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Abstract: We report on the structural and magnetic characterization of two nanocrystalline
Finemet-type magnetic cores. The nanocrystalline structure developed after annealing the amorphous
precursor alloy at 550 °C for 30 and 60 min of annealing time. Structural analysis carried out by
means of X-ray diffraction providing useful information on the grain size mean and partial volume of
the nanocrystalline phase. The magnetic characterization was focused mainly in the Rayleigh region
which, influenced by the intergranular coupling, was found to be more efficient in the sample treated
for a longer time with a finer nanocrystalline structure.
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1. Introduction

Nowadays, nanocrystalline magnetic cores are essential components in modern technologies,
since they are used in a wide range of highly efficient commercial products in many electrical and
electronic devices operating at low or medium frequencies [1-3]. In spite of the knowledge gathered
on soft magnetic nanocrystalline alloys, the development of ultrafine grain structures with outstanding
magnetic properties still displays puzzling aspects. With respect to this, emergent applications of
magnetic cores involve them to be used in the so called Rayleigh region, that is, the magnetization curve
at a small exciting magnetic field. In addition, the reduction of electric energy consumption of new
electronic devices is a challenge for their strategic implications. In this context, the magnetic behavior
of soft magnetic materials in the aforementioned Rayleigh area can provide useful information strongly
connected with aspects on energy because such behavior is quite different on comparing with the
magnetization curve at high magnetic fields [4,5].

It is well known that the outstanding soft magnetic character of nanocrystalline alloys (Finemet-type)
is strongly connected with their peculiar microstructural features. In fact, such nanocrystalline structure
is obtained on submitting the precursor amorphous alloy to careful thermal treatment, obtained by
non-equilibrium techniques involving a rapid solidification process. The thermal treatment (typically at
550 °C, 60 min.) provokes a massive nucleation and growth of «-Fe or «-Fe(Si) nanograins (10-20 nm
of diameter) embedded in the residual amorphous matrix. Obtained in this way, nanocrystalline alloys
present excellent magnetic softness, quite low coercivity (Hc) values and magnetic losses as well as
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enhanced initial magnetic permeability values [6-8]. It is noteworthy that post-thermal treatment as
well as the chemical composition of the precursor alloy can be careful selected allowing the possibility
of tuning the properties of nanocrystalline materials considering each particular application [9,10].
As a very interesting consequence to mention, these soft nanocrystalline materials are ideal candidates
to be used as the nucleus of small electrical motors.

Additionally, research on the magnetic behavior of soft magnetic materials with amorphous
and nanocrystalline structure in the Rayleigh region can provide useful information regarding these
applications. In this context, previous works (see for example [10-12]) analyzed the magnetization
process in the Rayleigh region of these materials as one part of the complete magnetization process until
the magnetic saturation state, a few of these focused only on the deep analysis of such a region [13].

In this paper we present a microstructural study carried out by means of X-ray diffraction (XRD) as
well as experimental results concerning the magnetic behavior in the Rayleigh region in toroidal wound
cores of Feys 5Cu1Nb3Sis5,5B7 amorphous alloy annealed at 550 °C for 30 and 60 min, which induced a
massive nanocrystallization. Therefore, our aim was to achieve a deeper understanding of the magnetic
characterization in the so-called Rayleigh region (at low applied magnetic field) in this interesting new
magnetic material within its nanocrystalline state as nucleus of a toroidal magnetic core.

2. Experimental Details

Fe73 5Cu1Nb3Sij5 5B7 amorphous material ribbons (width: 10.3 mm, thickness: 18 pm) produced
by the melt-spinning technique were used to build a nucleus of the toroidal wound core, built with
ring-shape geometry (external diameter = 54.5 mm, inner diam. = 45.7 mm, bandwidth = 10.3 mm).
Then, the nucleus was submitted to thermal treatment (550 °C for 30 and 60 min) in a specific
furnace (Brockhaus Messtechnik, Plettenberg, Germany). These two thermal treatments provoked the
development of the nanocrystalline structure as was evidenced by XRD analysis (Bruker AXS GMBH,
Karlsruhe, Germany). From here on, the nanocrystalline core treated for 30 min of duration is denoted
as core A and that treated for 60 min as core B.

