretical solutions. The numerical results were consistent with the theoretical
results. For the cases of different initial yielding stresses and power-indexes, the relative errors were
small enough to verify the feasibility of the improved method.
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