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Abstract: This paper reports on the fabrication of indium-zinc-tin-oxide (IZTO) transparent conductive
film deposited by direct current (DC) reactive magnetron sputtering. The electrical, structural, and
optical properties of IZTO film were investigated by Hall measurement, X-ray diffraction (XRD), and
optical transmission spectroscopy with various sputtering powers. The IZTO film prepared used
power at 100 W showed the lowest resistivity of 5.2× 10−4 Ω cm. To accomplish rapid switching and
high optical modulation, we have fabricated an electrochromic device (ECD) consisting of an working
electrode (WO3 electrode film deposited on IZTO/ITO/glass) and a counter-electrode (Pt mesh) in 0.2 M
LiClO4/PC liquid solution. The device demonstrated an optical contrast of 44% and switching times of
4.6 s and 8.1 s for the coloring and bleaching state, respectively, at the wavelength of 550 nm.

Keywords: indium-zinc-tin-oxide (IZTO) film; electrochromic device (ECD); tungsten electrode film;
DC reactive magnetron sputtering; cathodic arc plasma (CAP)

1. Introduction

An electrochromic device (ECD) is based on a well-known reversible optical switching phenomenon
and is an enabling technology for smart windows, optical information displays, variable-reflectance
mirrors, electronic papers, and switch mirrors [1]. Electrochromism can produce an interesting
phenomenon as reversible change in optical properties under a small applied DC voltage pulse
difference [2]. Smart windows based on electrochromic (EC) materials can be commanded to reversibly
change their optical properties of reflectance, transmittance, and absorption. Smart windows can
effectively reduce the heating or cooling loads of building energy consumption [3]. Tungsten oxide
(WO3) electrode film has received extensive attention to inorganic transition metal-oxides due to
its attractive cycle life, including environmental stability and stability against sunlight exposure [4].
The chemical reaction of a WO3 electrode film are due to reversible oxidation/reduction reactions
induced by electrochemical double injection/extraction of positive ions (lithium or proton) and
electrons into/outside the host of WO3 lattice in transition of W5+ and W6+ [3,4].

The typical and promising structure of an ECD is composed of Pt mesh/electrolyte layer/
electrochromic layer/transparent conducting electrode layer, as shown in Figure 1. The transparent
conducting electrode is the key point studied in this article. However, indium tin oxide (ITO), known for
its good electrical conductivity, has to be deposited at high temperatures and then post-annealed at
a temperature above 200 ◦C. This annealing temperature causes the ITO films to be crystallized and
roughened [5]. Sun et al. suggested an EC device with a ZnO nanowire array modified surface
of ITO has fast-switching response [6]. The nanostructure of a ZnO film provides many direct
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pathways for fast electron transport and porous ZnO nanowires deposited on surface of WO3 film [6,7].
The nanostructure of a WO3 electrode film can be an increased active site for redox chemical reaction [8].
Amorphous indium zinc-tin oxide (IZTO) also has good electrical conductivity and a high transmittance
in the visible region of the spectra. Amorphous IZTO can be deposited at room temperature. It also
has a much lower roughness than ITO. The high mobility of IZTO, which was comparable with ITO,
was attributed to poor phonon scattering because of the amorphous structures.
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Figure 1. The typical ECD structure.

In this study, we focus on fabricating IZTO films using DC magnetron sputtering powers by
modifying the surface of ITO as a new transparent electrode. To test the effect of IZTO films as an
electrode in ECD, we have fabricated an electrochromic device (ECD) consisting of a working electrode
(WO3 electrode film deposited on IZTO/ITO/glass) and a counter-electrode (Pt mesh) in 0.2 M LiClO4/
PC solution.