Wide angle X-ray scattering was used in a powder diffractometer to characterize the
microstructure. The measurements were carried out using the step scanning technique between
40° and 80° (20) in steps of 0.02° (20) with accumulation times of 3 s at each point. Note that 20 is the
scattering angle and the region of measurement is the one where these compositions show their more
significant crystalline peaks with CuKa wavelength.

Magnetic parameters in the Rayleigh region of the core tape were performed through the virgin
magnetization curve of the nanocrystalline magnetic cores measured from the hysteresis loop at room
temperature and at low applied magnetic field (up to 50 A/m). For this, we used hysteresis graph
equipment (MPG 100 D model from Brockhaus Messtechnik, Plettenberg, Germany) in quasistatic
conditions (more details can be found in Reference [1]).

3. Results and Discussion

Figure 1 depicts the XRD patterns of pieces of the two nanocrystalline magnetic cores. Diffraction
patterns were normalized in the high g-range where the intensity cannot vary between the different
samples owing to the very short structural distances responsible for the scattering in the g region.
It must be noted that sample B, in comparison to sample A, shows sharp peaks which can be attributed
to a finer nanocrystalline structure (more degree of homogeneity in the dimensions and distribution
of the nanograins in the residual amorphous matrix), corresponding to the crystallization of o-Fe(Si)
phase [14]. The evaluation of the crystalline phase formed with these treatments was made by means
of subtraction of the amorphous halo of the pattern of the as-cast sample. The normalization to the
total intensity constitutes the crystallinity ratio (x), which is widely used to characterize semicrystalline
materials [15]. As is expected, the obtained values of x strongly depend on the annealing time.
Accordingly, both samples exhibit clear peaks corresponding to the x-Fe(Si) phase. Table 1 provides
numerical data on the partial crystalline phase and grain size deduced for the two samples from the
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XRD patterns. As can be seen, sample B (with larger annealing time than sample A) has a higher phase
of nanocrystallization than sample A, which leads to a softer magnetic character as evidenced in the
following results.
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Figure 1. XRD scans obtained for the two nanocrystalline samples: A (red) and B (black) core.

Table 1. Numerical data on the partial crystalline phase and grain size.

Core Crystallinity (%) 20m D (nm)
A 67.2 45.200 13.5
B 75.4 45.200 14.9

Figure 2 shows the hysteresis loops of the two samples at very low applied magnetic field
(Rayleigh area). As can be seen, sample A presents a harder magnetic character compared to that of
sample B, which indicates that the nanocrystalline character of sample B provokes a more effective
intergranular coupling by exchange interaction leading to very soft magnetic behavior.

The low field region of the virgin magnetization curves is shown in Figure 3 for the annealed cores.
Again, the curve of sample B indicates softer magnetic behavior in agreement with the XRD results.

On the other hand, within the field range, 0 < Hyy,; < Ho, these curves may be described by the
so-called Rayleigh law for polarization |

] = aH,py + bH; (1)