2. Experimental

IZTO films (Sample 1−5) with thickness of approximately 250 nm were deposited on non-alkali
glass substrates using DC magnetron sputtering technology. IZTO films were fabricated at a room
temperature process with an IZTO target under various DC magnetron sputtering powers by increasing
from 50 W to 150 W. The IZTO (70 at.% In2O3 + 10 at.% SnO2 + 20 at.% ZnO) target was grown in
99.99% purity with a diameter of 76.2 mm and a 3 mm thickness. The base chamber evacuated with
a high-vacuum pressure set to less than 9.33 × 10−4 Pa. The working pressure, set at 0.13 Pa, was
kept with an argon (Ar) gas flow of 30 sccm. Prior to deposition, the target was pre-sputtered for
3 min and the distance between the target and substrate was set at approximately 90 mm. The DC
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magnetron sputtering powers were varied from 50 W to 150 W. The deposition process of IZTO films
are listed in Table 1. With the samples of the IZTO/ITO/glass substrate, we continued WO3 electrode
film (220 nm) layer that was deposited by using cathodic arc plasma (CAP) deposition with a purity
tungsten (W)-metal target (76 mm in diameter and 12 mm in thickness) at room temperature. The base
chamber pressure was set to be less than 1.33 × 10−3 Pa using a turbo pump. In this study, we used an
oxygen mass flow of 375 sccm and argon mass flow of 75 sccm for the reactive gases. The WO3 series
were fabricated on IZTO/ITO/glass as electrochromic layers, which are listed in Table 2.

Table 1. Detail of parameters of the IZTO films with various sputtering powers.

Processing Working
Pres. (Pa)

Base Pres.
(mPa)

Ar
(sccm)

DC Power
(W)

Thickness
(nm)

Time
(min)

Deposition
Temp. (◦C)

Deposition Rate.
(nm/min)

sample-1 0.13 9.33 × 10−4 30 50 250 14.25 RT 17.54

sample-2 0.13 9.33 × 10−4 30 75 250 11 RT 22.72

sample-3 0.13 9.33 × 10−4 30 100 250 9.1 RT 27.47

sample-4 0.13 9.33 × 10−4 30 125 250 6.0 RT 41.66

sample-5 0.13 9.33 × 10−4 30 150 250 4.9 RT 51.02

Table 2. Deposition parameters of the WO3 electrode film.

Target Working
Pres. (Pa)

Base Pres.
(mPa)

Ar/O2
(sccm) Power (W) Thickness

(nm)
Time
(min)

Deposition
Temp. (◦C)

Deposition Rate.
(nm/min)

Metal W 2.7 1.3 × 10−3 75/375 1350 220 15 RT 14.67

We injected/extracted lithium ions (Li+ ions) into the WO3 film (electrochromic layer) by applying
a negative/positive voltage. In the electrolyte system, we used liquid electrolyte composed of lithium
perchlorate (LiClO4, Mw = 106.39, Sigma-Aldrich, Darmstadt, Germany) and propylene carbonate (PC,
C4H6O3, Sigma-Aldrich), the resulting weight ratio was 0.053 (LiClO4/PC = 10.6 g/200 mL). An active
area of 2 × 3 cm2 was used in our case for WO3/IZTO/ITO films. Figure 2 shows the cross-sectional
of the WO3 nanoparticle electrode-modified IZTO thin films by CAP deposition used with O2/Ar = 5.
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Figure 2. Cross-sectional of WO3/IZTO film.

Crystallographic structures and phases of IZTO films were analyzed using glazing angle X-ray
diffraction (XRD). The morphology of the IZTO film was analyzed through a scanning electron
microscope (SEM). The electrical properties were characterized using a Hall effect measurement
system at room temperature. A cycle voltammetry (CV) measurement was performed in order to
understand the electrochemical properties of the WO3 electrode film deposited on an IZTO/ITO/glass
substrate. The optical transmittance modulation for ECD was measured using a UV-Vis spectrometer
(USB 4000, Ocean Optics, Inc., 830 Douglas Ave., Dunedin, FL, USA).
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3. Results and Discussion

3.1. Basic Properties of IZTO Films with Various Sputtering Powers

Figure 3 shows the XRD patterns for IZTO films deposited on glass under various DC magnetron
sputtering powers increasing from 50 W to 150 W. The XRD patterns exhibited broad peaks at a 2θ of
33◦, and without other discernible, indicating amorphous structures of all samples regardless of the
sputtering power. In a previously reported investigation of relative IZTO films, Zn was doped into ITO
and the structure changed from crystalline ITO to amorphous In(ZnSn)O and In2Zn5O [9]. In general,
ZnO-doped In2O3 could keep a stable amorphous structure below 500 ◦C [10]. On the other hand, the
crystalline temperature of In2Zn5O8 was higher than 800 ◦C [11]. In our reports, relative IZTO films
were shown to be fabricated at room temperature, which exhibited a stable amorphous structure.
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The electrical resistivity, carrier concentration, and mobility with various sputtering powers are
shown in Figure 4. In Figure 4, it is shown that sputtering power increased from 50 W to 100 W, and
both carrier concentration and carrier mobility increased, resulting in a decrease of electrical resistivity.
The electrical resistivity reached the minimum value of 5.2 × 10−4 Ω·cm and the carrier mobility
reached the maximum value of 7.93 cm2/V·s at 100 W. In our experiments, the carrier concentration
varied from 1.64 × 1021 to 2.1 × 1021 cm−3 as the power was increased from 50 W to 150 W. Carrier
concentration observed a maximum value of 2.1 × 1021 cm−3 at 125 W.
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Figure 4. Electrical resistivity, carrier concentration, and mobility of IZTO films with various
sputtering powers.

Figure 5 shows the optical transmittance spectra of an IZTO film with different sputtering powers
increased from 50 W to 100 W. The average transmittance of an IZTO/glass film of 80.4% was achieved
in a wavelength region of 400 nm–800 nm at 125 W, with a sharp absorption edge at approximately
330 nm. As shown in Figure 5, the optical band gap energy Eg shifted in the range from 3.34 eV
to 3.49 eV. The Eg of an IZTO film was calculated by considering the electron transition from the
valence to conduction band due to the absorbed photon energy hν. In a direct band gap, the absorption
coefficient obeys the following relationship for Eg [12]:

(αhν)2 = hν− Eg (1)

where h is Plank’s constant, and v is the photon frequency. The band gap is plotted by extrapolating the
linear portion of (αhν)2 against the hv axis. In accordance to the Burstein–Moss effect [13], absorption
edge blue-shift behavior was in accordance with increased electron concentration. The average
transmittance of IZTO/glass film in a wavelength region of 400 nm–800 nm and band gap with
different sputtering powers are listed in Table 3.

Table 3. IZTO film with different sputtering powers based on average transmittance in a wavelength
region of 400 nm–800 nm and the associated band gaps.

Sputtering Powers (W) 50 W 75 W 100 W 125 W 150 W

Average transmittance in a wavelength region (%) 83.64 80.47 79.42 80.41 79.11

Bandgap (eV) 3.37 3.37 3.39 3.49 3.34
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Figure 6 shows the surface morphology of the IZTO film deposited at 100 W. In Figure 6,
the structure of the top view IZTO film was shown smooth without defects such as cracks and
protrusions [14]. The smooth surface of the transparent conducting film is essential to accomplish high
performance of optoelectronic devices because the surface roughness can short-circuit optoelectronic
devices [15].
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3.2. Properties of IZTO Films as Transparent Conducting Electrodes for Electrochromic Devices

To investigate the properties of IZTO films, a WO3 electrode film was deposited on
IZTO/ITO/glass substrate. To understand the electrochemical properties of a WO3 electrode film
deposited on IZTO/ITO/glass substrate, CV measurements were performed by constructing three
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electrode cells consisting of a working electrode (WO3 electrodes film deposited on IZTO/ITO/glass)
and a counter-electrode (Pt mesh) in 0.2 M LiClO4/PC solution, as shown Figure 1. The CV curve of
the current density and voltage traces were recorded within a linear potential sweep between −1.5 V
and 0.5 V at a fixed scan rate of 150 mV/s. The coloration/bleaching electrochromic processes involved
the injection/extraction (intercalation/deintercalation) of Li+ ions into/out of the WO3 electrode film
following electrochemical reaction:

WO3 (bleaching) + x (Li+ + e−)→ LixWO3 (coloration) (2)