appl
where the field Hy denotes the upper limit of the Rayleigh region. As is illustrated in Figure 3,
the function [/ Hgppi vs. the applied external field, Hgppi, leads to a linear relation in the Rayleigh region.
The initial susceptibility, x; = lim dJ/dH,p,, corresponds to the intercept on the ordinate being the
coefficient of Equation (1), while the Rayleigh constant, b, should be the slope of the function J/Hgp.
The initial magnetic susceptibility and Rayleigh constant are parameters depending on the properties
of ferromagnetic materials [16].
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Figure 2. Hysteresis loop at low-applied magnetic field of the two nanocrystalline magnetic cores.
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Figure 3. Magnetization curve, at low applied magnetic field, of the two nanocrystalline cores.
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It is interesting to note that the maximum of the curves of Figure 4 for the applied magnetic
field is around 1 A/m. This value could be assigned to Hy. Therefore, a linear region (0 < Hyy, < Ho)
corresponds to the Rayleigh region. Values of coefficient (a) (higher in core A) and coefficient (b)
(the slope of the linear region, being large in core B) of Equation (1) for the two investigated cores
could indicate a softer magnetic character of core B. Therefore, low-field magnetization curves of the
two nanocrystalline cores can be accurately approximated by the Rayleigh model for the range of core

A and core B, respectively.
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Figure 4. Relative permeability u, = J/Hy vs.
nanocrystalline samples.

the applied external field, Hp,,, for the two
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The virgin magnetization curves as a function of the external magnetic field are shown in Figure 5.
Note that the approach to magnetic saturation is reached by core A (less volume of nanocrystals) with
a large applied magnetic field as compared to core B.
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Figure 5. Virgin magnetization curve of the two nanocrystalline magnetic cores.

Regarding the magnetization mechanism, it is assumed that the low-field magnetization
(Rayleigh region) occurs by reversible displacement of 180°-Bloch domain walls within the regions
of low applied magnetic field. The motion of Bloch walls, bound in each grain to the easy direction
remaining active after demagnetization, is assumed. This effect should be more prominent in B core,
where the partial volume of the nanocrystalline phase is larger than in A core leading to a more
effective intergranular exchange coupling with a lower coercive field as can be seen from Figure 2.

In fact, the suppression of magnetocrystalline anisotropy in this type of soft magnetic material
has been attributed to an averaging process linked to the randomly oriented grains, which are
ferromagnetically coupled by exchange interactions. Such averaging out of the crystalline anisotropy
is a necessary condition for the achievement of good soft magnetic properties and, in particular, a high
value of initial permeability [7]. The domain wall displacement seems to be the dominant mechanism
of the magnetization process. Since the nanograins are gradually decoupled with decreasing partial
volume of the nanocrystals, the weakened coupling results in an increase of the effective crystalline
anisotropy, i.e., the domain structure changes from wide domains to a pattern of small irregular
domains. As a consequence, domain wall displacement at the grain boundaries starts at low fields
(propagation). The associated local hysteresis loops are described by means of the Rayleigh law
and the macroscopic behavior of the material, observed either under alternating or rotational fields,
is calculated in terms of the linear combination of such loops, according to the spatial distribution of
the active easy axes.

This suggestion is also in agreement with a very low value of coercivity in comparison with
amorphous sample. This effect is probably caused by the processes of nanocrystalline transformation,
where the relief of internal stresses occurs, which decreases the magnetoelastic anisotropy and the
number of regions with braked domain wall (DW) movement. Simultaneously, the thickness of DW
increases to be much higher than the dimensions of nanocrystallites (10 nm) with the fact that the
effective exchange correlation length (around 35 nm [7]) must positively determine such movement.

4. Conclusions

We studied the structural and, magnetic behavior of two toroidal cores based on nanocrystalline
Finemet alloy. The nanocrystalline structure was developed by annealing (550 °C, 30 and 60 min) the
core whose precursor state exhibited amorphous character.

The X-ray diffraction paths of both treated cores reflect nanocrystalline character with a relative
volume of nanograins in the sample treated for 60 min. As a consequence, this core presents softer
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magnetic behavior compared with the core treated for 30 min. The magnetic properties were studied
in the low applied magnetic field (Rayleigh region) and analyzed in terms of the main mechanisms
invoked to explain the magnetization process (displacement of domain walls for the amorphous and
annealed cores. It is important to remark that the frequency of 100 Hz defines two regions for these
dependencies in all cores which implies different microstructural mechanisms to explain the excess of
eddy-current loss at high frequency range.
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