During the cathodic scan, the reduction of W-ions W6+ to W5+ led to coloring state, and the
reverse anodic scan (forward scan) the oxidation of W5+ to W6+ caused a bleaching phenomenon.
When applying the negative voltage on the WO3 electrode film, the electrons and Li+ ions were
inserted into the WO3 crystal structure, and W6+ reduced to a lower valence state W5+, as shown
by the tungsten bronze structure LixWO3 (coloration state) [16]. The 50th-cycle CV curves of key
factor WO3/IZTO/ITO films with various powers (50 W, 75 W, 100 W, 125 W, and 150 W) are shown
in Figure 7. The diffusion coefficients of Li+ ions in WO3/IZTO/ITO films could be evaluated by
measuring the CV curves, and diffusion coefficients were a representative parameter to evaluate the
structural properties of the films. The relationship between the peak current and the scan rate could be
determined with the Randles–Servick equation for relating ion diffusion coefficients [17] as follows:

JP = 2.69× 105n3/2C0D1/2ν1/2 (3)

where C0 is the concentration of the active ions in the electrolyte solution in mol·cm−3; v is the
potential scan rate mVs−1; D is the diffusion coefficient in cm2s−1, Jp is the peak current density in unit
of area (working area 6 cm2), which includes Jpc and Jpa with oxidation and reduction of peak current
density; and n is the number of electrons participated in the chemical reaction. The Jpc, Jpa, and the
diffusion coefficient (D) are shown in Table 4. From Table 4, the resulting higher diffusion coefficients
indicate a larger contact area and porosity with fast ion insertion/extraction. We observed the highest
oxidation/reduction ion diffusion coefficients (9.38 × 10−9 and 8.12 × 10−8 cm2/s, respectively)
with WO3/IZTO/ITO films at 125 W, indicating enhanced electrochromic properties compared to
the other samples. Figure 8 shows that as scan rate increased, the anodic peak position moved to
a higher potential position and peak current densities also increased at different scan rates that can
be controlled by the diffusion coefficient of ions. The larger linear nature between jp and v1/2 of
WO3/IZTO films are shown in the inset of Figure 8. This indicates that the reaction was fast and the
insertion and extraction of ions were a diffusion-controlled process. In our case, for WO3/IZTO/ITO
films with an active area A of 2 × 3 cm2 and C0 = 0.2 mol·cm−3, the Li+ ion diffusion coefficients
of oxidation/reduction (8.11 × 10−9 and 9.08 × 10−8 cm2/s, respectively) were calculated from the
slope of the current density versus potential curves. The area of the CV curves is deeply related to the
charge stored (capacity) in the electrochemical process at the surface of WO3/IZTO films [18]. With CV
curves having a larger cycle area, this indicates that more charges are taking part in redox reactions.
In our results, a larger optical modulation was achieved during a larger enveloped area in the CV
curve and larger carrier concentration. In Figure 9a, the optical transmittance spectra of WO3/IZTO
films were controlled between bleaching and coloration plotted as a function of wavelength for
IZTO films deposited at different sputtering powers. Furthermore, transmittance optical modulation
(∆T = Tbleaching − Tcoloration) for all samples are shown in Figure 9b. The optical transmittance changes
of all sample increased from 20% to 44% as a function of sputtering powers. The transmittance optical
modulation, ∆T = 44%, with 125 W was higher than the other samples at a fixed wavelength of 550 nm.
The transmittance modulation increased due to a larger enveloped area in the CV curve and a larger
carrier concentration.
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Table 4. The diffusion coefficients of WO3/IZTO films at different sputtering powers.

Sample IZTO (W)
Anodic Peak
Current (jpa)

Cathodic Spike
Current (jpc)

Diffusion Coefficient (cm2/s)

D for ipa D for ipc

1 50 2.67 × 10−4 2.76 × 10−3 1.60 × 10−10 1.72 × 10−10
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4. Conclusions

The structure and electrical properties of IZTO films prepared under various DC magnetron
sputtering powers varying from 50 W to 150 W were investigated. We found that IZTO films had
amorphous structures in all samples regardless of sputtering powers. The carrier concentration reached
the maximum value of 2.1 × 1021 cm−3 at 125 W. We observed a higher ion diffusion coefficient,
D = 8.12 × 10−8 cm2/s, for the IZTO film at 125 W, causing an optical contrast of 43%, and colored
and bleached switching times were 8.1 s and 4.6 s at a wavelength of 550 nm.
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